
Machine learning theory

Boosting

Hamid Beigy

Sharif university of technology

April 18, 2022

Table of contents

1. Introduction

2. Adaptive Boosting

3. Generalization bound of AdaBoost

4. Margin-based analysis

5. Summary

1/47

Introduction

Introduction

1. Ensemble methods are general techniques in machine learning for combining
several predictors to create a more accurate one.

2. Two main categories of ensemble learning:
I Boosting
I Bagging

3. In the problem of PAC-learnability, we were trying to find learning algorithms that
learned the problem really well (to within some ε error rate).

4. This is a strong guarantee, a strong learner is a classifier that is arbitrarily
well-correlated with the true classification.

2/47

Introduction

1. Two major issues in machine learning are
I Have a good tradeoff between approximation error and estimation error.
I Computational complexity of learning.

2. How do we achieve a good tradeoff between approximation error and estimation
error.

I The error of an ERM learner can be decomposed into a sum of approximation error
and estimation error.

I The more expressive the hypothesis class the learner is searching over, the smaller
the approximation error is, but the larger the estimation error becomes.

I A learner is faced with the problem of picking a good tradeoff between these two
considerations.

3. Computational complexity of learning.
I For many interesting concept classes the task of finding an ERM hypothesis may be

computationally infeasible.

3/47

Introduction

1. The idea behind boosting is to construct a strong learner by combining many
weak learners.

2. A weak learner is defined to be a classifier that it can label examples better than
random guessing.

3. Boosting is based on the question posed by Kearns and Valiant (1988, 1989):
Can a set of weak learners create a single strong learner?

4. Robert Schapire answered the question of Kearns and Valiant in 1990 by
introducing Boosting algorithm.

5. Freund and Schapire introduced AdaBoost algorithm in 1997.

4/47

Introduction

1. Breiman introduced Bagging algorithm in 1994.

2. The boosting paradigm allows the learner to have smooth control over tradeoff
between estimation and approximation errors.

3. The learning starts with a basic class (that might have a large approximation
error), and as it progresses the class that the predictor may belong to grows richer.

4. AdaBoost enables us to control the tradeoff between the approximation and
estimation errors by varying a single parameter.

5. Family of Boosting algorithms reduce variance and bias.

6. When a weak learner can be implemented efficiently, boosting provides a tool for
aggregating such weak hypotheses.

7. Bagging algorithm reduces variance and helps to avoid overfitting.

5/47

Weak vs. strong learning

1. Recall the definition of (strong) PAC learning:

Definition (Strong PAC learnability)

A concept class C is strongly PAC learnable using a hypothesis class H if there exists
an algorithm A such that for any c ∈ C, for any distribution D over the input space,
for any ε ∈ (0, 12) and δ ∈ (0, 12), given access to a polynomial (in 1

ε and 1
δ) number

of examples drawn i.i.d. from D and labeled by c , A outputs a function h ∈ H such
that with probability at least (1− δ), we have R(h) ≤ ε.

2. This definition is strong in the sense that it requires that R(h) can be driven
arbitrarily close to 0 by choosing an appropriately small value of ε.

6/47

Weak vs. strong learning

1. But what happens if we can’t get the error arbitrarily close to 0? Is learning all or
none?

2. To answer these questions, we introduce the notion of weak PAC learning.

Definition (Weakly PAC learnability)

A concept class C is weakly PAC learnable using a hypothesis class H if there exists
an algorithm A and a value of γ > 0 such that for any c ∈ C, for any distribution D
over the input space, for any δ ∈ (0, 12), given access to a polynomial (in 1

δ) number
of examples drawn i.i.d. from D and labeled by c , A outputs a function h ∈ H such
that with probability at least (1− δ), we have R(h) ≤ 1

2 − γ.

3. We will sometimes refer to γ as the advantage of A (over random guessing).

4. Weak learnability only requires A to return a hypothesis that does better than
random guessing.

7/47

Weak vs. strong learning

1. It’s clear that strong learnability implies weak learnability.
I Strong learnability implies the ability to find an arbitrarily good classifier with error

rate at most ε > 0.
I In weak learnability, we only need to output a hypothesis whose error rate is at most(

1
2 − γ

)
.

I The hope is that it may be easier to learn efficient weak learners than efficient strong
learners.

2. The question we want to answer is whether weak learnability implies strong
learnability.

I From fundamental theorem, if VC (H) = d then mH(ε, δ) ≥ C1
d + log(1/δ)

ε
.

I By setting ε =
(
1
2 − γ

)
, d =∞ implies that H is not weakly learnable.

I From the statistical perspective (ignoring computational complexity), weak
learnability is characterized by VC (H) and therefore is just as hard as strong
learnability.

I Computational complexity is the advantage of weak learning: the weak learning can
be implemented efficiently.

