# Machine learning theory

# **Convex learning problems**

Hamid Beigy

Sharif university of technology

May 28, 2022





# 1. Introduction

- 2. Mathematical backgrounds
- 3. Convex learning problems
- 4. Regularization and stability
- 5. Surrogate loss functions
- 6. Assignments
- 7. Summary
- 8. Readings

# Introduction



- 1. Convex learning comprises an important family of learning problems, because most of what we can learn efficiently.
  - ► Linear regression with the squared loss is a convex problem for regression.
  - logistic regression is a convex problem for classification.
  - ► Halfspaces with the 0 1 loss, which is a computationally hard problem to learn in unrealizable case, is non-convex.
- 2. In general, a convex learning problem is a problem.
  - whose hypothesis class is a convex set and
  - whose loss function is a convex function for each example.



- 1. Other properties of the loss function that facilitate successful learning are
  - Lipschitzness
  - Smoothness
- 2. Are convex smooth learning problems and convex Lipschitz-pounded problems learnable?
- 3. In this session, we study the learnability of
  - Convex smooth-bounded problems
  - Convex Lipschitz-pounded problems

# Mathematical backgrounds



- 1. For convex learning problems, we need to study the following properties of loss functions.
  - Convexity
  - Lipshitzness
  - Smoothness
  - Strong convexity

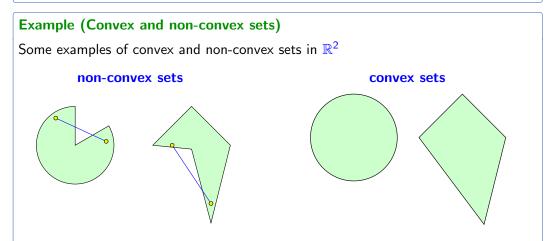
# Mathematical backgrounds

Convexity



## **Definition (Convex set)**

A set C in a vector space is convex if for any two vectors  $\mathbf{u}, \mathbf{v} \in C$ , the line segment between  $\mathbf{u}$  and  $\mathbf{v}$  is contained in set C. That is, for any  $\alpha \in [0, 1]$ , the convex combination  $\alpha \mathbf{u} + (1 - \alpha)\mathbf{v} \in C$ . Given  $\alpha \in [0, 1]$ , the combination,  $\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}$  of the points  $\mathbf{u}, \mathbf{v}$  is called a **convex combination**.



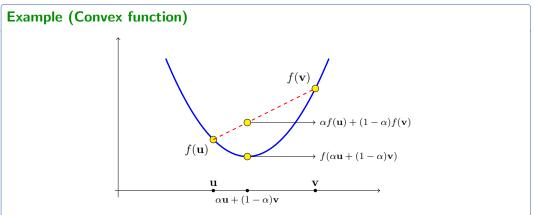


# **Definition (Convex function)**

Let C be a convex set. Function  $f : C \mapsto C$  is convex if for any two vectors  $\mathbf{u}, \mathbf{v} \in C$  and  $\alpha \in [0, 1]$ ,

$$f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \le \alpha f(\mathbf{u}) + (1 - \alpha)f(\mathbf{v}).$$

In words, f is convex if for any  $\mathbf{u}, \mathbf{v} \in C$ , the graph of f between **u** and **v** lies below the line segment joining  $f(\mathbf{u})$  and  $f(\mathbf{v})$ .



Epigraph



A function f is convex if and only if its epigraph is a convex set.

```
epigraph(f) = \{(\mathbf{x}, \beta) \mid f(\mathbf{x}) \leq \beta\}.
```



# **Properties of convex functions**



- 1. If f is convex then every local minimum of f is also a global minimum.
  - Let  $B(\mathbf{u}, r) = {\mathbf{v} \mid ||\mathbf{v} \mathbf{u}|| \le r}$  be a ball of radius r centered around  $\mathbf{u}$ .
  - ►  $f(\mathbf{u})$  is a local minimum of f at  $\mathbf{u}$  if  $\exists r > 0$  such that  $\forall \mathbf{v} \in B(\mathbf{u}, r)$ , we have  $f(\mathbf{v}) \ge f(\mathbf{u})$ .
  - It follows that for any v (not necessarily in B), there is a small enough α > 0 such that u + α(v − u) ∈ B(u, r) and therefore

$$f(\mathbf{u}) \leq f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})).$$

If f is convex, we also have that

$$f(\mathbf{u} + \alpha(\mathbf{v} - \mathbf{u})) = f(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \le (1 - \alpha)f(\mathbf{u}) + \alpha f(\mathbf{v}).$$

> Combining these two equations and rearranging terms, we conclude that

 $f(\mathbf{u}) \leq f(\mathbf{v}).$ 

• This holds for every **v**, hence  $f(\mathbf{u})$  is also a global minimum of f.



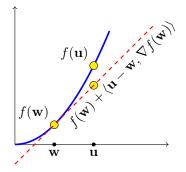


2. If f is convex and differentiable, then

$$orall \mathbf{u}, \quad f(\mathbf{u}) \geq f(\mathbf{w}) + \langle 
abla f(\mathbf{w}), \mathbf{u} - \mathbf{w} 
angle$$

where  $\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_n}\right)$  is the gradient of f at  $\mathbf{w}$ .

- ► If *f* is convex, for every **w**, we can construct a tangent to *f* at **w** that lies below *f* everywhere.
- If f is differentiable, this tangent is the linear function  $l(\mathbf{u}) = f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{u} \mathbf{w} \rangle.$





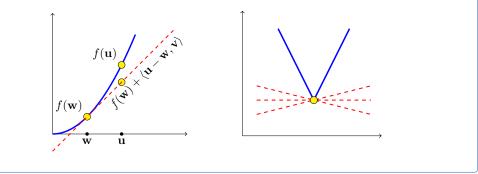
1. **v** is sub-gradient of f at **w** if  $\forall \mathbf{u}, f(\mathbf{u}) \geq f(\mathbf{w}) + \langle \mathbf{v}, \mathbf{u} - \mathbf{w} \rangle$ 

2. The differential set,  $\partial f(\mathbf{w})$ , is the set of sub-gradients of f at  $\mathbf{w}$ .

where  $\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_n}\right)$  is the gradient of f at  $\mathbf{w}$ .

#### Lemma

Function f is convex iff for every  $\mathbf{w}$ ,  $\partial f(\mathbf{w}) \neq 0$ .



3. f is locally flat around w (**0** is a sub-gradient) iff w is a global minimizer.



# Lemma (Convexity of a scaler function)

Let  $f : \mathbb{R} \mapsto \mathbb{R}$  be a scalar twice differential function, and f', f'' be its first and second derivatives, respectively. Then, the following are equivalent:

- 1. f is convex.
- 2. f' is monotonically nondecreasing.
- 3. f" is nonnegative.

#### Example (convexity of scaler functions)

- 1. The scaler function  $f(x) = x^2$  is convex, because f'(x) = 2x and f''(x) = 2 > 0.
- 2. The scaler function  $f(x) = \log(1 + e^x)$  is convex, because
  - $f'(x) = \frac{e^x}{1 + e^x} = \frac{1}{e^{-x} + 1}$  is a monotonically increasing function since the exponent function is a monotonically increasing function.

• 
$$f''(x) = \frac{e^{-x}}{(e^{-x}+1)^2} = f(x)(1-f(x))$$
 is nonnegative.



