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Introduction



Introduction

1. Convex learning comprises an important family of learning problems, because
most of what we can learn efficiently.

I Linear regression with the squared loss is a convex problem for regression.
I logistic regression is a convex problem for classification.
I Halfspaces with the 0− 1 loss, which is a computationally hard problem to learn in

unrealizable case, is non-convex.

2. In general, a convex learning problem is a problem.
I whose hypothesis class is a convex set and
I whose loss function is a convex function for each example.
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Introduction

1. Other properties of the loss function that facilitate successful learning are
I Lipschitzness
I Smoothness

2. Are convex smooth learning problems and convex Lipschitz-pounded problems
learnable?

3. In this session, we study the learnability of
I Convex smooth-bounded problems
I Convex Lipschitz-pounded problems
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Mathematical backgrounds



Introduction

1. For convex learning problems, we need to study the following properties of loss
functions.

I Convexity
I Lipshitzness
I Smoothness
I Strong convexity
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Mathematical backgrounds

Convexity



Convex set

Definition (Convex set)

A set C in a vector space is convex if for any two vectors u, v ∈ C , the line segment
between u and v is contained in set C . That is, for any α ∈ [0, 1], the convex
combination αu + (1− α)v ∈ C .
Given α ∈ [0, 1], the combination, αu + (1− α)v of the points u, v is called a
convex combination.

Example (Convex and non-convex sets)

Some examples of convex and non-convex sets in R2

non-convex sets convex sets

Definition (Convex Set)

A set C in a vector space is convex if for any two vectors u,v in C, the
line segment between u and v is contained in C. That is, for any
↵ 2 [0, 1] we have that the convex combination ↵u + (1 � ↵)v is in C.

non-convex convex

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 3 / 47
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Convex function

Definition (Convex function)

Let C be a convex set. Function f : C 7→ C is convex if for any two vectors u, v ∈ C
and α ∈ [0, 1],

f (αu + (1− α)v) ≤ αf (u) + (1− α)f (v).

In words, f is convex if for any u, v ∈ C , the graph of f between u and v lies below the
line segment joining f (u) and f (v).

Example (Convex function)

Definition (Convex function)

Let C be a convex set. A function f : C ! R is convex if for every
u,v 2 C and ↵ 2 [0, 1],

f(↵u + (1 � ↵)v)  ↵f(u) + (1 � ↵)f(v) .

f(u)

f(v)

u

↵u + (1 � ↵)v

v

↵f(u) + (1 � ↵)f(v)

f(↵u + (1 � ↵)v)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 4 / 47
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Epigraph

A function f is convex if and only if its epigraph is a convex set.

epigraph(f ) = {(x, β) | f (x) ≤ β}.

Epigraph

A function f is convex if and only if its epigraph is a convex set:

epigraph(f) = {(x,�) : f(x)  �} .

x

f(x)

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 5 / 47
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Properties of convex functions

1. If f is convex then every local minimum of f is also a global minimum.
I Let B(u, r) = {v | ‖v − u‖ ≤ r} be a ball of radius r centered around u.
I f (u) is a local minimum of f at u if ∃r > 0 such that ∀v ∈ B(u, r), we have

f (v) ≥ f (u).
I It follows that for any v (not necessarily in B), there is a small enough α > 0 such

that u + α(v − u) ∈ B(u, r) and therefore

f (u) ≤ f (u + α(v − u)).

I If f is convex, we also have that

f (u + α(v − u)) = f (αu + (1− α)v) ≤ (1− α)f (u) + αf (v).

I Combining these two equations and rearranging terms, we conclude that

f (u) ≤ f (v).

I This holds for every v, hence f (u) is also a global minimum of f .

350 Convex Optimization

Figure B.1 Examples of a convex (left) and a concave (right) functions. Note that

any line segment drawn between two points on the convex function lies entirely

above the graph of the function while any line segment drawn between two points

on the concave function lies entirely below the graph of the function.

B.2 Convexity

This section introduces the notions of convex sets and convex functions. Convex

functions play an important role in the design and analysis of learning algorithms,

in part because a local minimum of a convex function is necessarily also a global

minimum. Thus, the properties of a learning hypothesis that is a local minimum

of a convex optimization are often well understood, while for some non-convex

optimization problems, there may be a very large number of local minima for which

no clear characterization can be given.

Definition B.3 Convex set

A set X ⊆ RN is said to be convex if for any two points x,y ∈ X the segment [x,y]

lies in X , that is

{αx + (1 − α)y : 0 ≤ α ≤ 1} ⊆ X .

Definition B.4 Convex hull

The convex hull conv(X ) of a set of points X ⊆ RN is the minimal convex set

containing X and can be equivalently defined as follows:

conv(X ) =
{ m∑

i=1

αixi : m ≥ 1, ∀i ∈ [1,m],xi ∈ X ,αi ≥ 0,
m∑

i=1

αi = 1
}

. (B.1)

Let Epi f denote the epigraph of function f : X → R, that is the set of points lying

above its graph: {(x, y) : x ∈ X , y ≥ f(x)}.
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Properties of convex functions

2. If f is convex and differentiable, then

∀u, f (u) ≥ f (w) + 〈∇f (w),u−w〉

where ∇f (w) =

(
∂f (w)

∂w1
, . . . ,

∂f (w)

∂wn

)
is the gradient of f at w.

