
Machine learning theory

Probably approximately correct model

Hamid Beigy

Sharif University of Technology

February 21, 2022

Table of contents

1. Introduction

2. Probably approximately correct (PAC) model

3. Learning bound for finite H

4. Agnostic probably approximately correct (PAC) model

5. Uniform convergence

6. Agnostic PAC-Learning for finite H

7. Summary

1/28

Introduction

Consistency model

1. The consistency model is not a particularly great model of learning, but it’s simple and good to

start.

Definition (Consistency model)

We say that algorithm A learns the concept class C in the consistency model if given any training set

S , the algorithm produces a hypothesis (concept) c ∈ C consistent with S if one exists, and outputs

“there is no consistent concept” otherwise.

Definition (Learnability of consistency model)

We say that a class C is learnable in the consistency model if there exists an efficient algorithm A
that learns C in the consistency model.

2. Here efficient means that the algorithm runs in polynomial time in terms of the size of the set

S and the size of each x ∈ S .

3. The examples given in the previous lecture showed a few shortcomings of the consistency model.
I A class C can be learnable while a subclass of C can be unlearnable.
I The consistency model yields a concept that tells us nothing about the accuracy of the model on new

data (generalization).
I The consistency model has a practical problem in that training data that contains noise is not

handled in a robust way.

2/28

Introduction

1. We need to add the distribution from which training and test examples are generated.

2. We assume that the following conditions hold.
I Training and test examples are generated from some unknown distribution D.
I Each example is generated independently.
I There exists a function c ∈ C (concept) such that each example labeled according to c.
I We would like the results to be distribution-free (the results hold for any target distribution).

3. Learning algorithm receives training examples and outputs a hypothesis h ∈ H..

4. Hypothesis h makes a mistake if h(x) 6= c(x).

5. We measure error of learning algorithm using generalization error.

R(h) = P
x∼D

[h(x) 6= c(x)]

6. We aim to have R(h) be small.

3/28

Introduction

1. We aim to have R(h) be small.

Definition (Approximately correct hypothesis)

Hypothesis h is called approximately correct if R(h) ≤ ε (for small ε).

2. Parameter ε is called accuracy parameter.

3. We can’t always guarantee that R(h) ≤ ε because, depending on training set, the training data

may be a very unrepresentative of the domain set.

4. We require that we are able to learn a good approximation with high probability.

5. In particular, we require that R(h) ≤ ε with probability at least 1− δ.

6. This hypothesis is called probably approximately correct.

7. Parameter δ is called confidence parameter.

4/28

Probably approximately correct (PAC) model

PAC Learnability

Definition (PAC Learnability)

A concept class C is PAC-learnable by hypothesis class H if there exists an algorithm A, such that

for all target concepts c ∈ C, for all distributions D on X , for all ε, δ ∈ (0, 1), the algorithm A takes

m ≥ mH(ε, δ) = poly

(
1

ε
,

1

δ
, n, |c|

)

examples in form of S = {(x1, c(x1)), . . . , (xm, c(xm))}, where each xi is chosen from space X at

random according to the target distribution D, and produces a hypothesis h ∈ H, such that

P
S∼Dm

[R(h) ≤ ε] ≥ (1− δ)

Definition (Sample complexity)

Function mH : (0, 1)2 7→ N that measures how many samples are required to guarantee PAC

learnability of H, is called sample complexity.

Definition (Efficiently PAC-learnable)

A concept class C is efficiently PAC-learnable by hypothesis class H if there exists an algorithm A
that runs in poly

(
1
ε
, 1
δ
, n, |c|

)
time and PAC-learns C using H.

5/28

Learning the threshold function

Example (Learning the threshold function)

1. Let X = R and C = {positive half lines}. For some point c, the corresponding positive half line

is the region of R designated by [c,∞).