# Lemma (Convexity of composition of a convex scalar function with a linear function)

Let  $f : \mathbb{R}^n \mapsto \mathbb{R}$  can be written as  $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + y)$ , for some  $\mathbf{x} \in \mathbb{R}^n, y \in \mathbb{R}$ and  $g : \mathbb{R} \mapsto \mathbb{R}$ . Then convexity of g implies the convexity of f.

#### Proof.

Let  $\mathbf{w}_1, \mathbf{w}_2 \in \mathbb{R}^n$  and  $\alpha \in [0, 1]$ . We have

$$\begin{aligned} f(\alpha \mathbf{w}_1 + (1 - \alpha) \mathbf{w}_2) &= g\left(\langle \alpha \mathbf{w}_1 + (1 - \alpha) \mathbf{w}_2, \mathbf{x} \rangle + y\right) \\ &= g\left(\alpha \langle \mathbf{w}_1, \mathbf{x} \rangle + (1 - \alpha) \langle \mathbf{w}_2, \mathbf{x} \rangle + y\right) \\ &= g\left(\alpha \left(\langle \mathbf{w}_1, \mathbf{x} \rangle + y\right) + (1 - \alpha) \left(\langle \mathbf{w}_2, \mathbf{x} \rangle + y\right)\right) \\ &\leq \alpha g(\langle \mathbf{w}_1, \mathbf{x} \rangle + y) + (1 - \alpha)g(\langle \mathbf{w}_2, \mathbf{x} \rangle + y). \end{aligned}$$

where the last inequality follows from the convexity of g.



# Example (Convexity of composition of a convex scalar function with a linear function)

- 1. Given some  $\mathbf{x} \in \mathbb{R}^n$  and  $y \in \mathbb{R}$ , let  $f(\mathbf{w}) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$ . Then, f is a composition of the function  $g(a) = a^2$  onto a linear function, and hence f is a convex function
- 2. Given some  $\mathbf{x} \in \mathbb{R}^n$  and  $y \in \{-1, +1\}$ , let  $f(\mathbf{w}) = \log(1 + \exp(-y \langle \mathbf{w}, \mathbf{x} \rangle))$ . Then, f is a composition of the function  $g(a) = \log(1 + e^a)$  onto a linear function, and hence f is a convex function

## Lemma (Convexity of maximum and sum of convex functions)

Let  $f_i : \mathbb{R}^n \mapsto \mathbb{R}(1 \le i \le r)$  be convex functions. Following functions  $g : \mathbb{R}^n \mapsto \mathbb{R}$  are convex.

- 1.  $g(\mathbf{x}) = \max_{i \in \{1,...,r\}} f_i(\mathbf{x}).$
- 2.  $g(\mathbf{x}) = \sum_{i=1}^{r} w_i f_i(\mathbf{x})$ , where  $\forall i, w_i \ge 0$ .

# **Convex functions**



## Proof (Convexity of maximum and sum of convex functions).

1. The first claim follows by

$$g(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) = \max_{i} f_i(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \le \max_{i} [\alpha f_i(\mathbf{u}) + (1 - \alpha)f_i(\mathbf{v})]$$
  
$$\le \alpha \max_{i} f_i(\mathbf{u}) + (1 - \alpha) \max_{i} f_i(\mathbf{v}) = \alpha g(\mathbf{u}) + (1 - \alpha)g(\mathbf{v}).$$

2. The second claim follows by

$$g(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) = \sum_{i=1}^{r} w_i f_i(\alpha \mathbf{u} + (1 - \alpha)\mathbf{v}) \le \sum_{i=1}^{r} w_i [\alpha f_i(\mathbf{u}) + (1 - \alpha)f_i(\mathbf{v})]$$
$$= \alpha \sum_{i=1}^{r} w_i f_i(\mathbf{u}) + (1 - \alpha) \sum_{i=1}^{r} w_i f_i(\mathbf{v}) = \alpha g(\mathbf{u}) + (1 - \alpha)g(\mathbf{v}).$$

Function g(x) = |x| is convex, because  $g(x) = \max\{f_1(x), f_2(x)\}$ , where both  $f_1(x) = x$  and  $f_2(x) = -x$  are **convex**.

# Mathematical backgrounds

Lipschitzness



1. Definition of Lipschitzness is w.r.t Euclidean norm  $\mathbb{R}^n$ , but it can be defined w.r.t any norm.

# **Definition (Lipschitzness)**

Function  $f : \mathbb{R}^n \mapsto \mathbb{R}^k$  is  $\rho$ -Lipschitz if for all  $\mathbf{w}_1, \mathbf{w}_2 \in C$  we have

 $||f(\mathbf{w}_1) - f(\mathbf{w}_2)|| \le \rho ||\mathbf{w}_1 - \mathbf{w}_2||.$ 

- 2. A Lipschitz function cannot change too fast.
- 3. If  $f : \mathbb{R} \to \mathbb{R}$  is differentiable, then by the mean value theorem we have

 $f(w_1) - f(w_2) = f'(u)(w_1 - w_2),$ 

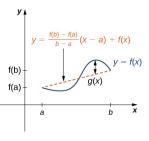
where u is a point between  $w_1$  and  $w_2$ .



# Theorem (Mean-Value Theorem)

If f(x) is defined and continuous on the interval [a, b] and differentiable on (a, b), then there is at least one number c in the interval (a, b) (that is a < c < b) such that

$$f'(c) = \frac{f(b) - f(a)}{b - a}$$



If f' is bounded everywhere (in absolute value) by  $\rho$ , then f is  $\rho$ -Lipschitz.

#### Lemma

If f is convex then f is  $\rho$ -Lipschitz iff the norm of all sub-gradients of f is at most  $\rho$ .



# Example (Lipschitzness)

1. Function f(x) = |x| is 1-Lipschitz over  $\mathbb{R}$ , because (using triangle inequality)

$$|x_1| - |x_2| = |x_1 - x_2 + x_2| - |x_2| \le |x_1 - x_2| + |x_2| - |x_2| = |x_1 - x_2|.$$

2. Function  $f(x) = \log(1 + e^x)$  is 1-Lipschitz over  $\mathbb{R}$ , because

$$|f'(x)|=\left|rac{e^x}{1+e^x}
ight|=\left|rac{1}{e^{-x}+1}
ight|\leq 1.$$

3. Function  $f(x) = x^2$  is not  $\rho$ -Lipschitz over  $\mathbb{R}$  for any  $\rho$ . Let  $x_1 = 0$  and  $x_2 = 1 + \rho$ , then

$$f(x_2) - f(x_1) = (1 + \rho)^2 > \rho(1 + \rho) = \rho |x_2 - x_1|.$$



# Example (Lipschitzness)

4. Function  $f(x) = x^2$  is  $\rho$ -Lipschitz over set  $C = \{x \mid |x| \le \frac{\rho}{2}\}$ . Indeed, for  $x_1, x_2$ , we have

$$|x_1^2 - x_2^2| = |x_1 - x_2||x_1 + x_2| \le 2\frac{\rho}{2}|x_1 - x_2| = \rho|x_1 - x_2|.$$

5. Linear function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  defined by  $f(\mathbf{w}) = \langle \mathbf{v}, \mathbf{w} \rangle + b$ , where  $\mathbf{v} \in \mathbb{R}^n$  is  $\|\mathbf{v}\|$  -Lipschitz. By using Cauchy-Schwartz inequality, we have

$$|f(\mathbf{w}_1) - f(\mathbf{w}_2)| = |\langle \mathbf{v}, \mathbf{w}_1 - \mathbf{w}_2 \rangle| \le \|\mathbf{v}\| \|\mathbf{w}_1 - \mathbf{w}_2\|.$$



The following Lemma shows that composition of Lipschitz functions preserves Lipschitzness.