I If f is convex, for every w, we can construct a tangent to f at w that lies below f
everywhere.

I If f is differentiable, this tangent is the linear function
l(u) = f (w) + 〈∇f (w),u−w〉.

Property II: tangents lie below f

If f is convex and di↵erentiable, then

8u, f(u) � f(w) + hrf(w),u � wi

(recall, rf(w) =
⇣
@f(w)
@w1

, . . . , @f(w)
@wd

⌘
is the gradient of f at w)

f(w)

f(u)

w u

f(
w
) +

hu
�w

,r
f(
w
)i

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 7 / 47
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Properties of convex functions (Sub-gradients)

1. v is sub-gradient of f at w if ∀u, f (u) ≥ f (w) + 〈v,u−w〉
2. The differential set, ∂f (w), is the set of sub-gradients of f at w.

where ∇f (w) =

(
∂f (w)

∂w1
, . . . ,

∂f (w)

∂wn

)
is the gradient of f at w.

Lemma

Function f is convex iff for every w, ∂f (w) 6= 0.

Sub-gradients

v is sub-gradient of f at w if 8u, f(u) � f(w) + hv,u � wi
The di↵erential set, @f(w), is the set of sub-gradients of f at w

Lemma: f is convex i↵ for every w, @f(w) 6= ;

f(w)

f(u)

w u

f(
w
) +

hu
�w

,v
i

Shai Shalev-Shwartz (Hebrew U) IML Lecture 6 Convexity 8 / 47
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f(u)

w u

f(
w
) +
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�w

,v
i
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3. f is locally flat around w (0 is a sub-gradient) iff w is aglobal minimizer.
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Convex functions

Lemma (Convexity of a scaler function)

Let f : R 7→ R be a scalar twice differential function, and f ′, f ′′ be its first and
second derivatives, respectively. Then, the following are equivalent:

1. f is convex.

2. f ′ is monotonically nondecreasing.

3. f ′′ is nonnegative.

Example (convexity of scaler functions)

1. The scaler function f (x) = x2 is convex, because f ′(x) = 2x and f ′′(x) = 2 > 0.

2. The scaler function f (x) = log (1 + ex) is convex, because

I f ′(x) =
ex

1 + ex
=

1

e−x + 1
is a monotonically increasing function since the

exponent function is a monotonically increasing function.

I f ′′(x) =
e−x

(e−x + 1)2
= f (x)(1− f (x)) is nonnegative.
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Convex functions

Lemma (Convexity of composition of a convex scalar function with a linear
function)

Let f : Rn 7→ R can be written as f (w) = g (〈w, x〉+ y), for some x ∈ Rn, y ∈ R
and g : R 7→ R. Then convexity of g implies the convexity of f .

Proof.

Let w1,w2 ∈ Rn and α ∈ [0, 1]. We have

f (αw1 + (1− α)w2) = g (〈αw1 + (1− α)w2, x〉+ y)

= g (α 〈w1, x〉+ (1− α) 〈w2, x〉+ y)

= g (α (〈w1, x〉+ y) + (1− α) (〈w2, x〉+ y))

≤ αg(〈w1, x〉+ y) + (1− α)g(〈w2, x〉+ y).

where the last inequality follows from the convexity of g .
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Convex functions

Example (Convexity of composition of a convex scalar function with a linear
function)

1. Given some x ∈ Rn and y ∈ R, let f (w) = (〈w, x〉 − y)2. Then, f is a
composition of the function g(a) = a2 onto a linear function, and hence f is a
convex function

2. Given some x ∈ Rn and y ∈ {−1,+1}, let f (w) = log (1 + exp (−y 〈w, x〉)).
Then, f is a composition of the function g(a) = log (1 + ea) onto a linear
function, and hence f is a convex function

Lemma (Convexity of maximum and sum of convex functions)

Let fi : Rn 7→ R(1 ≤ i ≤ r) be convex functions. Following functions g : Rn 7→ R are
convex.

1. g(x) = maxi∈{1,...,r} fi (x).

2. g(x) =
∑r

i=1 wi fi (x), where ∀i ,wi ≥ 0.
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Convex functions

Proof (Convexity of maximum and sum of convex functions).

1. The first claim follows by

g(αu + (1− α)v) = max
i

fi (αu + (1− α)v) ≤ max
i

[αfi (u) + (1− α)fi (v)]

≤ αmax
i

fi (u) + (1− α) max
i

fi (v) = αg(u) + (1− α)g(v).

2. The second claim follows by

g(αu + (1− α)v) =
r∑

i=1

wi fi (αu + (1− α)v) ≤
r∑

i=1

wi [αfi (u) + (1− α)fi (v)]

= α
r∑

i=1

wi fi (u) + (1− α)
r∑

i=1

wi fi (v) = αg(u) + (1− α)g(v).

Function g(x) = |x | is convex, because g(x) = max{f1(x), f2(x)}, where both
f1(x) = x and f2(x) = −x are convex.
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Mathematical backgrounds
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Lipschitzness

1. Definition of Lipschitzness is w.r.t Euclidean norm Rn, but it can be defined w.r.t
any norm.

Definition (Lipschitzness)

Function f : Rn 7→ Rk is ρ-Lipschitz if for all w1,w2 ∈ C we have

‖f (w1)− f (w2)‖≤ ρ ‖w1 −w2‖.

