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Introduction



Introduction

1. We have studied the passive supervised learning methods.

2. Given access to a labeled sample of size m (drawn iid from an unknown
distribution D), we want to learn a classifier h ∈ H such that R(h) ≤ ε with
probability higher than (1− δ).

Supervised Learning

Given access to a labeled sample (drawn iid from an unknown distribution D),
we want to learn a classifier h 2 H with eD(h)  epsilon.

VC theory: need m to be roughly VCdim(H)/✏, in the realizable case (when all

examples are consistent with some target function in H)

3. We need m to be roughly
VC (H)

ε
in realizable case and

VC (H)

ε2
in urealizable

case.

4. In many applications such as web-page classification, there are a lot of unlabeled
examples but obtaining their labels is a costly process.
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Active learning



Active learning

1. In many applications unlabeled data is cheap and easy to collect, but labeling
it is very expensive (e.g., requires a hired human).

2. Considering the problem of web page classification.
I A basic web crawler can very quickly collect millions of web pages, which can serve

as the unlabeled pool for this learning problem.
I In contrast, obtaining labels typically requires a human to read the text on these

pages to determine its label.
I Thus, the time-bottleneck in the data-gathering process is the time spent by the

human labeler.

3. The idea is to let the classifier/regressor pick which examples it wants labeled.

Active Learning

In many situations unlabeled data is cheap and easy to collect, but labeling it is
very expensive (e.g., requires a hired human). Idea: let the classifier pick which
examples it wants labeled.

The hope is that by directing the labeling process, we can pick a good classifier

at low cost.
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Active learning setting

1. The hope is that by directing the labeling process, we can pick a good classifier at
low cost.

2. It is therefore desirable to minimize the number of labels required to obtain an
accurate classifier.

3. In passive supervised learning setting, we have
I There is a set X called the instance space.
I There is a set Y called the label space.
I There is a distribution D called the target distribution.
I Given a training sample S ⊂ X × Y, the goal is to find a classifier h : X 7→ Y with

acceptable error rate R(h) = P
(x,y)∼D

[h(x) 6= y ].
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Active learning setting

1. In active learning, we have
I There is a set X called the instance space.
I There is a set Y called the label space.
I There is a distribution D called the target distribution.
I The learner have access to sample SX = {x1, x2, . . . , x∞} ⊂ X .
I There is an oracle that labels each instant x.
I There is a budget m.
I The learner chooses an instant and gives it to the oracle and receives its label.
I After a number of these label requests not exceeding the budget m, the algorithm

halts and returns a classifier h.

Active learning systems attempt to overcome the labeling bottleneck by asking
queries in the form of unlabeled instances to be labeled by an oracle (e.g., a human
annotator). In this way, the active learner aims to achieve high accuracy using
as few labeled instances as possible, thereby minimizing the cost of obtaining
labeled data. Active learning is well-motivated in many modern machine learning
problems where data may be abundant but labels are scarce or expensive to obtain.
Note that this kind of active learning is related in spirit, though not to be confused,
with the family of instructional techniques by the same name in the education
literature (Bonwell and Eison, 1991).

1.2 Active Learning Examples

machine learning
model

L
U

labeled
training set

unlabeled pool

oracle (e.g., human annotator)

learn a model

select queries

Figure 1: The pool-based active learning cycle.

There are several scenarios in which active learners may pose queries, and
there are also several different query strategies that have been used to decide which
instances are most informative. In this section, I present two illustrative examples
in the pool-based active learning setting (in which queries are selected from a
large pool of unlabeled instances U) using an uncertainty sampling query strategy
(which selects the instance in the pool about which the model is least certain how
to label). Sections 2 and 3 describe all the active learning scenarios and query
strategy frameworks in more detail.

5
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Active learning scenarios(Settles 2012)

1. There are three main scenarios where active learning has been studied.

instance 

space or input 

distribution

U
sample a large

pool of instances

sample an

instance

model generates

a query de novo

model decides to

query or discard

model selects

the best query

membership query synthesis

stream-based selective sampling

pool-based sampling query is labeled

by the oracle

Figure 4: Diagram illustrating the three main active learning scenarios.

2.1 Membership Query Synthesis
One of the first active learning scenarios to be investigated is learning with mem-
bership queries (Angluin, 1988). In this setting, the learner may request labels
for any unlabeled instance in the input space, including (and typically assuming)
queries that the learner generates de novo, rather than those sampled from some
underlying natural distribution. Efficient query synthesis is often tractable and
efficient for finite problem domains (Angluin, 2001). The idea of synthesizing
queries has also been extended to regression learning tasks, such as learning to
predict the absolute coordinates of a robot hand given the joint angles of its me-
chanical arm as inputs (Cohn et al., 1996).