8/47

Weak vs. strong learning

The following theorem shows the learnability of weak learners.

Theorem (Weak learnability)

A class of hypothesis H is weakly learnable iff it has finite VC dimension.

Proof.

1. Finite VC ⇒ PAC learnability ⇒ Weak learnability

2. Weak learnability ⇒ mH(12 − γ, δ) ≥ C1
VC (H) + log(1/δ)

1
2 − γ

is finite ⇒ Finite VC

More formally, we might ask: If C is weakly learnable using H, must there exist
some H ′ such that C is (strongly) learnable using H ′?

9/47

Weak vs. strong learning

1. More formally, we might ask the following:
If C is weakly learnable using H, must there exist some H ′ such that C is
(strongly) learnable using H ′?

2. We can think about this question as follows.
I Fix an arbitrary ε > 0.
I Suppose we are given a polynomial number (in 1/δ and 1/ε) of samples drawn i.i.d.

from some distribution D and labeled by a target c ∈ C, as well as a weak learning
algorithm A for C.

I Can we incorporate A into a new algorithm that is guaranteed to produce a new
function h such that with high probability, R(h) < ε?

10/47

Weak vs. strong learning

1. A natural question to ask is whether strong and weak PAC learning algorithms are
equivalent.

2. Moreover, if this is true, we would like to have an algorithm to convert a weak
PAC learning algorithm into a strong PAC learning algorithm.

3. Boosting is an algorithm that can do the above task and defined as follows.

Definition (Boosting algorithm)

A boosting algorithm is an algorithm that converts a weak learning algorithm into a
strong learning algorithm.

11/47

Weak learning (example)

Example (Learning the class of 3-partitions of R)

1. Let H3p =
{
hbθ1,θ2

∣∣∣ θ1, θ2 ∈ R, b ∈ {−1,+1}
}

be class of 3-partitions of R as

hbθ1,θ2(x) =

+b if x < θ1
−b if θ1 ≤ x ≤ θ2
+b if x > θ2

2. An example hypothesis is

10.1 Weak Learnability 103

arbitrarily small ε > 0). In weak learnability, however, we only need to output a
hypothesis whose error rate is at most 1/2 − γ , namely, whose error rate is slightly
better than what a random labeling would give us. The hope is that it may be easier
to come up with efficient weak learners than with efficient (full) PAC learners.

The fundamental theorem of learning (Theorem 6.8) states that if a hypothesis
class H has a VC dimension d , then the sample complexity of PAC learning H satis-
fies mH(ε,δ) ≥ C1

d+log(1/δ)
ε

, where C1 is a constant. Applying this with ε = 1/2−γ we
immediately obtain that if d = ∞ then H is not γ -weak-learnable. This implies that
from the statistical perspective (i.e., if we ignore computational complexity), weak
learnability is also characterized by the VC dimension of H and therefore is just as
hard as PAC (strong) learning. However, when we do consider computational com-
plexity, the potential advantage of weak learning is that maybe there is an algorithm
that satisfies the requirements of weak learning and can be implemented efficiently.

One possible approach is to take a “simple” hypothesis class, denoted B , and to
apply ERM with respect to B as the weak learning algorithm. For this to work, we
need that B will satisfy two requirements:

! ERMB is efficiently implementable.
! For every sample that is labeled by some hypothesis from H, any ERMB

hypothesis will have an error of at most 1/2 − γ .

Then, the immediate question is whether we can boost an efficient weak learner
into an efficient strong learner. In the next section we will show that this is indeed
possible, but before that, let us show an example in which efficient weak learnability
of a class H is possible using a base hypothesis class B .

Example 10.1 (Weak Learning of 3-Piece Classifiers Using Decision Stumps). Let
X = R and let H be the class of 3-piece classifiers, namely, H = {hθ1,θ2,b : θ1,θ2 ∈
R,θ1 < θ2,b ∈ {±1}}, where for every x ,

hθ1,θ2,b(x) =
{

+b if x < θ1 or x > θ2

−b if θ1 ≤ x ≤ θ2

An example hypothesis (for b = 1) is illustrated as follows:

θ 1 θ 2

++ −

Let B be the class of Decision Stumps, that is, B = {x &→ sign(x −θ) ·b : θ ∈ R,b ∈
{±1}}. In the following we show that ERMB is a γ -weak learner for H, for γ = 1/12.

To see that, we first show that for every distribution that is consistent with H,
there exists a decision stump with LD(h) ≤ 1/3. Indeed, just note that every classifier
in H consists of three regions (two unbounded rays and a center interval) with alter-
nate labels. For any pair of such regions, there exists a decision stump that agrees
with the labeling of these two components. Note that for every distribution D over
R and every partitioning of the line into three such regions, one of these regions
must have D-weight of at most 1/3. Let h ∈ H be a zero error hypothesis. A decision
stump that disagrees with h only on such a region has an error of at most 1/3.