2. A Lipschitz function cannot change too fast.

3. If f : R 7→ R is differentiable, then by the mean value theorem we have

f (w1)− f (w2) = f ′(u)(w1 − w2),

where u is a point between w1 and w2.
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Lipschitzness

Theorem (Mean-Value Theorem)

If f (x) is defined and continuous on the interval [a, b] and differentiable on (a, b),
then there is at least one number c in the interval (a, b) (that is a < c < b) such that

f ′(c) =
f (b)− f (a)

b − a
.

If f ′ is bounded everywhere (in absolute value) by ρ, then f is ρ-Lipschitz.

Lemma

If f is convex then f is ρ-Lipschitz iff the norm of all sub-gradients of f is at most ρ.
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Lipschitzness

Example (Lipschitzness)

1. Function f (x) = |x | is 1-Lipschitz over R, because (using triangle inequality)

|x1| − |x2| = |x1 − x2 + x2| − |x2| ≤ |x1 − x2|+ |x2| − |x2| = |x1 − x2|.

2. Function f (x) = log (1 + ex) is 1-Lipschitz over R, because

|f ′(x)| =

∣∣∣∣
ex

1 + ex

∣∣∣∣ =

∣∣∣∣
1

e−x + 1

∣∣∣∣ ≤ 1.

3. Function f (x) = x2 is not ρ-Lipschitz over R for any ρ. Let x1 = 0 and
x2 = 1 + ρ, then

f (x2)− f (x1) = (1 + ρ)2 > ρ(1 + ρ) = ρ|x2 − x1|.
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Lipschitzness

Example (Lipschitzness)

4. Function f (x) = x2 is ρ-Lipschitz over set C =
{
x
∣∣ |x | ≤ ρ

2

}
. Indeed, for

x1, x2, we have

∣∣x21 − x22
∣∣ = |x1 − x2||x1 + x2| ≤ 2

ρ

2
|x1 − x2| = ρ|x1 − x2|.

5. Linear function f : Rn 7→ R defined by f (w) = 〈v,w〉+ b, where v ∈ Rn is
‖v‖−Lipschitz. By using Cauchy-Schwartz inequality, we have

|f (w1)− f (w2)| = |〈v,w1 −w2〉| ≤ ‖v‖ ‖w1 −w2‖ .

18/58



Lipschitzness

The following Lemma shows that composition of Lipschitz functions preserves
Lipschitzness.

Lemma (Composition of Lipschitz functions)

Let f (x) = g1(g2(x)), where g1 is ρ1-Lipschitz and g2 is ρ2-Lipschitz. The f is
(ρ1ρ2)-Lipschitz. In particular, if g2 is the linear function, g2(x) = 〈v, x〉+ b, for
some v ∈ Rn and b ∈ R, then f is (ρ1 ‖v‖)-Lipschitz.

Proof (Composition of Lipschitz functions).

|f (w1)− f (w2)| = |g1(g2(w1))− g1(g2(w2))|
≤ ρ1 ‖g2(w1)− g2(w2)‖
≤ ρ1ρ2 ‖w1 −w2‖ .
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Smoothness

1. The definition of a smooth function relies on the notion of gradient.
2. Let f : Rn 7→ R be a differentiable function at w and its gradient as

∇f (w) =

(
∂f (w)

∂w1
, . . . ,

∂f (w)

∂wn

)
.

3. Smoothness of f is defined as

Definition (Smoothness)

A differentiable function f : Rn 7→ R is β-smooth if its gradient is β-Lipschitz;
namely, for all v,w we have ‖∇f (v)−∇f (w)‖ ≤ β ‖v −w‖.

4. Show that smoothness implies that or all v,w we have

f (v) ≤ f (w) + 〈∇f (w), v −w〉+
β

2
‖v −w‖2 . (1)

while convexity of f implies that

f (v) ≥ f (w) + 〈∇f (w), v −w〉 .
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Smoothness

1. When a function is both convex and smooth, we have both upper and lower
bounds on the difference between the function and its first order approximation.

2. Setting v = w − 1

β
∇f (w) in rhs of (1), we obtain

1

2β
‖∇f (w)‖2 ≤ f (w)− f (v).

3. We had

1

2β
‖∇f (w)‖2 ≤ f (w)− f (v).

4. Let f (v) ≥ 0 for all v, then smoothness implies that

‖∇f (w)‖2 ≤ 2βf (w).

5. A function that satisfies this property is also called a self-bounded function.
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Smoothness

Example (Smooth functions)

1. Function f (x) = x2 is 2-smooth. This can be shown from f ′(x) = 2x .

2. Function f (x) = log (1 + ex) is
(
1
4

)
-smooth. Since f ′(x) =

1

1 + e−x
, we have

∣∣f ′′(x)
∣∣ =

e−x

(1 + e−x)2
=

1

(1 + e−x) (1 + ex)
≤ 1

4
.

Hence f ′ is
(
1
4

)
-Lipshitz.
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Smoothness

Lemma (Composition of smooth scaler function)

Let f (w) = g (〈w, x〉+ b), where g : R 7→ R is a β-smooth function and x ∈ Rn and

b ∈ R. Then, f is
(
β ‖x‖2

)
-smooth.

Proof (Composition of smooth scaler function).