2. We can treat c ∈ C as a point that separates the positive and negative regions of R .

COS 511: Theoretical Machine Learning

Lecturer: Rob Schapire Lecture 3
Scribe: Christian Eubank February 12, 2013

1 The Probably Approximately Correct (PAC) Model

1.1 Definition

The concept class C is PAC-learnable by the hypothesis class H if there exists an algorithm
A such that for all c 2 C, for all distributions D, for all ✏ > 0, for all 8� > 0, A takes m =
polynomial number of examples given in the form S = h(x1, c(x1)), ...(xm, c(xm))i, where
each xi is chosen from the space X at random according to the target distribution D, and
produces a hypothesis h 2 H such that Pr[errD(h)  ✏] � 1 � �.

PAC learning meets our goal of using training data to construct a hypothesis that is also
accurate on other yet-unseen data. However, this result is not entirely intuitive. After all,
training examples are drawn from a huge universe and we claim that we can use a merely
polynomially-sized sample to get high accuracy with high probability on future data.

1.2 Example: Learning on a line

c h

- - - - - - - - - + + + + + + + + +

Figure 1: Hypothesis and error region for guessing half lines

Let X = R and C = {positive half lines}. For some point c, the corresponding positive
half line is the region of R designated by [c,1). We can treat c 2 C as a point that separates
the positive and negative regions of R. A natural hypothesis is to simply choose a point h
that is consistent with the training data. As seen in Figure 1, there will be a region between
c and h in which the hypothesis will incorrectly label new training points. We want this
region to have size  ✏. Here, size does not refer to the actual size of the region in terms
of length. Instead, we want to guarantee that, given the true distribution D of all possible
points, we want no more than ✏ of these points to fall between c and h. In this model, we
have two bad cases:

1. B+ : h lies more than ✏ to the right of c

2. B� : h lies more than ✏ to the left of c

Mathematically, we can reason about errD(h) by first considering the likelihood of B+.
As seen in Figure 2, let R+ be the be the smallest region with c as its left border whose
probability mass is at least ✏. That is R+ = [c, r+] where r+ = sup{r � c|Pr[[c, r)] < ✏}.
By our algorithm, h falls to the right of r+ only if all training examples lie outside of R+.
Hence, B+ only occurs when no training points fall in R+. We see that, if R+ has size

3. There will be a region between c and h in which the h will incorrectly label new training points.

4. We want to find a h such that this region have size ≤ ε in terms of true distribution D.

5. We have two bad cases:

B+ h lies more than ε to the right of c.

B− h lies more than ε to the left of c.

6. First considering the likelihood of B+.

|R+|<= ε

c r+

Figure 2: Bounding the region of an h too far to the right

✏, Pr[x1 62 R+]  1 � ✏. Note: this is not an equality to account for the possibility of a
probability mass at r+. Given m training examples, we have

Pr[B+] = Pr[x1 62 R+ ^ ... ^ xm 62 R+]

= Pr[x1 62 R+]...Pr[xm 62 R+] (by i.i.d assumptions)

 (1 � ✏)m

Applying this logic to reason about both bad cases:

Pr[errD(h) > ✏]  Pr[B+ _ B�]

 Pr[B+] + Pr[B�] (by union bound)

 2(1 � ✏)m (by symmetry)

 2e�✏m (by 1 + x  ex)

We can make the right side smaller than � which, solving for m, will hold true if m �
1
✏ ln

2
� . Hence, if we have at least m training examples according to this inequality, we can

bound the generalization error with a given confidence level as desired. This approach of
requesting some amount of data to provide some accuracy guarantees is nice theoretically,
but not always realistic. In practice, we would likely receive some data and want to reason
about the error on future data. Rearranging terms, we see what with probability � 1 �
�, errD(h)  1

m lg2
� .

1.3 Other PAC learning examples

+ + + + + - - - - - - -

<= ε/2

h

- - -

h

<= ε/2

c c

Figure 3: Learning intervals

As a second example, let X = R and C = {intervals}, as illustrated in Figure 3. Specif-
ically, a c 2 C is a concept which is equal to 1 for x in some interval [a, b] and 0 otherwise.
Here, we have 2 boundary error regions, which we want force to have size of at most ✏

2 each.
Overall, there are 4 possible bad events, which using similar analysis as before, requires
m � 2

✏ ln
4
� examples to provide the desired accuracy with the desired level of confidence.