3. By setting γ = 1
6 , we show that H3p is weakly learnable by ERM over Decision

Stumps (class of threshold functions)
B = {x 7→ sgn (x − θ)× b | θ ∈ R, b ∈ {−1,+1}}.

4. For every distribution D over R consistent with H3p, there exists a threshold
function h such that

R̂(h) ≤ 1

2
− 1

6
=

1

3
.

12/47

Weak learning (example)

Example (Learning the class of 3-partitions of R)

1. We know that VC (B) = 2, if sample size is greater than Ω

(
log(1/δ)

ε2

)
, then

with probability of at least (1− δ), the ERMB rule returns a hypothesis with an
error of at most 1

3 + ε.

2. Setting ε = 1
12 , with probability of at least (1− δ), we have

R(ERMB(S)) ≤ R̂(ERMB(S)) + ε = 1
3 + 1

12 .

3. We see that ERMB is a weak learner for H.

13/47

Weak learning (example)

It is important to note that both strong and weak PAC learning are distribution-free.

The following example will shed more light on the importance of this.

Example (Learning with a fixed distribution)

1. Let C be the set of all concepts over {0, 1}n ∪ {z}, where z 6∈ {0, 1}n.

2. Let D be the distribution that assigns mass 1
4 to z and mass 3

4 uniformly
distributed over {0, 1}n.

P
x∼D

[x = k] =

1
4 if (k = z)

3
4 × 1

2n if k ∈ {0, 1}n

3. Consider the hypothesis h that predicts

h(x) =

c(z) if (x = z)
0 with prob. of 1

2 if x 6= z
1 with prob. of 1

2 if x 6= z

14/47

Weak learning (example)

Example (Learning with a fixed distribution)

1. Consider the hypothesis h that predicts

h(x) =

c(z) if (x = z)
0 with prob. of 1

2 if x 6= z
1 with prob. of 1

2 if x 6= z

2. This hypothesis always correctly predict label of z and predict label of x 6= z
with 50% accuracy.

3. The error of this hypothesis equals to R(h) = 3
4 × 1

2 = 3
8 <

1
2 .

4. If we drop the distribution-freeness from the definition, C is weakly PAC
learnable for the fixed distribution D.

5. However, VC (C) = 2n, hence C is not strongly PAC learnable (by modifying the
definition to a fixed distribution) using any algorithm.

6. This is because we would need at least m = Ω(2n) examples, which is not
polynomial.

7. Hence we cannot necessarily convert a weak into a strong learning algorithm if
we fix the distribution.

15/47

Adaptive Boosting

AdaBoost algorithm

I We are given
I Training set S = {(x1, y1), (x2, y2), . . . , (xm, ym)} drawn from distribution D, where

xi ∈ X and yi ∈ {−1,+1}.
I A weak learner A which for all D (not necessarily the same as D), given S ∼ Dm

finds a h ∈ B such that P
[
R(h) ≤ 1

2 − γ
]
≥ 1− δ.

I The goal is to find a final hypothesis h ∈ H such that P [R(h) ≤ ε] ≥ 1− δ.

I The main idea behind AdaBoost is to run the weak learning algorithm several
times and combine the hypotheses from each run.

I To do this effectively, we need to force the weak algorithm to learn by giving it a
different D on every run.

D
A

h

2.2 The setup

We are given:

• S = {(x1, y1), ..., (xm, ym)} drawn from the true distribution D, where xi 2 X, yi 2
{�1, 1}.

• access to a weak learner A which:
8D (not necessarily the same as D)
given examples drawn from D
computes h 2 H (the hypothesis space of the weak learner) such that:

Pr[errD(h) 1

2
� �] � 1� �

The following diagram illustrates what the weak learner does.

Our goal is to find a final hypothesis H – we don’t require that H 2 H – such that:

Pr[errD(H) ✏] � 1� �

Note that we use the true distribution, D and not D for the last probability.

2.3 The main idea

The main idea behind boosting is to run the weak learning algorithm several times and
combine the hypotheses from each run. To do this e↵ectively, we need to force the weak
algorithm to learn by giving it a di↵erent D on every run. The following diagram illustrates
this:

4 16/47

AdaBoost algorithm

AdaBoost Algorithm

Inputs S : training set, B: hypothesis space for weak learners, andT : number of weak
learners. Output return a hypothesis h.