## Lemma (Composition of Lipschitz functions)

Let  $f(\mathbf{x}) = g_1(g_2(\mathbf{x}))$ , where  $g_1$  is  $\rho_1$ -Lipschitz and  $g_2$  is  $\rho_2$ -Lipschitz. The f is  $(\rho_1\rho_2)$ -Lipschitz. In particular, if  $g_2$  is the linear function,  $g_2(\mathbf{x}) = \langle \mathbf{v}, \mathbf{x} \rangle + b$ , for some  $\mathbf{v} \in \mathbb{R}^n$  and  $b \in \mathbb{R}$ , then f is  $(\rho_1 ||\mathbf{v}||)$ -Lipschitz.

**Proof (Composition of Lipschitz functions).** 

$$\begin{split} |f(\mathbf{w}_1) - f(\mathbf{w}_2)| &= |g_1(g_2(\mathbf{w}_1)) - g_1(g_2(\mathbf{w}_2))| \\ &\leq \rho_1 \, \|g_2(\mathbf{w}_1) - g_2(\mathbf{w}_2)\| \\ &\leq \rho_1 \rho_2 \, \|\mathbf{w}_1 - \mathbf{w}_2\| \, . \end{split}$$

# Mathematical backgrounds

**Smoothness** 

## **Smoothness**



- $1. \ \ {\mbox{The definition of a smooth function relies on the notion of gradient.}$
- 2. Let  $f : \mathbb{R}^n \mapsto \mathbb{R}$  be a differentiable function at **w** and its gradient as

$$\nabla f(\mathbf{w}) = \left(\frac{\partial f(\mathbf{w})}{\partial w_1}, \dots, \frac{\partial f(\mathbf{w})}{\partial w_n}\right)$$

3. Smoothness of f is defined as

## **Definition (Smoothness)**

A differentiable function  $f : \mathbb{R}^n \mapsto \mathbb{R}$  is  $\beta$ -smooth if its gradient is  $\beta$ -Lipschitz; namely, for all  $\mathbf{v}, \mathbf{w}$  we have  $\|\nabla f(\mathbf{v}) - \nabla f(\mathbf{w})\| \leq \beta \|\mathbf{v} - \mathbf{w}\|$ .

4. Show that smoothness implies that or all v, w we have

$$f(\mathbf{v}) \leq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \frac{\beta}{2} \|\mathbf{v} - \mathbf{w}\|^2.$$
 (1)

while convexity of f implies that

$$f(\mathbf{v}) \geq f(\mathbf{w}) + \langle 
abla f(\mathbf{w}), \mathbf{v} - \mathbf{w} 
angle$$
.

# **Smoothness**



- 1. When a function is both convex and smooth, we have both upper and lower bounds on the difference between the function and its first order approximation.
- 2. Setting  $\mathbf{v} = \mathbf{w} \frac{1}{\beta} \nabla f(\mathbf{w})$  in rhs of (1), we obtain

$$\frac{1}{2\beta} \left\| \nabla f(\mathbf{w}) \right\|^2 \leq f(\mathbf{w}) - f(\mathbf{v}).$$

3. We had

$$\frac{1}{2\beta} \left\| \nabla f(\mathbf{w}) \right\|^2 \leq f(\mathbf{w}) - f(\mathbf{v}).$$

4. Let  $f(\mathbf{v}) \ge 0$  for all  $\mathbf{v}$ , then smoothness implies that

$$\|\nabla f(\mathbf{w})\|^2 \leq 2\beta f(\mathbf{w}).$$

5. A function that satisfies this property is also called a self-bounded function.



# Example (Smooth functions)

- 1. Function  $f(x) = x^2$  is 2-smooth. This can be shown from f'(x) = 2x.
- 2. Function  $f(x) = \log(1 + e^x)$  is  $(\frac{1}{4})$ -smooth. Since  $f'(x) = \frac{1}{1 + e^{-x}}$ , we have

$$\left|f''(x)\right| = rac{e^{-x}}{\left(1 + e^{-x}
ight)^2} = rac{1}{\left(1 + e^{-x}
ight)\left(1 + e^x
ight)} \le rac{1}{4}$$

Hence f' is  $\left(\frac{1}{4}\right)$ -Lipshitz.

1



Lemma (Composition of smooth scaler function)

Let  $f(\mathbf{w}) = g(\langle \mathbf{w}, \mathbf{x} \rangle + b)$ , where  $g : \mathbb{R} \mapsto \mathbb{R}$  is a  $\beta$ -smooth function and  $\mathbf{x} \in \mathbb{R}^n$  and  $b \in \mathbb{R}$ . Then, f is  $(\beta \|\mathbf{x}\|^2)$ -smooth.

#### Proof (Composition of smooth scaler function).

- 1. By using the chain rule we have  $\nabla f(\mathbf{w}) = g'(\langle \mathbf{w}, \mathbf{x} \rangle + b)\mathbf{x}$ .
- 2. Using smoothness of g and Cauchy-Schwartz inequality, we obtain

$$\begin{split} f(\mathbf{v}) &= g\left(\langle \mathbf{v}, \mathbf{x} \rangle + b\right) \\ &\leq g\left(\langle \mathbf{w}, \mathbf{x} \rangle + b\right) + g'\left(\langle \mathbf{v}, \mathbf{x} \rangle + b\right) \langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle + \frac{\beta}{2} \left(\langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle\right)^2 \\ &\leq g\left(\langle \mathbf{w}, \mathbf{x} \rangle + b\right) + g'\left(\langle \mathbf{v}, \mathbf{x} \rangle + b\right) \langle \mathbf{v} - \mathbf{w}, \mathbf{x} \rangle + \frac{\beta}{2} \left(\|\mathbf{v} - \mathbf{w}\| \|\mathbf{x}\|\right)^2 \\ &\leq f(\mathbf{w}) + \langle \nabla f(\mathbf{w}), \mathbf{v} - \mathbf{w} \rangle + \frac{\beta \|\mathbf{x}\|^2}{2} \|\mathbf{v} - \mathbf{w}\|^2 \,. \end{split}$$



# Example (Smooth functions)

For any x ∈ ℝ<sup>n</sup> and y ∈ ℝ, let f(w) = (⟨w, x⟩ - y)<sup>2</sup>. Then, f is (2 ||x||<sup>2</sup>)-smooth.
 For any x ∈ ℝ<sup>n</sup> and y ∈ {±1}, let f(x) = log (1 + exp (-y ⟨w, x⟩)). Then, f is (||x||<sup>2</sup>/4)-smooth.

# **Convex learning problems**



1. Approximately solve

$$rgmin_{\mathbf{w}\in\mathbb{C}}f(\mathbf{w})$$

where  $\mathbb{C}$  is a convex set and f is a convex function.

# Example (Convex optimization)

The linear regression problem can be defined as the following convex optimization problem.

$$\underset{\|\mathbf{w}\|\leq 1}{\arg\min} \frac{1}{m} \sum_{i=1}^{m} \left[ \langle \mathbf{w}, \mathbf{x}_i \rangle - y_i \right]^2$$

- 2. Special cases
  - Feasibility problem: *f* is a constant function.
  - Unconstrained minimization:  $\mathbb{C} = \mathbb{R}^n$ .
- 3. Can reduce one to another
  - Adding the function  $I_{\mathbb{C}}(\mathbf{w})$  to the objective eliminates the constraint.
  - Adding the constraint  $f(\mathbf{w}) \leq f^* + \epsilon$  eliminates the objective.