Finally, let X = R2 and C = {axis-aligned rectangles}, as illustrated in Figure 4. Our
hypothesis will be a rectangle that contains just the positive points. Extending the argument

2

7. Let R+ be the smallest region with c as its left border whose probability mass is at least ε.

8. That is R+ = [c, r+], where r+ = sup{r ≥ c | P [[c, r)] ≤ ε}.

6/28

Learning the threshold function (cont.)

Example (Learning the threshold function (cont.))

1. Let A be learning algorithm that returns the value of the smallest positive example.

2. Hence, h falls to the right of r+ only if all training examples lie outside of R+.

3. Therefore, B+ only occurs when no training points fall in R+.

4. Thus, if R+ has size ε, then P
[
x1 6∈ R+

]
≤ (1− ε).

5. Given m training examples, we have

P
[
B+] = P

[
(x1 6∈ R+) ∧ . . . ∧ (xm 6∈ R+)

]
= P

[
x1 6∈ R+]× . . .× P

[
xm 6∈ R+] ≤ (1− ε)m

6. We have bad cases, hence

P [R(h) > ε] ≤ P
[
B+ ∨ B−

]
≤ P

[
B+]+ P

[
B−
]

≤ 2(1− ε)m

≤ 2e−εm ≤ δ. using 1 + x ≤ ex

7. Then m ≥ 1
ε

ln
(

2
δ

)
.

8. Rearranging terms, we see what with probability of at least (1− δ) , we have R(h) ≤ 1
m

ln
(

2
δ

)
.

7/28

Learning an interval

Example (Learning an interval)

1. Let X = R and C = {intervals}. In this concept class, we have

c(x) =

{
1 if x ∈ [a, b]

0 otherwise

2. We have 2 boundary error regions. We force size of each region at most ε
2
.

|R+|<= ε

c r+

Figure 2: Bounding the region of an h too far to the right

✏, Pr[x1 62 R+]  1 � ✏. Note: this is not an equality to account for the possibility of a
probability mass at r+. Given m training examples, we have

Pr[B+] = Pr[x1 62 R+ ^ ... ^ xm 62 R+]

= Pr[x1 62 R+]...Pr[xm 62 R+] (by i.i.d assumptions)

 (1 � ✏)m

Applying this logic to reason about both bad cases:

Pr[errD(h) > ✏]  Pr[B+ _ B�]

 Pr[B+] + Pr[B�] (by union bound)

 2(1 � ✏)m (by symmetry)

 2e�✏m (by 1 + x  ex)

We can make the right side smaller than � which, solving for m, will hold true if m �
1
✏ ln

2
� . Hence, if we have at least m training examples according to this inequality, we can

bound the generalization error with a given confidence level as desired. This approach of
requesting some amount of data to provide some accuracy guarantees is nice theoretically,
but not always realistic. In practice, we would likely receive some data and want to reason
about the error on future data. Rearranging terms, we see what with probability � 1 �
�, errD(h)  1

m lg2
� .

1.3 Other PAC learning examples

+ + + + + - - - - - - -

<= ε/2

h

- - -

h

<= ε/2

c c

Figure 3: Learning intervals

As a second example, let X = R and C = {intervals}, as illustrated in Figure 3. Specif-
ically, a c 2 C is a concept which is equal to 1 for x in some interval [a, b] and 0 otherwise.
Here, we have 2 boundary error regions, which we want force to have size of at most ✏

2 each.
Overall, there are 4 possible bad events, which using similar analysis as before, requires
m � 2

✏ ln
4
� examples to provide the desired accuracy with the desired level of confidence.