1: function AdaBoost(S , B, T)
2: for i ← 1 to m do

3: D1(i)← 1

m
4: end for
5: for t ← 1 to T do
6: Let ht = arg min

h∈B
εt ,

∑m
i=1Dt(i) I[h(xi) 6= y1]

7: Let αt ←
1

2
log

(
1− εt
εt

)

8: Let Zt ← 2
√
εt(1− εt)

9: for i ← 1 to m do

10: Dt+1(i)← Dt(i) exp [−αtyiht(xi)]

Zt
11: end for
12: end for
13: Let g ,

∑T
t=1 αtht

14: return h , sgn (g)
15: end function 17/47

AdaBoost algorithm (example)
7.2 AdaBoost 147

t = 1 t = 2 t = 3

decision
boundary

updated
weights

(a)

=α1 +α3+α2

(b)

Figure 7.2
Example of AdaBoost with axis-aligned hyperplanes as base classifiers. (a) The top row shows
decision boundaries at each boosting round. The bottom row shows how weights are updated at
each round, with incorrectly (resp., correctly) points given increased (resp., decreased) weights. (b)
Visualization of final classifier, constructed as a non-negative linear combination of base classifiers.

pseudocode of AdaBoost in the case where the base classifiers are functions mapping

from X to {�1, +1}, thus H ✓ {�1, +1}X.

The algorithm takes as input a labeled sample S = ((x1, y1), . . . , (xm, ym)), with

(xi, yi) 2 X⇥{�1, +1} for all i 2 [m], and maintains a distribution over the indices

{1, . . . , m}. Initially (lines 1-2), the distribution is uniform (D1). At each round

of boosting, that is each iteration t 2 [T] of the loop 3–8, a new base classifier

ht 2 H is selected that minimizes the error on the training sample weighted by the

distribution Dt:

ht 2 argmin
h2H

P
i⇠Dt

⇥
h(xi) 6= yi

⇤
= argmin

h2H

mX

i=1

Dt(i)1h(xi) 6=yi
.

18/47

Minimizing exponential error

1. Consider the exponential loss function150 Chapter 7 Boosting

Figure 7.3
Visualization of the zero-one loss (blue) and the convex and di↵erentiable upper bound on the
zero-one loss (red) that is optimized by AdaBoost.

accuracy and defines a solution based on these values. This is the source of the

extended name of AdaBoost: adaptive boosting .

The proof of theorem 7.2 reveals several other important properties. First, observe

that ↵t is the minimizer of the function ' : ↵ 7! (1 � ✏t)e
�↵ + ✏te

↵. Indeed, ' is

convex and di↵erentiable, and setting its derivative to zero yields:

'0(↵) = �(1� ✏t)e
�↵ + ✏te

↵ = 0, (1� ✏t)e
�↵ = ✏te

↵ , ↵ =
1

2
log

1� ✏t
✏t

. (7.5)

Thus, ↵t is chosen to minimize Zt = '(↵t) and, in light of the bound bRS(f) QT
t=1 Zt shown in the proof, these coe�cients are selected to minimize an upper

bound on the empirical error. In fact, for base classifiers whose range is [�1, +1]

or R, ↵t can be chosen in a similar fashion to minimize Zt, and this is the way

AdaBoost is extended to these more general cases.

Observe also that the equality (1 � ✏t)e
�↵t = ✏te

↵t just shown in (7.5) implies

that at each iteration, AdaBoost assigns equal distribution mass to correctly and

incorrectly classified instances, since (1� ✏t)e
�↵t is the total distribution assigned

to correctly classified points and ✏te
↵t that of incorrectly classified ones. This

may seem to contradict the fact that AdaBoost increases the weights of incorrectly

classified points and decreases that of others, but there is in fact no inconsistency:

the reason is that there are always fewer incorrectly classified points, since the base

classifier’s accuracy is better than random.

7.2.2 Relationship with coordinate descent
AdaBoost was originally designed to address the theoretical question of whether

a weak learning algorithm could be used to derive a strong learning one. Here,

2. The exponential loss function is defined by

R̂(gt) =
m∑

k=1

exp [−ykgt(xk)] ,

where gt(x) is a classifier defined in terms of a linear combination of base
classifiers hl(x) as

gt(x) =
t∑

l=1

αlhl(x)

19/47

Minimizing exponential error (cont.)

1. The goal is to minimize R̂ with respect to both αl and the parameters of the base
classifiers hl .

2. Since the base classifiers are built sequentially, we shall suppose that the base
classifiers h1, . . . , ht−1 and their weights α1, . . . , αt−1 are fixed, and so we are
minimizing only with respect to αt and ht .

3. Separating off the contribution from base classifier ht , we can then write the
R̂(gt) in the form

R̂(gt) =
m∑

k=1

exp [−ykgt−1(xk)− ykαtht(xk)]

=
m∑

k=1

Dt(k) exp [−ykαtht(xk)]

where Dt(k) = exp [−ykgt−1(xk)] is constant because we optimize only w.r.t αt

and ht(x).