# Definition (Agnostic PAC learnability)

A hypothesis class H is **agnostic PAC learnable** with respect to a set  $\mathbb{Z}$  and a loss function  $\ell : H \times \mathbb{Z} \mapsto \mathbb{R}_+$ , if there exist a function  $m_H : (0,1)^2 \mapsto \mathbb{N}$  and a learning algorithm A with the following property: For every  $\epsilon, \delta \in (0,1)$  and for every distribution  $\mathcal{D}$  over  $\mathbb{Z}$ , when running the learning algorithm on  $m \ge m_H(\epsilon, \delta)$  i.i.d. examples generated by  $\mathcal{D}$ , the algorithm returns  $h \in H$  such that, with probability of at least  $(1 - \delta)$  (over the choice of the m training examples),

$$\mathbf{R}(h) \leq \min_{h' \in H} \mathbf{\hat{R}}(h) + \epsilon,$$

where  $\mathbf{R}(h) = \mathbb{E}_{z \sim \mathcal{D}} \left[ \ell(h, z) \right]$ .

In this definition, we have

- 1. a hypothesis class H,
- 2. a set of examples  $\mathcal{Z}$ , and
- 3. a loss function  $\ell: H \times \mathcal{Z} \mapsto \mathbb{R}_+$

Now, we consider hypothesis classes H that are subsets of the Euclidean space  $\mathbb{R}^n$ , therefore, denote a hypothesis in H by  $\mathbf{w}$ .



# Definition (Convex learning problems)

A learning problem  $(H, \mathcal{Z}, \ell)$  is called convex if

- 1. the hypothesis class  $\boldsymbol{H}$  is a convex set, and
- 2. for all  $z \in \mathbb{Z}$ , the loss function,  $\ell(., z)$ , is a convex function, where, for any z,  $\ell(., z)$  denotes the function  $f : H \mapsto \mathbb{R}$  defined by  $f(\mathbf{w}) = \ell(\mathbf{w}, z)$ .

## Example (Linear regression with the squared loss)

- 1. The domain set  $\mathcal{X} \subset \mathbb{R}^n$  and the label set  $\mathcal{Y} \subset \mathbb{R}$  is the set of real numbers.
- 2. We need to learn a linear function  $h : \mathbb{R}^n \mapsto \mathbb{R}$  that best approximates the relationship between our variables.
- 3. Let *H* be the set of homogeneous linear functions  $H = \{\mathbf{x} \mapsto \langle \mathbf{w}, \mathbf{x} \rangle \mid \mathbf{w} \in \mathbb{R}^n\}$ .
- 4. Let the squared loss function  $\ell(h, (\mathbf{x}, y)) = (h(\mathbf{x}) y)^2$  used to measure error.
- 5. This is a convex learning problem because
  - ▶ Each linear function is parameterized by a vector  $\mathbf{w} \in \mathbb{R}^n$ . Hence,  $H = \mathbb{R}^n$ .
  - The set of examples is  $\mathcal{Z} = \mathcal{X} \times \mathcal{Y} = \mathbb{R}^n \times \mathbb{R} = \mathbb{R}^{n+1}$ .
  - The loss function is  $\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$ .
  - ► Clearly, H is a convex set and l(.,.) is also convex with respect to its first argument.



## Lemma (Convex learning problems)

If  $\ell$  is a convex loss function and the class H is convex, then the erm<sub>H</sub>, problem of minimizing the empirical loss over H, is a convex optimization problem (that is, a problem of minimizing a convex function over a convex set).

## Proof (Convex learning problems).

1. The  $erm_H$  problem is defined as

$$erm_H(S) = rgmin_{\mathbf{w}\in H} \mathbf{\hat{R}}(\mathbf{w})$$

- 2. Since, for a sample  $S = \{z_1, \ldots, z_m\}$ , for every **w**, and  $\hat{\mathbf{R}}(\mathbf{w}) = \frac{1}{m} \sum_{i=1}^m \ell(\mathbf{w}, z_i)$ , Lemma (Convexity of a scaler function) implies that  $\hat{\mathbf{R}}(\mathbf{w})$  is a convex function.
- 3. Therefore, the  $erm_H$  rule is a problem of minimizing a convex function subject to the constraint that the solution should be in a convex set.



- 1. We have seen that for many cases implementing the *erm* rule for convex learning problems can be done **efficiently**.
- 2. Is convexity a sufficient condition for the learnability of a problem?
- 3. In VC theory, we saw that halfspaces in *n* dimension are learnable (perhaps inefficiently).
- 4. Using discretization trick, if the problem is of n parameters, it is learnable with a sample complexity being a function of n.
- 5. That is, for a constant *n*, the problem should be learnable.
- 6. Maybe all convex learning problems over  $\mathbb{R}^n$ , are learnable?
- 7. Answer is negative even when n is low.



## Example (Nonlearnability of linear regression)

- 1. Let  $H = \mathbb{R}$  and  $\ell(w, (x, y)) = (wx y)^2$ .
- 2. This is a convex learning problem.
- 3. Let A be any deterministic algorithm (successful PAC learner for this problem).
- 4. So, there exists a function m(.,.), such that for every distribution  $\mathcal{D}, \epsilon, \delta$ , if A receives a sample of size  $m \ge m(\epsilon, \delta)$ , it should output  $\hat{w} = A(S)$  such that

$$\mathbb{P}\left[\mathbf{R}(\hat{w}) - \hat{\mathbf{R}}(\hat{w}) \le \epsilon\right] \ge 1 - \delta.$$
(2)

- 5. Choose  $\epsilon = 0.01$  and  $\delta = 0.5$  and let  $m \ge m(\epsilon, \delta)$  and set  $\mu = \frac{\log(100/99)}{2m}$ .
- 6. We can define two distributions  $\mathcal{D}_1$  and  $\mathcal{D}_2$  that A is likely to fail on at least one of them.
- 7.  $\mathcal{D}_1$  and  $\mathcal{D}_2$  are supported on two examples  $z_1=(1,0)$  and  $z_2=(\mu,-1)$ , where

$$egin{array}{lll} \mathcal{D}_1(z_1) = \mu & & \mathcal{D}_1(z_2) = 1 - \mu \ \mathcal{D}_2(z_1) = 0 & & \mathcal{D}_2(z_2) = 1. \end{array}$$

30/58



## Example (Nonlearnability of linear regression (cont.))

- 8. For  $\mathcal{D}_1$  and  $\mathcal{D}_2$ , the probability that all examples of the training set will be  $z_2$  is at least 99%.
- 9. This probability under  $\mathcal{D}_1$  equals to  $(1-\mu)^m \ge e^{-2\mu m} = 0.99$ .
- 10. Let  $\hat{w} = A(S)$ , where S containing all  $z_2$  examples.
- 11. We will argue that no matter what value  $\hat{w}$  takes, the condition(2) will be violated under  $\mathcal{D}_1$  or  $\mathcal{D}_2$ , and therefore **the problem is not PAC learnable**.
  - Suppose  $\hat{w} < -\frac{1}{2\mu}$ . We can show that condition (2) is violated under  $\mathcal{D}_1$ . In particular,

 $\mathsf{R}_{\mathcal{D}_1}(\hat{w}) \geq \mathcal{D}_1(z_1)\ell(\hat{w},z_1) = \mu(\hat{w})^2,$ 

whereas

$$\mathsf{R}_{\mathcal{D}_1}(w) = \mathsf{R}_{\mathcal{D}_1}(0) = \mathcal{D}_1(z_1)\ell(0,z_2) = (1-\mu),$$

and therefore

$$\mathbf{R}_{\mathcal{D}_1}(\hat{w}) - \min_{w} \mathbf{R}_{\mathcal{D}_1}(w) \geq rac{1}{4\mu} - (1-\mu) \geq \epsilon.$$

• Therefore, such algorithm A fails on  $\mathcal{D}_1$ .