1. By using the chain rule we have ∇f (w) = g ′ (〈w, x〉+ b) x.

2. Using smoothness of g and Cauchy-Schwartz inequality, we obtain

f (v) = g (〈v, x〉+ b)

≤ g (〈w, x〉+ b) + g ′ (〈v, x〉+ b) 〈v −w, x〉+
β

2
(〈v −w, x〉)2

≤ g (〈w, x〉+ b) + g ′ (〈v, x〉+ b) 〈v −w, x〉+
β

2
(‖v −w‖ ‖x‖)2

≤ f (w) + 〈∇f (w), v −w〉+
β ‖x‖2

2
‖v −w‖2 .
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Smoothness

Example (Smooth functions)

1. For any x ∈ Rn and y ∈ R, let f (w) = (〈w, x〉 − y)2. Then, f is(
2 ‖x‖2

)
-smooth.

2. For any x ∈ Rn and y ∈ {±1}, let f (x) = log (1 + exp (−y 〈w, x〉)). Then, f is(
‖x‖2
4

)
-smooth.
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Convex optimization

1. Approximately solve
arg min

w∈C
f (w)

where C is a convex set and f is a convex function.

Example (Convex optimization)

The linear regression problem can be defined as the following convex optimization
problem.

arg min
‖w‖≤1

1

m

m∑

i=1

[〈w, xi 〉 − yi ]
2

2. Special cases
I Feasibility problem: f is a constant function.
I Unconstrained minimization: C = Rn.

3. Can reduce one to another
I Adding the function IC(w) to the objective eliminates the constraint.
I Adding the constraint f (w) ≤ f ∗ + ε eliminates the objective.
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Learning problems

Definition (Agnostic PAC learnability)

A hypothesis class H is agnostic PAC learnable with respect to a set Z and a loss
function ` : H ×Z 7→ R+, if there exist a function mH : (0, 1)2 7→ N and a learning
algorithm A with the following property: For every ε, δ ∈ (0, 1) and for every
distribution D over Z, when running the learning algorithm on m ≥ mH(ε, δ) i.i.d.
examples generated by D, the algorithm returns h ∈ H such that, with probability of
at least (1− δ) (over the choice of the m training examples),

R(h) ≤ min
h′∈H

R̂(h) + ε,

where R(h) = Ez∼D [`(h, z)].

In this definition, we have

1. a hypothesis class H,
2. a set of examples Z, and
3. a loss function ` : H ×Z 7→ R+

Now, we consider hypothesis classes H that are subsets of the Euclidean space Rn,
therefore, denote a hypothesis in H by w.
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Convex learning problems

Definition (Convex learning problems)

A learning problem (H,Z, `) is called convex if

1. the hypothesis class H is a convex set, and

2. for all z ∈ Z, the loss function, `(., z), is a convex function, where, for any z ,
`(., z) denotes the function f : H 7→ R defined by f (w) = `(w, z).

Example (Linear regression with the squared loss)

1. The domain set X ⊂ Rn and the label set Y ⊂ R is the set of real numbers.

2. We need to learn a linear function h : Rn 7→ R that best approximates the
relationship between our variables.

3. Let H be the set of homogeneous linear functions H = {x 7→ 〈w, x〉 | w ∈ Rn}.
4. Let the squared loss function `(h, (x, y)) = (h(x)− y)2 used to measure error.

5. This is a convex learning problem because
I Each linear function is parameterized by a vector w ∈ Rn. Hence, H = Rn.
I The set of examples is Z = X × Y = Rn × R = Rn+1.
I The loss function is `(w, (x, y)) = (〈w, x〉 − y)2.
I Clearly, H is a convex set and `(., .) is also convex with respect to its first

argument.
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Convex learning problems

Lemma (Convex learning problems)

If ` is a convex loss function and the class H is convex, then the ermH , problem of
minimizing the empirical loss over H, is a convex optimization problem (that is, a
problem of minimizing a convex function over a convex set).

Proof (Convex learning problems).

1. The ermH problem is defined as

ermH(S) = arg min
w∈H

R̂(w)

2. Since, for a sample S = {z1, . . . , zm}, for every w, and R̂(w) =
1

m

∑m
i=1 `(w, zi ),

Lemma (Convexity of a scaler function) implies that R̂(w) is a convex function.

3. Therefore, the ermH rule is a problem of minimizing a convex function subject
to the constraint that the solution should be in a convex set.
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Learnability of convex learning problems

1. We have seen that for many cases implementing the erm rule for convex learning
problems can be done efficiently.

2. Is convexity a sufficient condition for the learnability of a problem?

3. In VC theory, we saw that halfspaces in n- dimension are learnable (perhaps
inefficiently).

4. Using discretization trick, if the problem is of n parameters, it is learnable with a
sample complexity being a function of n.

5. That is, for a constant n, the problem should be learnable.

6. Maybe all convex learning problems over Rn, are learnable?

7. Answer is negative even when n is low.
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Nonlearnability of linear regression

Example (Nonlearnability of linear regression)

1. Let H = R and `(w , (x , y)) = (wx − y)2.

2. This is a convex learning problem.

3. Let A be any deterministic algorithm (successful PAC learner for this problem).

4. So, there exists a function m(., .), such that for every distribution D, ε, δ, if A
receives a sample of size m ≥ m(ε, δ), it should output ŵ = A(S) such that

P
[
R(ŵ)− R̂(ŵ) ≤ ε

]
≥ 1− δ. (2)

5. Choose ε = 0.01 and δ = 0.5 and let m ≥ m(ε, δ) and set µ =
log(100/99)

2m
.