20/47

Minimizing exponential error (cont.)

1. Let us to define
I Tt as the set of instances that are correctly classified by ht(x).
I Mt as the set of instances that are miss classified by ht(x).

2. We can in turn rewrite the error function in the form of

R̂(gt) =
m∑

k=1

Dt(k) exp [−ykαtht(xk)]

= e−αt
∑

xk∈Tt

Dt(k) + eαt
∑

xk∈Mt

Dt(k)

= e−αt
∑

xk∈Tt

Dt(k) + eαt
∑

xk∈Mt

Dt(k) + e−αt
∑

xk∈Mt

Dt(k)− e−αt
∑

xk∈Mt

Dt(k)

=
[
eαt − e−αt

] ∑

xk∈Mt

Dt(k) + e−αt

m∑

k=1

Dt(k)

=
[
eαt − e−αt

] m∑

k=1

Dt(k) I[ht(xk 6= yk)]

︸ ︷︷ ︸
εt

+e−αt

m∑

k=1

Dt(k)

21/47

Minimizing exponential error (cont.)

1. The error function becomes

R̂(gt) =
[
eαt − e−αt

] m∑

k=1

Dt(k) I[ht(xk 6= yk)]

︸ ︷︷ ︸
εt

+e−αt

m∑

k=1

Dt(k)

2. When minimizing R̂(gt) with respect to ht(x), the second term is constant, and is
equivalent to minimizing εt because [eαt − e−αt] does not affect the location of
the minimum.

3. Minimizing R̂(gt) with respect to αt equals to solve
∂R̂(gt)

∂αt
= 0.

∂R̂(gt)

∂αt
=

e−αt
∑

xk∈Tt
Dt(k) + eαt

∑
xk∈Mt

Dt(k)

∂αt

= −e−αt
∑

xk∈Tt

Dt(k) + eαt
∑

xk∈Mt

Dt(k) = 0

22/47

Minimizing exponential error (cont.)

1. Hence, we obtain

0 = −e−αt
∑

xk∈Tt

Dt(k) + eαt
∑

xk∈Mt

Dt(k)

2. Multiplying by eαt , becomes

∑

xk∈Tt

Dt(k)

︸ ︷︷ ︸
(1−εt)

= e2αt
∑

xk∈Mt

Dt(k)

︸ ︷︷ ︸
εt

3. Solving this will results in

αt =
1

2
log

(
1− εt
εt

)

23/47

Minimizing exponential error (cont.)

1. The value of Dt(k) was defined as

Dt(k) = exp [−ykgt−1(xk)] .

2. Then the value of Dt+1(k) equals to

Dt+1(k) = exp [−ykgt(xk)]

= exp [−ykgt−1(xk)− ykαtht(xk)]

= Dt(k)exp [−ykαtht(xk)]

3. Since Dt+1(k) is a probability density function, then we must have∑m
k=1Dt+1(k) = 1. Hence, we have

m∑

k=1

Dt+1(k) =
m∑

k=1

Dt(k)exp [−ykαtht(xk)]

=
∑

xk∈Tt

Dt(k)e−αt +
∑

xk∈Mt

Dt(k)eαt

= e−αt
∑

xk∈Tt

Dt(k)

︸ ︷︷ ︸
1−εt

+eαt
∑

xk∈Mt

Dt(k)

︸ ︷︷ ︸
εt

= e−αt (1− εt) + eαt εt .

24/47

Minimizing exponential error (cont.)

I Let Zt =
∑m

k=1Dt+1(k), hence we have

Zt =
m∑

k=1

Dt+1(k) = e−αt (1− εt) + eαt εt

I By substituting αt =
1

2
log

(
1− εt
εt

)
in the above equation, we have

Zt = exp

[
ln

√
εt

1− εt

]
(1− εt) + exp

[
ln

√
1− εt
εt

]
εt

= εt

√
1− εt
εt

+ (1− εt)
√

εt
1− εt

= 2
√
εt(1− εt)

25/47

Generalization bound of AdaBoost

Generalization bound of AdaBoost

Theorem (Generalization bound of AdaBoost)

Let H =
{
h : X 7→ {−1,+1}

∣∣∣ h = sgn
(∑T

t=1 αtht
)
, αt ∈ R, ht ∈ B

}
be the

hypothesis space for AdaBoost. Then, for all distribution D, all training sets
S ∼ Dm, for every δ > 0, with probability at least (1− δ), for all h ∈ H we have

R(h) ≤ R̂(h) +

√
VC (H) + log(1/δ)

m
.

Proof.

For proof, we must calculate

1. R̂(h).

2. VC (H).

26/47

Bounds on the empirical error of AdaBoost

Lemma

Let g(x) ,
∑T

t=1 αtht(x) be the weighted linear combination of weak learners. Then

DT+1(i) =
exp [−yig(xi)]

m
∏T

t=1 Zt

Proof.