#### Example (Nonlearnability of linear regression (cont.))

- 12. We will argue that no matter what value  $\hat{w}$  takes, the condition(2) will be violated under  $\mathcal{D}_1$  or  $\mathcal{D}_2$ , and therefore the problem is not PAC learnable.
  - Suppose  $\hat{w} \ge -\frac{1}{2\mu}$ . We can show that condition (2) is violated under  $\mathcal{D}_2$ . In particular,

$$\mathsf{R}_{\mathcal{D}_2}(\hat{w}) \geq \ell(\hat{w}, z_2) = (\hat{w}\mu + 1)^2 \geq rac{1}{4},$$

whereas

 $\mathbf{R}_{\mathcal{D}_2}(w,\mathcal{D}_2)=0,$ 

and therefore

$$\mathbf{R}_{\mathcal{D}_2}(\hat{w}) - \min_{w} \mathbf{R}_{\mathcal{D}_2}(w) \geq \epsilon.$$

• Therefore, such algorithm A fails on  $\mathcal{D}_2$ .

13. In summary, we have shown that for every *A* there exists a distribution on which *A* fails, which implies that the problem is not PAC learnable.



- 1. Hence, all convex learning problems over  $\mathbb{R}^n$  are not learnable.
- 2. Under some additional restricting conditions that hold in many practical scenarios, convex problems are learnable.
- 3. A possible solution to this problem is to add another constraint on the hypothesis class.
- 4. In addition to the convexity requirement, we require that H will be bounded (i.e. for some predefined scalar B, every hypothesis  $\mathbf{w} \in H$  satisfies  $\|\mathbf{w}\| \leq B$ ).
- 5. Boundedness and convexity alone are still not sufficient for ensuring that the problem is learnable .
- 6. **Homework:** Show that a linear regression with squared loss and  $H = \{w \mid |w| \le 1\} \subset \mathbb{R}$  is not learnabile.



# Definition (Convex-Lipschitz-bounded learning problems)

A learning problem  $(H, \mathbb{Z}, \ell)$  is called convex-Lipschitz-bounded, with parameters  $\rho$ , B if the following hold.

- 1. The hypothesis class H is a convex set, and for all  $\mathbf{w} \in H$  we have  $\|\mathbf{w}\| \leq B$ .
- 2. For all  $z \in \mathcal{Z}$ , the loss function,  $\ell(., z)$ , is a convex and  $\rho$ -Lipschitz function.

# Example (Linear regression with absolute-value loss)

- 1. Let  $\mathcal{X} = \{\mathbf{x} \in \mathbb{R}^n \mid \|\mathbf{x}\| \le \rho\}$  and  $\mathcal{Y} \subset \mathbb{R}$ .
- 2. Let  $H = {\mathbf{w} \in \mathbb{R}^n \mid ||\mathbf{w}|| \le B}.$
- 3. Let loss function be  $\ell(\mathbf{w}, (\mathbf{x}, y)) = |\langle \mathbf{w}, \mathbf{x} \rangle y|$ .
- 4. Then, this problem is Convex-Lipschitz-bounded with parameters  $\rho$ , B.

# Definition (Convex-smooth-bounded learning problems)

A learning problem  $(H, \mathbb{Z}, \ell)$  is called convex-smooth-bounded, with parameters  $\beta$ , B if the following hold.

- 1. The hypothesis class H is a convex set, and for all  $\mathbf{w} \in H$  we have  $\|\mathbf{w}\| \leq B$ .
- 2. For all  $z \in \mathbb{Z}$ , loss function,  $\ell(., z)$ , is a convex, nonnegative and  $\beta$ -smooth function.

# Example (Linear regression with squared loss)

- 1. Let  $\mathcal{X} = \{ \mathbf{x} \in \mathbb{R}^n \mid ||\mathbf{x}|| \le \beta/2 \}$ ,  $\mathcal{Y} \subset \mathbb{R}$ , and  $H = \{ \mathbf{w} \in \mathbb{R}^n \mid ||\mathbf{w}|| \le B \}$ .
- 2. Let loss function be  $\ell(\mathbf{w}, (\mathbf{x}, y)) = (\langle \mathbf{w}, \mathbf{x} \rangle y)^2$ .
- 3. Then, this problem is Convex-smooth-bounded with parameters  $\beta$ , B.



## Lemma (Learnability of Convex-Lipschitz/-smooth-bounded learning)

The following two families of learning problems are learnable.

- 1. Convex-smooth-bounded learning problems
- 2. Convex-Lipschitz-bounded learning problems

That is, the properties of

- 1. convexity,
- 2. boundedness, and
- 3. Lipschitzness or smoothness

of the loss function are sufficient for learnability.

# **Regularization and stability**

- 1. Regularized loss minimization (RLM) is a learning rule in which we jointly minimize the empirical risk and a regularization function.
- 2. A regularization function is a mapping  $R : \mathbb{R} \mapsto \mathbb{R}$ , and the regularized loss minimization rule outputs a hypothesis

$$\underset{\mathbf{w}}{\operatorname{arg\,min}} \, \hat{\mathbf{R}}(\mathbf{w}) + R(\mathbf{w})$$

- 3. Regularization function measures the complexity of hypotheses.
- 4. RLM is similar to MDL and SRM.
- 5. There are many possible regularization functions one can use, reflecting some prior belief about the problem.
- 6. We consider on one of the most simple regularization functions  $R(\mathbf{w}) = \|\mathbf{w}\|^2$ .
- 7. The learning rule becomes

$$A(S) = \arg\min_{\mathbf{w}} \mathbf{\hat{R}}(\mathbf{w}) + \lambda \|\mathbf{w}\|^2$$

8. This type of regularization function is often called Tikhonov regularization.



# Example (Ridge regression)

1. Applying RLM with Tikhonov regularization to linear regression with squared loss, we obtain

$$\underset{\mathbf{w}\in\mathbb{R}^{n}}{\arg\min}\,\frac{1}{m}\sum_{i=1}^{m}\frac{1}{2}\left(\langle\mathbf{w},\mathbf{x}_{i}\rangle-y_{i}\right)^{2}+\lambda\,\|\mathbf{w}\|_{2}^{2}$$

2. Setting gradient of objective to zero, we obtain

 $(2\lambda m\mathbf{I} + \mathbf{A}) = \mathbf{b}$ 

where A and b are

$$\mathbf{A} = \left(\sum_{i=1}^{m} \mathbf{x}_i \mathbf{x}_i^{\top}\right) \qquad \qquad \mathbf{b} = \sum_{i=1}^{m} y_i \mathbf{x}_i$$

- 3. A is positive semidefinite, and  $2\lambda m \mathbf{I} + \mathbf{A}$  has all its eigenvalues bounded below by  $2\lambda m$ .
- 4. Hence, this matrix is invertible, we have  $\mathbf{w} = (2\lambda m \mathbf{I} + \mathbf{A})^{-1}\mathbf{b}$ .