Finally, let X = R2 and C = {axis-aligned rectangles}, as illustrated in Figure 4. Our
hypothesis will be a rectangle that contains just the positive points. Extending the argument

2

3. Hence, we have 4 possible bad events.

4. A similar analysis as for the previous example, we have sample complexity of

mH(ε, δ) ≥ 2

ε
ln

(
4

δ

)

8/28

Learning axis-aligned rectangles

Example (Learning axis-aligned rectangles)

1. Let X = R2 and C = {axis − aligned rectangles}. In this concept class, we have

h
c

+ + +

+ +

+ + +

+ +

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

-

- - - - - - - - - - - - - -
- - - - - — - — - — - —

- - - - - - - - - - - - - -
- - - - - — - — - — - —

c(x) =

{
1 if x belongs to the given rectangle

0 otherwise

2. We have 4 boundary error regions. We force size of each region at most ε
4
.

3. A similar analysis as for the previous example, we have sample complexity of

mH(ε, δ) ≥ 4

ε
ln

(
4

δ

)

Example (Learning axis-aligned hyper-rectangles)

Find the sample complexity of X = Rn and C = {axis − aligned hyper − rectangles}.

9/28

Learning bound for finite H

Learning bound for finite H

Theorem (Learning bound for finite H)

Let H = {h | h : X 7→ {0, 1}} be a finite set of functions and A an algorithm that for any target

concept c ∈ H and sample S, returns a consistent hypothesis h ∈ H.Then,for any δ > 0,with

probability at least (1− δ), we have

mH(ε, δ) ≥ 1

ε

(
log|H|+ log

(
1

δ

))
R(h) ≤ 1

m

(
log|H|+ log

(
1

δ

))

Proof (Learning bound for finite H).

For any ε > 0, define Hε = {h ∈ H | R(h) > ε}. Then,

P
[
∃h ∈ Hε

∣∣∣ R̂(h) = 0
]

= P
[
(R̂(h1) = 0) ∨ (R̂(h2) = 0) ∨ . . . ∨ (R̂(h|Hε|) = 0

]
≤
∑
hi∈Hε

P
[
R̂(hi) = 0

]
≤
∑
hi∈Hε

(1− ε)m

≤ |H|(1− ε)m ≤ |H|e−mε ≤ δ

10/28

Learning bound for finite H

Corollary

This theorem shows that when hypothesis space H is finite,

1. a consistent algorithm A is a PAC-learning algorithm,

2. specifies an upper bound on how much data we need to achieve a certain general error rate.

3. it relates a general relation between learning performance and the size of the hypothesis space,

and the number of training examples,

4. the more data we have, the lower the upper bound of error we can achieve, and

5. the smaller the hypothesis size is, the less data we need to achieve a certain general error rate.

In this framework, we assumed that C ⊆ H. This case is called realizable case.

11/28

PAC-Learning of conjunctions

Example (PAC-Learning of conjunctions)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all conjunctions (AND of a subset of the (possibly negated)

variables, such as c(x) = x2 ∧ x7 ∧ x9.

3. The hypothesis space has |H| = 3n different hypotheses, then the sample complexity

mH(ε, δ) ≥ 1

ε

(
log|H|+ log

(
1

δ

))
=

1

ε

(
log 3n + log

(
1

δ

))
=

1

ε

(
n log 3 + log

(
1

δ

))

4. This means that a polynomial number of samples will do to get a good enough hypothesis with

high enough probability.

5. Therefore the class of conjunctions is PAC learnable.

6. Let δ = 0.02, ε = 0.1, and n = 10. Then mH(ε, δ) ≥ 149.

7. The computation complexity cost per training example is in O(n).

12/28

PAC-Learning of DNFs

Example (PAC-Learning of DNF)

1. Let X = {0, 1}n be the set of all n-bit vectors.

2. Let the concept class C consist of all DNF that is the OR of an arbitrary number of

arbitrary-length conjunctions.

3. For example, we have c(x) = (x2 ∧ x7 ∧ x8) ∨ (x4 ∧ x̄9) ∨ (x3 ∧ x̄5 ∧ x7).

4. The hypothesis space has |H| = 22n different hypotheses, then the sample complexity

mH(ε, δ) ≥ 1

ε

(
log|H|+ log

(
1

δ

))
=

1

ε

(
log 22n + log

(
1

δ

))
=

1

ε

(
2n log 2 + log

(
1

δ

))

5. This does not tell us that the class is PAC learnable. It does not also tell us that the class is not

PAC learnable, because the bound is not a tight bound.