1. We defined Dt+1(i) as Dt+1(i) =
Dt(i)

Zt
exp [−αtyiht(xi)].

2. We can now solve DT+1(i) recursively.

DT+1(i) =
DT (i)

ZT
exp [−αT yihT (xi)]

= DT−1(i)
exp [−αT−1yihT−1(xi)]

ZT−1
× exp [−αT yihT (xi)]

ZT

= D1(i)
exp [−α1yih1(xi)]

Z1
× exp [−α2yih2(xi)]

Z2
× . . .× exp [−αT yihT (xi)]

ZT

=
1

m

exp
[
−yi

∑T
t=1 αtht(xi)

]

∏T
t=1 Zt

=
exp [−yig(xi)]

m
∏T

t=1 Zt

. 27/47

Bounds on the empirical error of AdaBoost

Lemma

Let g(x) ,
∑T

t=1 αtht(x) be the weighted linear combination of weak learners and
h(x) , sgn (g(x)). Then, we have

R̂(h) ≤
T∏

t=1

Zt .

Proof.

We start by the definition of empirical loss.

R̂(h) =
1

m

m∑

i=1

I[h(xi) 6= yi] =
1

m

m∑

i=1

I[yig(xi) ≤ 0]

≤ 1

m

m∑

i=1

e−yig(xi) =
1

m

m∑

i=1

DT+1(i)m
T∏

t=1

Zt

=
T∏

t=1

Zt

m∑

i=1

DT+1(i) =
T∏

t=1

Zt .

150 Chapter 7 Boosting

Figure 7.3
Visualization of the zero-one loss (blue) and the convex and di↵erentiable upper bound on the
zero-one loss (red) that is optimized by AdaBoost.

accuracy and defines a solution based on these values. This is the source of the

extended name of AdaBoost: adaptive boosting .

The proof of theorem 7.2 reveals several other important properties. First, observe

that ↵t is the minimizer of the function ' : ↵ 7! (1 � ✏t)e
�↵ + ✏te

↵. Indeed, ' is

convex and di↵erentiable, and setting its derivative to zero yields:

'0(↵) = �(1� ✏t)e
�↵ + ✏te

↵ = 0, (1� ✏t)e
�↵ = ✏te

↵ , ↵ =
1

2
log

1� ✏t
✏t

. (7.5)

Thus, ↵t is chosen to minimize Zt = '(↵t) and, in light of the bound bRS(f) QT
t=1 Zt shown in the proof, these coe�cients are selected to minimize an upper

bound on the empirical error. In fact, for base classifiers whose range is [�1, +1]

or R, ↵t can be chosen in a similar fashion to minimize Zt, and this is the way

AdaBoost is extended to these more general cases.

Observe also that the equality (1 � ✏t)e
�↵t = ✏te

↵t just shown in (7.5) implies

that at each iteration, AdaBoost assigns equal distribution mass to correctly and

incorrectly classified instances, since (1� ✏t)e
�↵t is the total distribution assigned

to correctly classified points and ✏te
↵t that of incorrectly classified ones. This

may seem to contradict the fact that AdaBoost increases the weights of incorrectly

classified points and decreases that of others, but there is in fact no inconsistency:

the reason is that there are always fewer incorrectly classified points, since the base

classifier’s accuracy is better than random.

7.2.2 Relationship with coordinate descent
AdaBoost was originally designed to address the theoretical question of whether

a weak learning algorithm could be used to derive a strong learning one. Here,

28/47

Bounds on the empirical error of AdaBoost

Theorem (Bounds on the empirical error of AdaBoost)

Let g(x) ,
∑T

t=1 αtht(x) be the weighted linear combination of weak learners and
h(x) , sgn (g(x)). Then, we have

R̂(h) ≤ exp

[
−2

T∑

t=1

(
1

2
− εt

)2
]
.

Furthermore, if for all t ∈ {1, 2, . . . ,T}, we have γ ≤
(
1
2 − εt

)
, then R̂(h) ≤ e−2Tγ

2
.

Proof of Bounds on the empirical error of AdaBoost

By using the two preceding lemmas

R̂(h) ≤
T∏

t=1

Zt =
T∏

t=1

[
2
√
εt(1− εt)

]
=

T∏

t=1

[
2

√(
1

2
− γ
)(

1

2
+ γ

)]
=

T∏

t=1

[√
1− 4γ2

]

≤
T∏

t=1

√
exp (−4γ2) =

T∏

t=1

exp
(
−2γ2

)
= exp

[
−2

T∑

t=1

γ2

]
= e−2Tγ

2
.

29/47

Bounds on the empirical error of AdaBoost

Proof of Bounds on the empirical error of AdaBoost (cont.)