**Regularization and stability** 

Stability of learning algorithms



- 1. A learning algorithm is stable if a small change of input does not change output much.
- 2. Given training set S and an additional example  $\mathbf{z}'$ , let  $S^{(i)}$  be training set obtained by replacing *i*th example of S with  $\mathbf{z}'$ :  $S^{(i)} = (\mathbf{z}_1, \dots, \mathbf{z}_{i-1}, \mathbf{z}', \mathbf{z}_{i+1}, \dots, \mathbf{z}_m)$ .
- 3. A small change of input means feeding A with  $S^{(i)}$  instead of S.
- 4. We measure effect of this change on output of A by comparing  $\ell(A(S), z_i)$  with  $\ell(A(S^{(i)}), z_i)$ .
- 5. A good learning algorithm will have  $\ell(A(S^{(i)}), z_i) \ell(A(S), z_i) \ge 0$ .
- 6. If  $\ell(A(S^{(i)}), z_i) \ell(A(S), z_i)$  is is very large, we suspect that the learning algorithm might overfit.
- 7. The reason is learning algorithm **drastically changes its prediction** on  $z_i$  if it observes  $z_i$  in the training set.

#### Theorem

Let  $\mathcal{D}$  be a distribution. Let  $S = (\mathbf{z}_1, \dots, \mathbf{z}_m)$  be a sequence of iid examples sampled according to  $\mathcal{D}$  and let  $\mathbf{z}'$  be another iid example sampled from  $\mathcal{D}$ . Let U(m) be the uniform distribution over [m]. Then, for any learning algorithm A

$$\mathbb{E}_{S \sim \mathcal{D}^m} \left[ \mathsf{R}(A(S)) - \hat{\mathsf{R}}(A(S)) \right] = \mathbb{E}_{(S, \mathbf{z}'') \sim \mathcal{D}_1^{m+1}, i \sim U(m)} \left[ \ell(A(S^{(i)}), \mathbf{z}_i)) - \ell(A(S), \mathbf{z}_i)) \right].$$

#### Proof.

1. Since S and  $\mathbf{z}'$  are both drawn iid from  $\mathcal{D}$ , for every *i*, we have

$$\mathop{\mathbb{E}}_{S} \left[ \mathsf{R}(A(S)) \right] = \mathop{\mathbb{E}}_{S,z'} \left[ \ell(A(S), \mathsf{z}') \right] = \mathop{\mathbb{E}}_{S,z'} \left[ \ell(A(S^{(i)}), \mathsf{z}') \right]$$

2. On the other hand, we can write

$$\mathop{\mathbb{E}}_{S}\left[\hat{\mathbf{R}}(A(S))\right] = \mathop{\mathbb{E}}_{S,i}\left[\ell(A(S), \mathbf{z}_{i})\right]$$

3. By combining these two equations, we conclude our proof.





- 1. When  $\mathbb{E}_{S,z'}\left[\ell(A(S), \mathbf{z}')\right] = \mathbb{E}_{S,z'}\left[\ell(A(S^{(i)}), \mathbf{z}')\right]$  is small, we say that A is stable.
- 2. This means that changing a single example in the training set does not lead to a significant change.

#### Definition (On-average-replace-one-stable)

Let  $\epsilon : \mathbb{N} \mapsto \mathbb{R}$  be a monotonically decreasing function. We say that a learning algorithm A is **on-average-replace-one-stable** with rate  $\epsilon(m)$  if for every distribution  $\mathcal{D}$ 

$$\mathbb{E}_{(S,\mathbf{z}'')\sim\mathcal{D}_1^{m+1},i\sim U(m)}\left[\ell(A(S^{(i)}),\mathbf{z}_i))-\ell(A(S),\mathbf{z}_i))\right]\leq \epsilon(m).$$

- 3. The preceding theorem states that a learning algorithm does not overfit **if and only if it is on-average-replace-one-stable**.
- 4. Of course, a learning algorithm that does not overfit is not necessarily a good learning algorithm.
- 5. A useful algorithm should find a hypothesis that **fits the training set and does not overfit**.



The main property of Tikhonov regularization is that it makes objective of RLM **strongly convex**.

## **Definition (Strongly convex functions)**

A function f is  $\lambda$ -strongly convex if for all **u**, **w** and  $\alpha \in (0, 1)$ , we have

$$f(\alpha \mathbf{w} + (1 - \alpha)\mathbf{u}) \le \alpha f(\mathbf{w}) + (1 - \alpha)f(\mathbf{u}) - \frac{\lambda}{2}\alpha(1 - \alpha) \|\mathbf{w} - \mathbf{u}\|^2.$$

#### Lemma

The following statements hold for strongly convex functions.

- 1. The function  $f(\mathbf{w}) = \|\mathbf{w}\|^2$  is  $2\lambda$ -strongly convex.
- 2. If function f is  $\lambda$ -strongly convex and function g is convex, then f + g is  $\lambda$ -strongly convex.
- 3. If function f is  $\lambda$ -strongly convex and **u** is a minimizer of f, then for any **w**

$$f(\mathbf{w}) - f(\mathbf{u}) \geq \frac{\lambda}{2} \|w - u\|^2$$
.



- 1. We now turn to prove that **RLM** (algorithm A) is stable.
- 2. The goal is to bound  $|\hat{\mathbf{R}}_{S}(A(S^{(i)})) \hat{\mathbf{R}}_{S}(A(S))|$  for Tikhonov regularization.
- 3. Define  $f_{S}(\mathbf{w}) = \hat{\mathbf{R}}_{S}(\mathbf{w}) + \lambda \|\mathbf{w}\|^{2}$  and  $A(S) = \arg \min_{\mathbf{w}} f_{S}(\mathbf{w})$ .
- 4. Since  $f_{S}(\mathbf{w})$  is  $2\lambda$ -strongly convex, then for any  $\mathbf{v}$ , we have

$$f_{\mathcal{S}}(\mathbf{v}) - f_{\mathcal{S}}(\mathcal{A}(\mathcal{S})) \ge \lambda \|\mathbf{v} - \mathcal{A}(\mathcal{S})\|^2$$
(3)

5. Also for any  $\mathbf{v}$ ,  $\mathbf{u}$  and i, we have

1

$$\begin{aligned} f_{\mathcal{S}}(\mathbf{v}) - f_{\mathcal{S}}(\mathbf{u}) &= \hat{\mathbf{R}}_{\mathcal{S}}(\mathbf{v}) + \lambda \|\mathbf{v}\|^2 - (\hat{\mathbf{R}}_{\mathcal{S}}(\mathbf{u}) + \lambda \|\mathbf{u}\|^2) \\ &= \hat{\mathbf{R}}_{\mathcal{S}^{(i)}}(\mathbf{v}) + \lambda \|\mathbf{v}\|^2 - (\hat{\mathbf{R}}_{\mathcal{S}^{(i)}}(u) + \lambda \|\mathbf{v}\|^2) \\ &+ \frac{\ell(\mathbf{v}, \mathbf{z}_i) - \ell(\mathbf{u}, \mathbf{z}_i)}{m} + \frac{\ell(\mathbf{u}, \mathbf{z}') - \ell(\mathbf{v}, \mathbf{z}')}{m} \end{aligned}$$