6. This bound only shows that we cannot use the general learning bound to show PAC learnability.

7. The question of whether this class is PAC learnable or not is an open problem.

13/28

Agnostic probably approximately correct (PAC) model

Unrealizable setting

1. We assumed that there exists a target function c ∈ C ⊆ H that perfectly labels the data.

2. This is not always a valid assumption to make.
I There could be random noise in the data, sometimes causing a label to be flipped.
I There is a perfect target function c, but it is not in hypotheses space that we are considering, i.e.

c 6∈ H.
I There is so much randomness in the labels that no function comes close to labeling all of our data

correctly. In this, we would like to remove the assumption of a perfect target function.

3. This is often referred to as the agnostic learning setting, since we make no assumptions about the

origin of labels.

4. It is also referred to as unrealizable setting, in contrast with realizable setting.

5. We need to update all of our definitions, assumptions, and goals for this new setting.

14/28

Unrealizable setting

1. We now assume that there exists a joint distribution D over pairs of values (x, y) where x is the

input point and y is the corresponding label.

2. We now need to update our notion of error.

R(h) = P
(x,y)∼D

[h(x) 6= y]

3. We can still model a perfect target function as a joint probability distribution for which the label y

is deterministically equal to c(x) conditioned on the input x.

4. Previously, our goal was to find a hypothesis h ∈ H such that R(h) ≤ ε. Here, such a function

might not exist.

5. We can only possibly hope to find a function as good as the best function h ∈ H.

6. Therefore, our new goal is to output a function h ∈ H such that R(h) is close to minh′∈H R(h′).

15/28

Agnostic PAC Learnability

Definition (Agnostic PAC Learnability)

A hypothesis class H is agnostic PAC learnable, if there exist a function mH : (0, 1)2 7→ N and a

learning algorithm A with the following property: for every ε, δ ∈ (0, 1) and for every distribution D
over X × Y, when running the learning algorithm A on m ≥ mH(ε, δ) i.i.d. examples generated by

D, the algorithm returns a hypothesis h ∈ H such that, with probability of at least (1− δ) the

following equation holds (over the choice of the m training examples),

R(h) ≤ min
h′∈H

R(h′) + ε

1. If the realizability assumption holds, then agnostic PAC learning provides the same guarantee as

PAC learning. In that sense, agnostic PAC learning generalizes the definition of PAC learning.

2. When the realizability assumption does not hold, no learner can guarantee an arbitrarily small

error. A learner can success if its error is not much larger than the best error achievable by a

predictor from the class H while in PAC learning the learner is required to achieve a small error in

absolute term.

16/28

Agnostic PAC Learnability for general loss functions

Definition (Generalized loss function)

Given any set H and some domain Z = X × Y, let ` be any function from H ×Z to the set of

nonnegative real numbers, ` : H ×Z 7→ R+. We call such functions loss functions.

Definition (Risk function)

The risk function is the expected loss of h ∈ H with respect to a probability distribution D over Z,

R(h) = E
z∼D

[`(h, z)] .

Definition (Agnostic PAC Learnability for general loss functions)

A hypothesis class H is agnostic PAC learnable with respect to a set Z and a loss function

` : H ×Z 7→ R+, if there exist a function mH : (0, 1)2 7→ N and a learning algorithm A with the

following property: for every ε, δ ∈ (0, 1) and for every distribution D over Z = X × Y, when

running learning algorithm A on m ≥ mH(ε, δ) i.i.d. examples generated by D, the algorithm returns

a hypothesis h ∈ H such that, with probability of at least (1− δ) the following equation holds,

R(h) ≤ min
h′∈H

R(h′) + ε

where R(h) = Ez∼D [`(h, z)].
17/28

Uniform convergence

Empirical risk minimization algorithm

Definition (Empirical risk minimization algorithm)

Let H be the hypotheses set and S be the training set. An empirical risk minimization algorithm

receives a training set S and a hypotheses set H and outputs a hypothesis h ∈ H such that

h = arg min
h′∈H

R̂(h′).