By using the two preceding lemmas

R̂(h) ≤
T∏

t=1

Zt =
T∏

t=1

[
2
√
εt(1− εt)

]
=

T∏

t=1

[
2

√(
1

2
− γ
)(

1

2
+ γ

)]
=

T∏

t=1

[√
1− 4γ2

]

≤
T∏

t=1

√
exp (−4γ2) =

T∏

t=1

exp
(
−2γ2

)
= exp

[
−2

T∑

t=1

γ2

]
= e−2Tγ

2
.

To derive the bound of theorem, in second equality use with x = εt 2
√
x(1− x) =

√
4x − 4x2 =

√
1− 1 + 4x − 4x2 =

√
1− (1− 4x + 4x2) =

√
1− 2

(
1
2 − x

)2
.

The second inequality follows from the inequality 1− x ≤ e−x , which is valid for all
x ∈ R.

30/47

Bounds on the VC (H)

Theorem (Bounds on the VC (H))

Let B be a base class and let H =
{

x 7→ sgn
(∑T

t=1 αtht(x)
) ∣∣∣ α ∈ RT , ∀t ht ∈ B

}

be the hypothesis space where the output of AdaBoost will be a member of it.
Assume that both T and VC (B) are at least 3. Then

VC (H) ≤ T [VC (B) + 1][3 log(T [VC (B) + 1]) + 2].

Corollary (Sauer-Shelah Lemma)

Let H be a hypothesis classes with VC (H) = d , then for m > d > 1, we have

ΠH(m) ≤
(
em

d

)d

= O(md)

Lemma

Let a > 0. Then: x ≥ 2a log(a)⇒ x ≥ a log(x). It follows that a necessary condition
for the inequality x < a log(x) to hold is that x < 2alog(a).

31/47

Bounds on the VC (H)

Proof of Bounds on the VC (H).

1. Let VC (B) = d and C = {x1, . . . , xm} be a set that is shattered by H.

2. Each labeling of C by h ∈ H is obtained by first choosing h1, . . . , hT ∈ B and
then applying a halfspace hypothesis over the vector (h1(x), . . . , hT (x)).

3. By Sauer’s lemma, at most (em/d)d different dichotomies induced by B over C .

4. We need to choose T hypotheses out of at most (em/d)d different hypotheses.
There are at most (em/d)dT ways to do it.

5. Next, for each such choice, we apply a linear predictor, which yields at most
(em/T)T dichotomies.

6. Hence, the number of dichotomies is (em/d)dT (em/T)T ≤ m(d+1)T .

7. Since we assume that C is shattered, we must have 2m ≤ m(d+1)T .

8. The above lemma tells us that a necessary condition for the preceding to hold is

m ≤ 2
(d + 1)T

log(2)
log

(d + 1)T

log(2)
≤ T [VC (B) + 1][3 log(T [VC (B) + 1]) + 2].

32/47

Bounds on the VC (H)

1. Theorem Bounds on the VC (H) shows that VC (H) = O(dT log dT), thus, the
bound suggests that AdaBoost could overfit for large values of T .

2. The estimation error of AdaBoost grows linearly with T .

3. The empirical error of AdaBoost grows linearly with T .

4. Hence, T can be used to decrease the approximation error of AdaBoost.

5. However, in many cases, it has been observed empirically that the generalization
error of AdaBoost decreases as a function of the number of rounds of boosting T .

7.3 Theoretical results 155

training error

test error
er

ro
r

0
10 100 1000

number of rounds - log(T)

Figure 7.5
An empirical result using AdaBoost with C4.5 decision trees as base learners. In this example, the
training error goes to zero after about 5 rounds of boosting (T ⇡ 5), yet the test error continues
to decrease for larger values of T .

The VC-dimension of FT can be bounded as follows in terms of the VC-dimension

d of the family of base hypothesis H (exercise 7.1):

VCdim(FT) 2(d + 1)(T + 1) log2((T + 1)e) . (7.9)

The upper bound grows as O(dT log T), thus, the bound suggests that AdaBoost

could overfit for large values of T , and indeed this can occur. However, in many

cases, it has been observed empirically that the generalization error of AdaBoost

decreases as a function of the number of rounds of boosting T , as illustrated in

figure 7.5! How can these empirical results be explained? The following sections

present a margin-based analysis in support of AdaBoost that can serve as a theo-

retical explanation for these empirical observations.

7.3.2 L1-geometric margin
In chapter 5, we introduced the definition of confidence margin and presented a

series of general learning bounds based on that notion which, in particular, provided

strong learning guarantees for SVMs. Here, we will similarly derive general learning

bounds based on that same notion of confidence margin for ensemble methods,

which we will use, in particular, to derive learning guarantees for AdaBoost.