6. We can define two distributions D1 and D2 that A is likely to fail on at least one
of them.

7. D1 and D2 are supported on two examples z1 = (1, 0) and z2 = (µ,−1), where

D1(z1) = µ D1(z2) = 1− µ
D2(z1) = 0 D2(z2) = 1.
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Nonlearnability of linear regression

Example (Nonlearnability of linear regression (cont.))

8. For D1 and D2, the probability that all examples of the training set will be z2 is
at least 99%.

9. This probability under D1 equals to (1− µ)m ≥ e−2µm = 0.99.

10. Let ŵ = A(S), where S containing all z2 examples.

11. We will argue that no matter what value ŵ takes, the condition(2) will be
violated under D1 or D2, and therefore the problem is not PAC learnable.

I Suppose ŵ < − 1
2µ . We can show that condition (2) is violated under D1. In

particular,
RD1(ŵ) ≥ D1(z1)`(ŵ , z1) = µ(ŵ)2,

whereas
RD1(w) = RD1(0) = D1(z1)`(0, z2) = (1− µ),

and therefore

RD1(ŵ)−min
w

RD1(w) ≥ 1

4µ
− (1− µ) ≥ ε.

I Therefore, such algorithm A fails on D1.
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Nonlearnability of linear regression

Example (Nonlearnability of linear regression (cont.))

12. We will argue that no matter what value ŵ takes, the condition(2) will be
violated under D1 or D2, and therefore the problem is not PAC learnable.

I Suppose ŵ ≥ − 1
2µ . We can show that condition (2) is violated under D2. In

particular,

RD2(ŵ) ≥ `(ŵ , z2) = (ŵµ+ 1)2 ≥ 1

4
,

whereas
RD2(w ,D2) = 0,

and therefore
RD2(ŵ)−min

w
RD2(w) ≥ ε.

I Therefore, such algorithm A fails on D2.

13. In summary, we have shown that for every A there exists a distribution
on which A fails, which implies that the problem is not PAC learnable.
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Learnability of convex learning problems

1. Hence, all convex learning problems over Rn are not learnable.

2. Under some additional restricting conditions that hold in many practical scenarios,
convex problems are learnable.

3. A possible solution to this problem is to add another constraint on the hypothesis
class.

4. In addition to the convexity requirement, we require that H will be bounded (i.e.
for some predefined scalar B, every hypothesis w ∈ H satisfies ‖w‖ ≤ B).

5. Boundedness and convexity alone are still not sufficient for ensuring that the
problem is learnable .

6. Homework: Show that a linear regression with squared loss and
H = {w | |w | ≤ 1} ⊂ R is not learnabile.
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Convex-Lipschitz-bounded learning problems

Definition (Convex-Lipschitz-bounded learning problems)

A learning problem (H,Z, `) is called convex-Lipschitz-bounded, with parameters ρ,
B if the following hold.

1. The hypothesis class H is a convex set, and for all w ∈ H we have ‖w‖ ≤ B.

2. For all z ∈ Z, the loss function, `(., z), is a convex and ρ-Lipschitz function.

Example (Linear regression with absolute-value loss)

1. Let X = {x ∈ Rn | ‖x‖ ≤ ρ} and Y ⊂ R.

2. Let H = {w ∈ Rn | ‖w‖ ≤ B}.
3. Let loss function be `(w, (x, y)) = |〈w, x〉 − y |.
4. Then, this problem is Convex-Lipschitz-bounded with parameters ρ, B.
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Convex-smooth-bounded learning problems

Definition (Convex-smooth-bounded learning problems)

A learning problem (H,Z, `) is called convex-smooth-bounded, with parameters β, B
if the following hold.

1. The hypothesis class H is a convex set, and for all w ∈ H we have ‖w‖ ≤ B.

2. For all z ∈ Z, loss function, `(., z), is a convex, nonnegative and β-smooth
function.

Example (Linear regression with squared loss)

1. Let X = {x ∈ Rn | ‖x‖ ≤ β/2}, Y ⊂ R, and H = {w ∈ Rn | ‖w‖ ≤ B}.
2. Let loss function be `(w, (x, y)) = (〈w, x〉 − y)2.

3. Then, this problem is Convex-smooth-bounded with parameters β, B.
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Convex-smooth-bounded learning problems

Lemma (Learnability of Convex-Lipschitz/-smooth-bounded learning)

The following two families of learning problems are learnable.

1. Convex-smooth-bounded learning problems

2. Convex-Lipschitz-bounded learning problems

That is, the properties of

1. convexity,

2. boundedness, and

3. Lipschitzness or smoothness

of the loss function are sufficient for learnability.
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Regularization and stability



Regularized loss minimization

1. Regularized loss minimization (RLM) is a learning rule in which we jointly
minimize the empirical risk and a regularization function.