1. Given a hypothesis class, H, an ERM algorithm receives a training sample, S and evaluates the

risk of each h ∈ H on S and outputs a member of H that minimizes this empirical risk.

2. The hope is that an h that minimizes the empirical risk with respect to S is a risk minimizer (or

has risk close to the minimum) with respect to the true data probability distribution as well.

3. It suffices to ensure that the empirical risks of all members of H are good approximations of

their true risk.

4. In another word, we need that uniformly over all hypotheses in the hypothesis class, the empirical

risk will be close to the true risk.

Definition (ε-representative sample)

A training set S is called ε-representative (w.r.t. domain Z, hypothesis class H, loss function `, and

distribution D) if ∀h ∈ H, we have

|R(h)− R̂(h)| ≤ ε.
18/28

Empirical risk minimization algorithm

Lemma

Assume that a training set S is ε
2
-representative (w.r.t. domain Z, hypothesis class H, loss function

`, and distribution D). Then, any output of ERM algorithm (hs), satisfies

R(hs) ≤ min
h∈H

R(h) + ε.

Proof.

For every h ∈ H, we have

R(hs) ≤ R̂(hs) +
ε

2
By applying the

ε

2
-representativeness of S to hs .

≤ R̂(h) +
ε

2
Because hs is an ERM predictor, hence R̂(hs) ≤ R̂(h).

≤ R(h) +
ε

2
+
ε

2
Because S is

ε

2
-representative, so R̂(h) ≤ R(h) +

ε

2
.

= R(h) + ε

19/28

Empirical risk minimization algorithm

The previous lemma implies that to ensure that the ERM rule is an agnostic PAC learner, it suffices to

show that with probability of at least (1− δ) over the random choice of a training set, it will be an

ε-representative training set.

Definition (Uniform convergence)

A hypothesis class H has uniform convergence property (w.r.t a set Z and a loss function `), if

there exist a function mUC
H : (0, 1)2 7→ N such that for every ε, δ ∈ (0, 1) and for every probability

distribution D over Z, if S is a sample of m ≥ mUC
H (ε, δ) examples drawn i.i.d according to D, then

with probability of at least (1− δ), the training set S is ε-representative.

The term uniform here refers to having a fixed sample size that works for all members of H and over

all possible probability distributions over the domain.

Here, we used the fact that for every h ∈ H, the empirical risk concentrates around the true risk with

high probability. This concept known as uniform convergence.

20/28

Uniform convergence

Theorem

If a class H has the uniform convergence property with a function mUC
H , then the class is

agnostically PAC learnable with the sample complexity mH(ε, δ) ≤ mUC
H (ε

2
, δ).

Proof.

1. Suppose that H has the uniform convergence property with a function mUC
H .

2. For every ε, δ ∈ (0, 1), if S is a sample of size m, where m ≥ mUC
H (ε

2
, δ), then with probability at

least (1− δ), sample S is ε
2
−representative. This means that for all h ∈ H we have

R(h) ≤ R̂(hs) +
ε

2
,

or

R(h) ≤ min
h′∈H

R̂(h′) +
ε

2

≤ min
h′∈H

R(h′) + ε

3. Hence H is agnostically PAC-learnable with mH(ε, δ) = mUC
H (ε

2
, δ).

21/28

Agnostic PAC-Learning for finite H

Agnostic PAC-Learning for finite H

Theorem

Let H be a finite hypothesis class. Then, H enjoys the uniform convergence property with sample

complexity

mUC
H (ε, δ) ≤

ln
(

2|H|
δ

)
2ε2

and is therefore PAC learnable by the ERM algorithm.

Theorem (Hoeffding inequality)

Let θ1, . . . , θm be be a sequence of i.i.d. random variables and assume that for all i , we have

E [θi] = µ and P [a ≤ θi ≤ b] = 1. Then, for any ε > 0

P

[∣∣∣∣∣ 1

m

m∑
i=1

θi − µ

∣∣∣∣∣ > ε

]
≤ 2 exp

(
− 2mε2

(b − a)2

)

22/28

Agnostic PAC-Learning for finite H

Proof.