Query synthesis is reasonable for many problems, but labeling such arbitrary
instances can be awkward if the oracle is a human annotator. For example, Lang
and Baum (1992) employed membership query learning with human oracles to
train a neural network to classify handwritten characters. They encountered an
unexpected problem: many of the query images generated by the learner con-
tained no recognizable symbols, only artificial hybrid characters that had no nat-
ural semantic meaning. Similarly, one could imagine that membership queries
for natural language processing tasks might create streams of text or speech that
amount to gibberish. The stream-based and pool-based scenarios (described in the
next sections) have been proposed to address these limitations.

However, King et al. (2004, 2009) describe an innovative and promising real-
world application of the membership query scenario. They employ a “robot scien-

9

2. In all scenarios, at each iteration a model is fitted to the current labeled set and
that model is used to decide which unlabeled example we should label next.

3. In membership query synthesis, the active learner is expected to produce an
example that it would like us to label.

4. In stream based selective sampling, the learner gets a stream of examples from the
data distribution and decides if a given instance should be labeled or not.

5. In pool-based sampling, the learner has access to a large pool of unlabeled
examples and chooses an example to be labeled from that pool. This scenario is
most useful when gathering data is simple, but the labeling process is expensive.
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Typical heuristics for active learning

Typical heuristics for active learning(Dasgupta 2011)

1: Start with a pool of unlabeled data.
2: Pick a few points at random and get their labels.
3: repeat
4: Fit a classifier to the labels seen so far.
5: Query the unlabeled point that is closest to the boundary (or most uncertain,

or most likely to decrease overall uncertainty,...)
6: until forever

Typical heuristics for active learning

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Biased sampling: the
labeled points are not
representative of the
underlying distribution!

Biased sampling: the labeled points are not representative of the underlying
distribution!
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Typical heuristics for active learning

Typical heuristics for active learning

1: Start with a pool of unlabeled data.
2: Pick a few points at random and get their labels.
3: repeat
4: Fit a classifier to the labels seen so far.
5: Query the unlabeled point that is closest to the boundary (or most uncertain,

or most likely to decrease overall uncertainty,...)
6: until forever

Example (Sampling bias)

Sampling bias

Start with a pool of unlabeled data

Pick a few points at random and get their labels

Repeat

Fit a classifier to the labels seen so far
Query the unlabeled point that is closest to the boundary
(or most uncertain, or most likely to decrease overall
uncertainty,...)

Example:

45% 5% 5% 45%

Even with infinitely many labels, converges to a classifier with 5%
error instead of the best achievable, 2.5%. Not consistent!

Manifestation in practice, eg. Schutze et al 03.

Even with infinitely many labels, converges to a classifier with 5% error instead of
the best achievable, 2.5%. Not consistent!
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Can adaptive querying really help?

There are two distinct narratives for explaining how adaptive querying can help

1. Efficient search through hypothesis space

2. Exploiting (cluster) structure in data

Efficient search through hypothesis space

1. Ideal case is when each query cuts the version space in two subsets.

2. Then perhaps we need just log|H| labels to get a perfect hypothesis!

In general, the efficient search through hypothesis space has the following challenges

1. Do there always exist queries that will cut off a good portion of the version space?

2. If so, how can these queries be found?

3. What happens in the non-separable case?
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Can adaptive querying really help?

Exploiting (cluster) structure in data

1. Suppose the unlabeled data looks like this

Case I: Exploiting cluster structure in data

Suppose the unlabeled data looks like this.

Then perhaps we just need five labels!

Challenges: In general, the cluster structure (i) is not so clearly
defined and (ii) exists at many levels of granularity. And the
clusters themselves might not be pure in their labels. How to
exploit whatever structure happens to exist?

2. Then perhaps we just need five labels!

In general, the cluster structure has the following challenges

1. It is not so clearly defined

2. There exists at many levels of granularity.

The clusters themselves might not be pure in their labels.

How to exploit whatever structure happens to exist?
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Exploiting cluster structure in data (Dasgupta and Hsu 2008)

1. Find a clustering of the data

2. Sample a few randomly-chosen points in each cluster

3. Assign each cluster its majority label

4. Now use this fully labeled data set to build a classifier

Exploiting cluster structure in data [DH 08]

Basic primitive:

! Find a clustering of the data

! Sample a few randomly-chosen points in each cluster

! Assign each cluster its majority label

! Now use this fully labeled data set to build a classifier

⇒
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Efficient search through hypothesis space

1. Threshold functions on the real line: H = {hw | w ∈ R} and hw (x) = I [x ≥ w ].

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled
points.

2. Passive learning: we need Ω
(
1
ε

)
labeled points to have R(hw ) ≤ ε.

3. Active learning: start with 1
ε unlabeled points.

Efficient search through hypothesis space

Threshold functions on the real line:

H = {hw : w ∈ R}
hw(x) = 1(x ≥ w) w

− +

Supervised: for misclassification error ≤ ε, need ≈ 1/ε labeled
points.