2. A regularization function is a mapping R : R 7→ R, and the regularized loss
minimization rule outputs a hypothesis

arg min
w

R̂(w) + R(w)

3. Regularization function measures the complexity of hypotheses.

4. RLM is similar to MDL and SRM.

5. There are many possible regularization functions one can use, reflecting some
prior belief about the problem.

6. We consider on one of the most simple regularization functions R(w) = ‖w‖2.

7. The learning rule becomes

A(S) = arg min
w

R̂(w) + λ ‖w‖2

8. This type of regularization function is often called Tikhonov regularization.
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Ridge regression

Example (Ridge regression)

1. Applying RLM with Tikhonov regularization to linear regression with squared
loss, we obtain

arg min
w∈Rn

1

m

m∑

i=1

1

2
(〈w, xi 〉 − yi )

2 + λ ‖w‖22

2. Setting gradient of objective to zero, we obtain

(2λmI + A) = b

where A and b are

A =

(
m∑

i=1

xix
>
i

)
b =

m∑

i=1

yixi

3. A is positive semidefinite, and 2λmI + A has all its eigenvalues bounded below
by 2λm.

4. Hence, this matrix is invertible, we have w = (2λmI + A)−1b.

38/58



Regularization and stability

Stability of learning algorithms



Stability of learning algorithms

1. A learning algorithm is stable if a small change of input does not change
output much.

2. Given training set S and an additional example z′, let S (i) be training set obtained
by replacing ith example of S with z′: S (i) = (z1, . . . , zi−1, z′, zi+1, . . . , zm).

3. A small change of input means feeding A with S (i) instead of S .

4. We measure effect of this change on output of A by comparing `(A(S), zi ) with
`(A(S (i)), zi ).

5. A good learning algorithm will have `(A(S (i)), zi )− `(A(S), zi ) ≥ 0.

6. If `(A(S (i)), zi )− `(A(S), zi ) is is very large, we suspect that the learning
algorithm might overfit.

7. The reason is learning algorithm drastically changes its prediction on zi if it
observes zi in the training set.
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Stability of learning algorithms

Theorem

Let D be a distribution. Let S = (z1, . . . , zm) be a sequence of iid examples sampled
according to D and let z′ be another iid example sampled from D. Let U(m) be the
uniform distribution over [m]. Then, for any learning algorithm A

E
S∼Dm

[
R(A(S))− R̂(A(S))

]
= E

(S,z′′)∼Dm+1
1 ,i∼U(m)

[
`(A(S (i)), zi ))− `(A(S), zi ))

]
.

Proof.

1. Since S and z′ are both drawn iid from D, for every i , we have

E
S

[R(A(S))] = E
S ,z ′

[
`(A(S), z′)

]
= E

S ,z ′

[
`(A(S (i)), z′)

]

2. On the other hand, we can write

E
S

[
R̂(A(S))

]
= E

S,i
[`(A(S), zi )]

3. By combining these two equations, we conclude our proof.
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Stability of learning algorithms

1. When ES ,z ′ [`(A(S), z′)] = ES,z ′
[
`(A(S (i)), z′)

]
is small, we say that A is stable.

2. This means that changing a single example in the training set does not lead
to a significant change.

Definition (On-average-replace-one-stable)

Let ε : N 7→ R be a monotonically decreasing function. We say that a learning
algorithm A is on-average-replace-one-stable with rate ε(m) if for every
distribution D

E
(S,z′′)∼Dm+1

1 ,i∼U(m)

[
`(A(S (i)), zi ))− `(A(S), zi ))

]
≤ ε(m).

3. The preceding theorem states that a learning algorithm does not overfit if and
only if it is on-average-replace-one-stable.

4. Of course, a learning algorithm that does not overfit is not necessarily a good
learning algorithm.

5. A useful algorithm should find a hypothesis that fits the training set and does
not overfit.
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Tikhonov regularization as a stabilizer

The main property of Tikhonov regularization is that it makes objective of RLM
strongly convex.

Definition (Strongly convex functions)

A function f is λ-strongly convex if for all u,w and α ∈ (0, 1), we have

f (αw + (1− α)u) ≤ αf (w) + (1− α)f (u)− λ

2
α(1− α) ‖w − u‖2 .

Lemma

The following statements hold for strongly convex functions.

1. The function f (w) = ‖w‖2 is 2λ-strongly convex.

2. If function f is λ-strongly convex and function g is convex, then f + g is
λ-strongly convex.

3. If function f is λ-strongly convex and u is a minimizer of f , then for any w

f (w)− f (u) ≥ λ

2
‖w − u‖2 .
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Tikhonov regularization as a stabilizer

1. We now turn to prove that RLM (algorithm A) is stable.

2. The goal is to bound |R̂S(A(S (i)))− R̂S(A(S))| for Tikhonov regularization.

3. Define fS(w) = R̂S(w) + λ ‖w‖2 and A(S) = arg minw fS(w).

4. Since fS(w) is 2λ-strongly convex, then for any v, we have

fS(v)− fS(A(S)) ≥ λ ‖v − A(S)‖2 (3)

5. Also for any v,u and i , we have

fS(v)− fS(u) = R̂S(v) + λ ‖v‖2 − (R̂S(u) + λ ‖u‖2)

= R̂S(i)(v) + λ ‖v‖2 − (R̂S(i)(u) + λ ‖v‖2)

+
`(v, zi )− `(u, zi )

m
+
`(u, z′)− `(v, z′)

m
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Tikhonov regularization as a stabilizer

1. Let v = A(S (i)) and u = A(S), thus we obtain

fS(A(S (i)))− fS(A(S)) ≤ `(A(S (i)), zi )− `(A(S), zi )

m

+
`(A(S), z′)− `(A(S (i)), z′)

m
.