To show that uniform convergence holds we follow a two step argument.

1. The first step applies the union bound.

1.1 Fix some ε, δ.

1.2 We need to find a sample size m that guarantees that for any D, with probability of at least (1− δ)

of the choice of S sampled i.i.d. from D, for all h ∈ H we have |R̂(h)− R(h)| ≤ ε.
1.3 That is,

P
[
∀h ∈ H

∣∣∣ ∣∣∣R̂(h)− R(h)
∣∣∣ ≤ ε] ≥ (1− δ)

1.4 Equivalently, we need to show that

P
[
∃h ∈ H

∣∣∣ ∣∣∣R̂(h)− R(h)
∣∣∣ > ε

]
< δ⋃

h∈H
P
[∣∣∣R̂(h)− R(h)

∣∣∣ > ε
]
< δ

⋃
h∈H

P
[∣∣∣R̂(h)− R(h)

∣∣∣ > ε
]
<
∑
h∈H

P
[∣∣∣R̂(h)− R(h)

∣∣∣ > ε
]
< δ

23/28

Agnostic PAC-Learning for finite H

Proof (Cont.).

2. The second step employs a measure concentration inequality.

2.1 This step will argue that each summand of the right-hand side of this inequality is small enough.

2.2 That is, we will show that for any fixed hypothesis, h, value of
∣∣∣R̂(h)− R(h)

∣∣∣ is likely to be small.

2.3 Recall that

R(h) = E
z∼D

[`(h, z)] Because each zi is sampled i.i.d. from D.

R̂(h) =
1

m

m∑
i=1

`(h, zi)

2.4 By the linearity of expectation, it follows that

R(h) = E
[
R̂(h)

]

2.5 Hence, quantity
∣∣∣R̂(h)− R(h)

∣∣∣ is deviation of random variable R̂(h) from its expectation.

2.6 We must show that R̂(h) is concentrated around its expected value.

24/28

Agnostic PAC-Learning for finite H

Proof.

2. The second step employs a measure concentration inequality (cont.).

2.1 Let θi = `(h, zi).

2.2 Since h is fixed and z1, . . . , zm are sampled i.i.d., then θ1, . . . , θm are also i.i.d. random variables.

Hence,

R̂(h) =
1

m

m∑
i=1

θi P

[∣∣∣∣∣ 1

m

m∑
i=1

θi − µ
∣∣∣∣∣ > ε

]
R(h) = µ

2.3 Also assume that ` ∈ [0, 1], then θi ∈ [0, 1].

2.4 Using Hoeffding’s inequality

P
[
∃h ∈ H

∣∣∣ ∣∣∣R̂(h)− R(h)
∣∣∣ > ε

]
=
∑
h∈H

P

[∣∣∣∣∣ 1

m

m∑
i=1

θi − µ
∣∣∣∣∣ > ε

]

≤
∑
h∈H

2 exp
(
−2mε2

)
= 2|H| exp

(
−2mε2

)
≤ δ

2.5 Solving the above inequality completes the proof of the theorem.

25/28

Summary

Summary

1. We have shown that finite hypothesis classes enjoy the uniform convergence property and are

hence agnostic PAC learnable.

2. What happen if |H| is not finite?

26/28

Readings

1. Chapters 3 & 4 of Understanding machine learning : From theory to algorithms

Book (Shalev-Shwartz and Ben-David 2014).

2. Chapter 2 of Foundations of Machine Learning (Mohri, Rostamizadeh, and Talwalkar 2018).

27/28

References i

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine

Learning. Second Edition. MIT Press.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning: From theory to

algorithms. Cambridge University Press.

28/28

Questions?

cba

28/28

	Introduction
	Probably approximately correct (PAC) model
	Learning bound for finite H
	Agnostic probably approximately correct (PAC) model
	Uniform convergence
	Agnostic PAC-Learning for finite H
	Summary