1. Let  $\mathbf{v} = A(S^{(i)})$  and  $\mathbf{u} = A(S)$ , thus we obtain

$$f_{S}(A(S^{(i)})) - f_{S}(A(S)) \leq \frac{\ell(A(S^{(i)}), \mathbf{z}_{i}) - \ell(A(S), \mathbf{z}_{i})}{m} + \frac{\ell(A(S), \mathbf{z}') - \ell(A(S^{(i)}), \mathbf{z}')}{m}.$$

2. Combining this with inequality (3), we obtain

$$\lambda \left\| \mathcal{A}(S^{(i)}) - \mathcal{A}(S) \right\|^2 \leq \frac{\ell(\mathcal{A}(S^{(i)}), \mathbf{z}_i) - \ell(\mathcal{A}(S), \mathbf{z}_i)}{m} + \frac{\ell(\mathcal{A}(S), \mathbf{z}') - \ell(\mathcal{A}(S^{(i)}), \mathbf{z}')}{m}.$$
(4)



## Theorem (Stability for Lipschitz loss function)

Assume that the loss function is convex and  $\rho$ -Lipschitz. Then, RLM rule with the regularizer  $\lambda \|\mathbf{w}\|^2$  is on-average-replace-one-stable with rate  $\frac{2\rho^2}{\lambda m}$ .

#### Proof (Stability for Lipschitz loss function).

1. Since the loss function is convex and  $\rho\text{-Lipschitz}.$  Then

$$\ell(A(S^{(i)}), \mathbf{z}_{i}) - \ell(A(S), \mathbf{z}_{i}) \leq \rho \left\| A(S^{(i)}) - A(S) \right\|$$

$$\ell(A(S), \mathbf{z}') - \ell(A(S^{(i)}), \mathbf{z}') \leq \rho \left\| A(S^{(i)}) - A(S) \right\|.$$
(5)

2. Plugging these inequalities into (4), we obtain

$$\lambda \left\| \mathcal{A}(S^{(i)}) - \mathcal{A}(S) \right\|^2 \le 2\rho \frac{\left\| \mathcal{A}(S^{(i)}) - \mathcal{A}(S) \right\|}{m} \quad \Leftrightarrow \left\| \mathcal{A}(S^{(i)}) - \mathcal{A}(S) \right\| \le \frac{2\rho}{\lambda m}$$

3. Plugging these inequalities into (5), we obtain

$$\ell(\mathcal{A}(S^{(i)}), \mathbf{z}_i) - \ell(\mathcal{A}(S), \mathbf{z}_i) \leq \frac{2\rho^2}{\lambda m}$$

which holds for all  $S, \mathbf{z}', i$ .

45/58



#### Theorem

Assume that the loss function is  $\beta$ -smooth and nonnegative. Then, RLM rule with the regularizer  $\lambda \|\mathbf{w}\|^2$  where  $\lambda \geq \frac{2\beta}{m}$  satisfies

$$\mathbb{E}\left[\ell(A(S^{(i)}), z_i) - \ell(A(S), z_i)\right] \leq \frac{48\beta}{\lambda m} \mathbb{E}\left[\hat{\mathsf{R}}_{S}(A(S))\right] \\ \leq \frac{48\beta}{\lambda m} C$$

where  $\hat{\mathbf{R}}_{S}(A(S)) \leq C$ .

- 1. We have shown that the stability term decreases, when  $\lambda$  increases.
- 2. Also the empirical risk increases with  $\lambda$ .
- 3. Hence, there is a tradeoff between fitting and overfitting.
- 4. We will choose a value of  $\lambda$  to derive a new bound for the true risk.

## Theorem (Oracle inequality)

Assume that the convex and  $\rho$ -Lipschitz. Then, the RLM rule with the regularization function  $\lambda \|\mathbf{w}\|^2$  satisfies

$$\forall \mathbf{w}^* : \mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} \left[ \mathbf{R}(A(S)) \right] \le \mathbf{R}(\mathbf{w}^*) + \lambda \left\| \mathbf{w}^* \right\|^2 + \frac{2\rho^2}{\lambda m}$$

- 5. This bound is often called an oracle inequality.
- 6. If we think of  $\mathbf{w}^*$  as a hypothesis with low risk, the bound tells us how many examples are needed so that A(S) will be almost as good as  $\mathbf{w}^*$ , had we known the norm of  $\mathbf{w}^*$ .
- 7. We do not know  $\|\mathbf{w}^*\|^2$  and tune  $\lambda$  using validation set.





# **Proof (Oracle inequality).**

 $1. \ \mbox{We can rewrite the expected risk of a learning algorithm as}$ 

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} \left[ \mathbf{R}(\mathcal{A}(S)) \right] = \mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} \left[ \hat{\mathbf{R}}(\mathcal{A}(S)) \right] + \mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} \left[ \mathbf{R}(\mathcal{A}(S)) - \hat{\mathbf{R}}(\mathcal{A}(S)) \right]$$
(6)

2. Fix some arbitrary vector  $\mathbf{w}^*$ . We have

$$\mathbf{\hat{R}}(\mathcal{A}(\mathcal{S})) \leq \mathbf{\hat{R}}(\mathcal{A}(\mathcal{S})) + \lambda \|\mathbf{w}\|^2 \leq \mathbf{\hat{R}}(\mathbf{w}^*) + \lambda \|\mathbf{w}^*\|^2$$

3. Taking expectation and using  $\mathbb{E}_{S}\left[\hat{\mathbf{R}}(\mathbf{w}^{*})\right] = \mathbf{R}(\mathbf{w}^{*})$ , yields

$$\mathop{\mathbb{E}}_{S\sim\mathcal{D}^m}\left[\mathbf{\hat{R}}(A(S))\right] \leq \mathbf{R}(\mathbf{w}^*) + \lambda \left\|\mathbf{w}^*\right\|^2.$$

4. Using equation (6), we obtain

$$\mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} \left[ \mathbf{R}(\mathcal{A}(S)) \right] \leq \mathbf{R}(\mathbf{w}^*) + \lambda \left\| \mathbf{w}^* \right\|^2 + \mathop{\mathbb{E}}_{S \sim \mathcal{D}^m} \left[ \mathbf{R}(\mathcal{A}(S)) - \hat{\mathbf{R}}(\mathcal{A}(S)) \right].$$

5. Applying Theorem (Stability for Lipschitz loss function) finishes the proof.

#### Theorem

Let  $(H, \mathcal{Z}, \ell)$  be a convex-Lipschitz-bounded learning problem with parameters  $\rho, B$ . For any training set size m, let  $\lambda = \sqrt{\frac{2\rho^2}{B^2m}}$ . Then, the RLM rule with the regularization function  $\lambda \|\mathbf{w}^*\|^2$  satisfies

$$\mathbb{E}_{S \sim \mathcal{D}^m} [\mathbf{R}(A(S))] \leq \min_{\mathbf{w} \in H} \mathbf{R}(\mathbf{w}) + \rho B \sqrt{\frac{8}{m}}.$$

In particular for every  $\epsilon > 0$ , if  $m > \frac{8\rho^2 B^2}{\epsilon^2}$  then for every distribution  $\mathcal{D}$ , we have

$$\mathop{\mathbb{E}}_{S\sim\mathcal{D}^m}\left[\mathbf{R}(A(S))\right]\leq\min_{\mathbf{w}\in H}\mathbf{R}(\mathbf{w})+\epsilon.$$

#### Proof.

The proof follows directly by setting  $\mathbf{w}^*$  to  $\arg\min_{\mathbf{w}\in H} \mathbf{R}(\mathbf{w})$ , inserting  $\lambda$  in Theorem (Stability for Lipschitz loss function) and using  $\|\mathbf{w}\| \leq B$ .