2. Combining this with inequality (3), we obtain

λ
∥∥∥A(S (i))− A(S)

∥∥∥
2
≤ `(A(S (i)), zi )− `(A(S), zi )

m
(4)

+
`(A(S), z′)− `(A(S (i)), z′)

m
.
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Lipschitz loss function

Theorem (Stability for Lipschitz loss function)

Assume that the loss function is convex and ρ-Lipschitz. Then, RLM rule with the

regularizer λ ‖w‖2 is on-average-replace-one-stable with rate 2ρ2

λm .

Proof (Stability for Lipschitz loss function).

1. Since the loss function is convex and ρ-Lipschitz. Then

`(A(S (i)), zi )− `(A(S), zi ) ≤ ρ
∥∥∥A(S (i))− A(S)

∥∥∥ (5)

`(A(S), z′)− `(A(S (i)), z′) ≤ ρ
∥∥∥A(S (i))− A(S)

∥∥∥ .

2. Plugging these inequalities into (4), we obtain

λ
∥∥∥A(S (i))− A(S)

∥∥∥
2
≤ 2ρ

∥∥A(S (i))− A(S)
∥∥

m
⇔
∥∥∥A(S (i))− A(S)

∥∥∥ ≤ 2ρ

λm
.

3. Plugging these inequalities into (5), we obtain

`(A(S (i)), zi )− `(A(S), zi ) ≤
2ρ2

λm
which holds for all S , z′, i .

45/58



Smooth and nonnegative Loss

Theorem

Assume that the loss function is β-smooth and nonnegative. Then, RLM rule with
the regularizer λ ‖w‖2 where λ ≥ 2β

m satisfies

E
[
`(A(S (i)), zi )− `(A(S), zi )

]
≤ 48β

λm
E
[
R̂S(A(S))

]

≤ 48β

λm
C

where R̂S(A(S)) ≤ C .
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Controlling the fitting stability tradeoff

1. We have shown that the stability term decreases, when λ increases.

2. Also the empirical risk increases with λ.

3. Hence, there is a tradeoff between fitting and overfitting.

4. We will choose a value of λ to derive a new bound for the true risk.

Theorem (Oracle inequality)

Assume that the convex and ρ-Lipschitz. Then, the RLM rule with the regularization
function λ ‖w‖2 satisfies

∀w∗ : E
S∼Dm

[R(A(S))] ≤ R(w∗) + λ ‖w∗‖2 +
2ρ2

λm

5. This bound is often called an oracle inequality.

6. If we think of w∗ as a hypothesis with low risk, the bound tells us how many
examples are needed so that A(S) will be almost as good as w∗, had we known
the norm of w∗.

7. We do not know‖w∗‖2 and tune λ using validation set.
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Controlling the fitting stability tradeoff

Proof (Oracle inequality).

1. We can rewrite the expected risk of a learning algorithm as

E
S∼Dm

[R(A(S))] = E
S∼Dm

[
R̂(A(S))

]
+ E

S∼Dm

[
R(A(S))− R̂(A(S))

]
(6)

2. Fix some arbitrary vector w∗. We have

R̂(A(S)) ≤ R̂(A(S)) + λ ‖w‖2 ≤ R̂(w∗) + λ ‖w∗‖2

3. Taking expectation and using ES

[
R̂(w∗)

]
= R(w∗), yields

E
S∼Dm

[
R̂(A(S))

]
≤ R(w∗) + λ ‖w∗‖2 .

4. Using equation (6), we obtain

E
S∼Dm

[R(A(S))] ≤ R(w∗) + λ ‖w∗‖2 + E
S∼Dm

[
R(A(S))− R̂(A(S))

]
.

5. Applying Theorem (Stability for Lipschitz loss function) finishes the proof.
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Controlling the fitting stability tradeoff

Theorem

Let (H,Z, `) be a convex-Lipschitz-bounded learning problem with parameters ρ,B.

For any training set size m, let λ =
√

2ρ2

B2m
. Then,the RLM rule with the

regularization function λ ‖w∗‖2 satisfies

E
S∼Dm

[R(A(S))] ≤ min
w∈H

R(w) + ρB

√
8

m
.

In particular for every ε > 0, if m > 8ρ2B2

ε2
then for every distribution D, we have

E
S∼Dm

[R(A(S))] ≤ min
w∈H

R(w) + ε.

Proof.

The proof follows directly by setting w∗ to arg minw∈H R(w), inserting λ in Theorem
(Stability for Lipschitz loss function) and using ‖w‖ ≤ B.
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Regularization and stability

Learnability of convex learning problems



PAC learnability of convex-Lipschitz-bounded learning problems

Convex-Lipschitz-bound problems are PAC learnable, as the following Theorem shows.

Theorem

If an algorithm A guarantees that for m ≥ mH(ε) and every distribution D the
following inequality holds:

E
S∼Dm

[R(A(S))] ≤ min
h∈H

R(h) + ε,

then the problem is PAC learnable by A .

Proof.

1. Let δ ∈ (0, 1) and m ≥ mH(ε, δ).

2. Define X = R(A(S))−minh∈H R(h).

3. Then X ≥ 0 and by our assumption E [X ] ≥ εδ.

4. Using Markov’s inequality, we obtain

P
[

R(A(S)) ≥ min
h∈H

R(h) + ε

]
= P [X ≥ ε] ≤ E [X ≥ ε]

ε
≤ εδ

ε
= δ.
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Learnability of convex-smooth-bounded learning problems

Theorem

Assume that the convex, β-smooth, and nonnegative. Then, the RLM rule with the
regularization function λ ‖w‖2 for λ ≥ 2β

m , satisfies the following for all w∗

E
S

[R(A(S))] ≤
(

1 +
48β

λm

)
E
S

[
R̂(A(S))

]

≤
(

1 +
48β

λm

)(
R(w∗) + λ ‖w∗‖2

)

Theorem

Let (H,Z, `) be a convex-smooth-bounded learning problem with parameters β,B.