Active learning: instead, start with 1/ε unlabeled points.

Binary search: need just log 1/ε labels, from which the rest can be
inferred. Exponential improvement in label complexity!

4. Binary search: need just log 1
ε labels, from which the rest can be inferred.

Exponential improvement in label complexity!

5. Challenges:

5.1 Nonseparable data?
5.2 Other hypothesis classes?
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A simple algorithm for noiseless active learning

Algorithm CAL (Cohn, Atlas, and Ladner 1994)

1: Let h : X 7→ {−1,+1} and h∗ ∈ H.
2: Initialize i = 1 and H1 = H.
3: while (|Hi | > 1) do
4: Select xi ∈ {x | h ∈ H1 disagrees}. . Region of disagreement
5: Query with xi to obtain yi = h∗(xi ). . Query the oracle
6: Set Hi+1 ← {h ∈ Hi | h(xi ) = yi}. . Version space
7: Set i ← i + 1.
8: end while

CAL example
1.3. Conceptual Themes 7
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Figure 1.1: An illustration of the concepts involved in disagreement-based active
learning, in the context of learning a linear separator in 2 dimensions.

On the other hand, what if instead we are given the unlabeled
point depicted in Figure 1.1d? In this case, there is some line that
correctly separates the other points while including this new point on
the “≠” side, and there is another line that correctly separates the
other points while including this new point on the “+” side. So we
are unable to deduce the correct label of this point based only on the
information already available. The disagreement-based active learning
strategy is characterized by the fact that it will request the value of
the label (from the expert/oracle) whenever (and only whenever) this
is the case. Indeed, for this data set, the disagreement-based strategy
would make a label request when presented with any unlabeled point
in the shaded region in Figure 1.1e: namely, the set of points such that
there is some disagreement among the separators consistent with the
observed labels. This set is referred to as the region of disagreement

Problems

1. intractable to maintain Hi

2. nonseparable data
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Label complexity and disagreement coefficient

Definition (Label complexity(Hanneke 2014a,b))

Active learning algorithm A achieves label complexity mA if, for every ε ≥ 0 and
δ ∈ [0, 1], every distribution D over X × Y, and every integer m higher than
mA(ε, δ,D), if h is the classifier produced by running A with budget m, then with
probability at least (1− δ), we have R(h) ≤ ε.

Definition ( Disagreement coefficient (separable case)(Hanneke 2014a,b))

Let DX be the underlying probability distribution on input space X . Let Hε be all
hypotheses in H with error less than ε. Then,

1. disagreement region is defined as

DIS(Hε) =
{

x
∣∣ ∃h, h′ ∈ Hε such that h(x) 6= h′(x)

}
.

2. Then, disagreement coefficient is defined as

θ = sup
ε

DX (DIS(Hε))

ε
.
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Threshold classifier

Example (Threshold classifier)

Let H be the set of all threshold functions in real line R. Show that θ = 2.

Disagreement coefficient: separable case

Let P be the underlying probability distribution on input space X .
Let Hε be all hypotheses in H with error ≤ ε. Disagreement region:

DIS(Hε) = {x : ∃h, h′ ∈ Hε such that h(x) $= h′(x)}.

Then disagreement coefficient is

θ = sup
ε

P[DIS(Hε)]

ε
.

Example: H = {thresholds in R}, any data distribution.

target

Therefore θ = 2.
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Label complexity of CAL

Algorithm CAL (Cohn, Atlas, and Ladner 1994)

1: Let h : X 7→ {−1,+1} and h∗ ∈ H.
2: Initialize i = 1 and H1 = H.
3: while (|Hi | > 1) do
4: Select xi ∈ {x | h ∈ H1 disagrees}. . Region of disagreement
5: Query with xi to obtain yi = h∗(xi ). . Query the oracle
6: Set Hi+1 ← {h ∈ Hi | h(xi ) = yi}. . Version space
7: Set i ← i + 1.
8: end while

1. The label complexity of CAL can be captured by VC (H) = d and disagreement
coefficient θ.

I For realizable case, label complexity of CAL equals to

θd log(1/ε).

I For unrealizable case, label complexity of CAL equals to (If best achievable error rate
is v)

θ

(
d log2 1

ε
+

dv2

ε2

)
.
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Summary



Summary

1. We considered active learning problems:

2. There are different scenarios of active learning.

3. We defined two different measures of label complexity and disagreement
coefficient.

4. We showed that the label complexity is characterized by VC (H) of hypothesis
space and disagreement coefficient θ.

5. It was shown that active learning decreases the label complexity in an exponential
improvement over passive learning.
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Readings

1. Read the papers given in the references.
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Questions?
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