**Regularization and stability** 

Learnability of convex learning problems



Convex-Lipschitz-bound problems are PAC learnable, as the following Theorem shows.

#### Theorem

If an algorithm A guarantees that for  $m \ge m_H(\epsilon)$  and every distribution  $\mathcal{D}$  the following inequality holds:

$$\mathop{\mathbb{E}}_{S\sim\mathcal{D}^m}\left[\mathbf{R}(A(S))\right]\leq \min_{h\in H}\mathbf{R}(h)+\epsilon,$$

then the problem is PAC learnable by A.

#### Proof.

- 1. Let  $\delta \in (0, 1)$  and  $m \geq m_H(\epsilon, \delta)$ .
- 2. Define  $X = \mathbf{R}(A(S)) \min_{h \in H} \mathbf{R}(h)$ .
- 3. Then  $X \ge 0$  and by our assumption  $\mathbb{E}[X] \ge \epsilon \delta$ .
- 4. Using Markov's inequality, we obtain

$$\mathbb{P}\left[\mathsf{R}(A(S)) \geq \min_{h \in \mathcal{H}} \mathsf{R}(h) + \epsilon\right] = \mathbb{P}\left[X \geq \epsilon\right] \leq \frac{\mathbb{E}\left[X \geq \epsilon\right]}{\epsilon} \leq \frac{\epsilon\delta}{\epsilon} = \delta.$$

50/58



#### Theorem

Assume that the convex,  $\beta$ -smooth, and nonnegative. Then, the RLM rule with the regularization function  $\lambda \|\mathbf{w}\|^2$  for  $\lambda \geq \frac{2\beta}{m}$ , satisfies the following for all  $\mathbf{w}^*$ 

$$\mathbb{E}_{S}\left[\mathbf{R}(A(S))
ight] \leq \left(1 + rac{48eta}{\lambda m}
ight) \mathbb{E}_{S}\left[\mathbf{\hat{R}}(A(S))
ight] \ \leq \left(1 + rac{48eta}{\lambda m}
ight) \left(\mathbf{R}(\mathbf{w}^{*}) + \lambda \|\mathbf{w}^{*}\|^{2}
ight)$$

#### Theorem

Let  $(H, \mathcal{Z}, \ell)$  be a convex-smooth-bounded learning problem with parameters  $\beta$ , B. Assume in addition that  $\ell(0, z) \leq 1$  for all  $z \in \mathcal{Z}$ . For any  $\epsilon \in (0, 1)$ , let  $m \geq \frac{150\beta B^2}{\epsilon^2}$ and set  $\lambda = \frac{\epsilon}{3B^2}$ . Then, for every distribution  $\mathcal{D}$ 

$$\mathop{\mathbb{E}}_{S} \left[ \mathbf{R}(A(S)) \right] \leq \min_{\mathbf{w} \in H} \mathbf{R}(\mathbf{w}) + \epsilon.$$

Surrogate loss functions



- 1. In many cases, loss function is not convex and, hence, implementing the erm rule is hard.
- 2. Consider the problem of learning halfspaces with respect to 0-1 loss.

$$\ell^{0-1}(\mathbf{w}, (\mathbf{x}, y)) = \mathbb{I}\left[y \neq \operatorname{sgn}\left(\langle \mathbf{w}, \mathbf{x} \rangle\right)\right] = \mathbb{I}\left[y \langle \mathbf{w}, \mathbf{x} \rangle \leq 0\right].$$

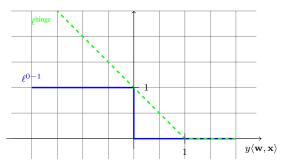
- 3. This loss function is not convex with respect to w.
- 4. When trying to minimize  $\hat{\mathbf{R}}(\mathbf{w})$  with respect to this loss function we might encounter local minima.
- 5. We also showed that, solving the ERM problem with respect to the 0-1 loss in the unrealizable case is known to be NP-hard.
- 6. One popular approach is to upper bound the nonconvex loss function by a convex surrogate loss function.
- 7. The requirements from a convex surrogate loss are as follows:
  - It should be convex.
  - It should upper bound the original loss.



1. Hinge-loss function is defined as

$$\ell^{hinge}(\mathbf{w}, (\mathbf{x}, y)) \triangleq \max\{0, 1 - y \langle \mathbf{w}, \mathbf{x} \rangle\}.$$

- 2. Hinge-loss has the following two properties
  - For all w and all (x, y), we have  $\ell^{0-1}(w, (x, y)) \leq \ell^{hinge}(w, (x, y))$ .
  - Hinge-loss is a convex function.



3. Hence, the hinge loss satisfies the requirements of a convex surrogate loss function for the zero-one loss.



 $1. \ \mbox{Suppose}$  we have a learner for hinge-loss that guarantees

$$\mathbf{R}^{hinge}(A(S)) \leq \min_{\mathbf{w}\in H} \mathbf{R}^{hinge}(\mathbf{w}) + \epsilon.$$

2. Using the surrogate property,

$$\mathbf{R}^{0-1}(A(S)) \leq \min_{\mathbf{w}\in H} \mathbf{R}^{hinge}(\mathbf{w}) + \epsilon.$$

3. We can further rewrite the upper bound as

$$\mathbf{R}^{0-1}(\mathcal{A}(S)) \leq \min_{\mathbf{w}\in\mathcal{H}} \mathbf{R}^{0-1}(\mathbf{w}) + \left(\min_{\mathbf{w}\in\mathcal{H}} \mathbf{R}^{hinge}(\mathbf{w}) - \min_{\mathbf{w}\in\mathcal{H}} \mathbf{R}^{0-1}(\mathbf{w})\right) + \epsilon$$
  
=  $\epsilon_{approximation} + \epsilon_{optimization} + \epsilon_{estimation}$ 

4. The optimization error is a result of our inability to minimize the training loss with respect to the original loss.

# Assignments



- 1. Please specify that the following learning problems belong to which category of problems.
  - Support vector regression (SVR)
  - Kernel ridge regression
  - Least absolute shrinkage and selection operator (Lasso)
  - Support vector machine (SVM)
  - Logistic regression
  - AdaBoost

Prove your claim.

2. Prove Lemma Learnability of Convex-Lipschitz/-smooth-bounded learning problems.

# Summary



- $1. \ \mbox{We introduced two families of learning problems:}$ 
  - Convex-Lipschitz-bounded learning problems.
  - Convex-smooth-bounded learning problems.
- 2. There are some generic learning algorithms such as stochastic gradient descent algorithm for solving these problem. (Please read Chapter 14)
- 3. We have shown that stable algorithms do not overfit.
- 4. We have shown convex-Lipschitz-bounded learning problems and convex-Lipschitz-bounded learning problems are **PAC learnable**.
- 5. We also introduced the notion of convex surrogate loss function, which enables us also to utilize the convex machinery for nonconvex problems.

# Readings



1. Chapters 12, 13, and 14 of Shai Shalev-Shwartz and Shai Ben-David (2014). *Understanding machine learning: From theory to algorithms.* Cambridge University Press.





**Questions?** 