Assume in addition that `(0, z) ≤ 1 for all z ∈ Z. For any ε ∈ (0, 1), let m ≥ 150βB2

ε2

and set λ = ε
3B2 . Then, for every distribution D

E
S

[R(A(S))] ≤ min
w∈H

R(w) + ε.
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Surrogate loss functions



Surrogate loss functions

1. In many cases, loss function is not convex and, hence, implementing the erm rule
is hard.

2. Consider the problem of learning halfspaces with respect to 0-1 loss.

`0−1(w, (x, y)) = I [y 6= sgn (〈w, x〉)] = I [y 〈w, x〉 ≤ 0] .

3. This loss function is not convex with respect to w.

4. When trying to minimize R̂(w) with respect to this loss function we might
encounter local minima.

5. We also showed that, solving the ERM problem with respect to the 0-1 loss in the
unrealizable case is known to be NP-hard.

6. One popular approach is to upper bound the nonconvex loss function by a convex
surrogate loss function.

7. The requirements from a convex surrogate loss are as follows:
I It should be convex.
I It should upper bound the original loss.
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Hinge-loss

1. Hinge-loss function is defined as

`hinge(w, (x, y)) , max{0, 1− y 〈w, x〉}.

2. Hinge-loss has the following two properties
I For all w and all (x, y), we have `0−1(w, (x, y)) ≤ `hinge(w, (x, y)).
I Hinge-loss is a convex function.

134 Convex Learning Problems

As an example, consider the problem of learning the hypothesis class of half-
spaces with respect to the 0� 1 loss. That is,

`0�1(w, (x, y)) = 1[y 6=sign(hw,xi)] = 1[yhw,xi0] .

This loss function is not convex with respect to w and indeed, as discussed in
Chapter 8, solving the ERM problem with respect to the 0� 1 loss in the unreal-
izable case is known to be NP-hard.

To circumvent the hardness result, one popular approach is to upper bound
the non-convex loss function by a convex surrogate loss function. As its name
indicates, the requirements from a convex surrogate loss is as follows

1. It should be convex

2. It should upper bound the original loss

For example, in the context of learning halfspaces, we can define the so-called
hinge loss as a convex surrogate for the 0� 1 loss, as follows:

`hinge(w, z)
def
= max{0, 1� yhw,xi} .

Note that for all w and all z, `0�1(w, z)  `hinge(w, z). An illustration of the
functions `0�1 and `hinge is given below.

yhw,xi

`0�1

`hinge

1

1

Once we defined the surrogate convex loss, we can learn the problem with
respect to it. The generalization requirement from a Hinge loss learner will have
the form:

Lhinge
D (A(S))  min

w2H
Lhinge

D (w) + ✏ .

Using the surrogate property, we can lower bound the left-hand side by
L0�1

D (A(S)) which yields

L0�1
D (A(S))  min

w2H
Lhinge

D (w) + ✏ .

c� Shai Shalev-Shwartz and Shai Ben-David.

3. Hence, the hinge loss satisfies the requirements of a convex surrogate loss
function for the zero-one loss.
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Error decomposition revisited

1. Suppose we have a learner for hinge-loss that guarantees

Rhinge(A(S)) ≤ min
w∈H

Rhinge(w) + ε.

2. Using the surrogate property,

R0−1(A(S)) ≤ min
w∈H

Rhinge(w) + ε.

3. We can further rewrite the upper bound as

R0−1(A(S)) ≤ min
w∈H

R0−1(w) +

(
min
w∈H

Rhinge(w)− min
w∈H

R0−1(w)

)
+ ε

= εapproximation + εoptimization + εestimation

4. The optimization error is a result of our inability to minimize the training loss with
respect to the original loss.
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Assignments



Assignments

1. Please specify that the following learning problems belong to which category of
problems.

I Support vector regression (SVR)
I Kernel ridge regression
I Least absolute shrinkage and selection operator (Lasso)
I Support vector machine (SVM)
I Logistic regression
I AdaBoost

Prove your claim.

2. Prove Lemma Learnability of Convex-Lipschitz/-smooth-bounded learning
problems.
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Summary



Summary

1. We introduced two families of learning problems:
I Convex-Lipschitz-bounded learning problems.
I Convex-smooth-bounded learning problems.

2. There are some generic learning algorithms such as stochastic gradient descent
algorithm for solving these problem. (Please read Chapter 14)

3. We have shown that stable algorithms do not overfit.

4. We have shown convex-Lipschitz-bounded learning problems and
convex-Lipschitz-bounded learning problems are PAC learnable.

5. We also introduced the notion of convex surrogate loss function, which enables us
also to utilize the convex machinery for nonconvex problems.
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Readings



Readings

1. Chapters 12, 13, and 14 of Shai Shalev-Shwartz and Shai Ben-David (2014).
Understanding machine learning: From theory to algorithms. Cambridge
University Press.
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Questions?

cba
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