Recall that the confidence margin of a real-valued function f at a point x labeled

with y is the quantity yf(x). For SVMs, we also defined the notion of geometric

margin which, in the separable case, is a lower bound on the confidence margin of a

linear hypothesis with a normalized weighted vector w, kwk2 = 1. Here, we will also

define a notion of geometric margin for linear hypotheses with a norm-1 constraint,

such as the ensemble hypotheses returned by AdaBoost, and similarly relate that

notion to that of confidence margin. This will also serve as an opportunity for us

to point out the connection between several concepts and terminology used in the

context of SVMs and those used in the context of boosting.

6. These empirical results can be explained using margin-based analysis.

33/47

Margin-based analysis

L1-geometric margin

1. Confidence margin of a real-valued function g at a point x labeled with y is yg(x).

2. Defining geometric margin for linear hypotheses with a norm-1 constraint, such as

hypotheses returned by AdaBoost, which relates to confidence margin.

3. Function g =
∑T

t=1 αtht can be represented as 〈α,h〉, where α = (α1, . . . , αT)T

and h = (h1, . . . , hT)T .

4. For ensemble linear combinations such as those returned by AdaBoost,

additionally, the weight vector is non-negative: α ≥ 0.

5. Geometric margin for such ensemble functions is based on norm-1 while geometric

margin is based on norm-2.

34/47

L1-geometric margin

Definition (L1 geometric margin)

The L1-geometric margin ρg of g =
∑T

t=1 αtht with α 6= 0 at a xk ∈ X defined as

ρg (x) =
|g(x)|
‖α‖1

=
|∑T

t=1 αtht(x)|
‖α‖1

=
|〈α,h(x)〉|
‖α‖1

The L1-margin of g over a sample S = (x1, . . . , xm) is its minimum margin at the
points in that sample.

ρg = min
i∈{1,2,...,m}

ρg (x) = min
i∈{1,2,...,m}

|〈α,h(x)〉|
‖α‖1

To distinguish this geometric margin from the geometric margin of SVM, we use the
following notations

ρ1(x) =
|〈α,h(x)〉|
‖α‖1

L1 −margin

ρ2(x) =
|〈α,h(x)〉|
‖α‖2

L2 −margin

35/47

L1-geometric margin

Lemma

For p, q ≥ 1, p and q are conjugate, that is 1
p + 1

q = 1, then
|〈α,h(x)〉|
‖α‖p

is q−norm

distance of h(x) to the hyperplane 〈α,h(x)〉 = 0.

1. Hence, ρ2(x) is norm-2 distance of h(x) to the hyperplane 〈α,h(x)〉 = 0 and
ρ1(x) is norm-∞ distance of h(x) to the hyperplane 〈α,h(x)〉 = 0.

2. Define ḡ =
g

‖α‖1
, then the confidence margin of ḡ at x coincides with the

L1-geometric margin of g : y ¯g(x) =
yg(x)

‖α‖1
= ρg (x).

3. Since αt ≥ 0, then ρg (x) is convex combination of base hypothesis values ht(x).

36/47

Margin-based analysis

For any hypothesis set H of real-valued functions, conv(H) denotes its convex hull as

conv(H)=

{
p∑

k=1

µkhk

∣∣∣∣∣ p ≥ 1,∀k ∈ {1, 2, . . . , p}, hk ∈ H,
p∑

k=1

µk ≤ 1

}

Lemma (Empirical Rademacher complexity of conv(H))

Let H = {h : X 7→ R}. Then for any sample S , we have R̂S(conv(H)) = R̂S(H).

Proof. R̂S(conv(H)) =
1

m
E
σ

[
sup

h1,...,hp∈H,‖µ‖1≤1

m∑

i=1

σi

p∑

k=1

µkhk(xi)

]

=
1

m
E
σ

[
sup

h1,...,hp∈H
sup
‖µ‖1≤1

p∑

k=1

µk

m∑

i=1

σihk(xi)

]

=
1

m
E
σ

[
sup

h1,...,hp∈H
max

k∈{1,...,p}

m∑

i=1

σihk(xi)

]

=
1

m
E
σ

[
sup
h∈H

m∑

i=1

σih(xi)

]
= R̂S(H).

37/47

Margin-based analysis

The following theorem was proved for SVM.

Theorem (Ensemble Rademacher margin bound)

Let H be a set of real-valued functions. Fix ρ > 0. Then, for any δ > 0, with
probability at least (1− δ), the following hold for all h ∈ conv(H):

R(h) ≤R̂ρ(h) +
2

ρ
Rm(H) +

√
log(1/δ)

2m

R(h) ≤R̂ρ(h) +
2

ρ
R̂S(H) + 3

√
log(1/δ)

2m

Corollary (Ensemble VC-dimension margin bound)

Let H = {X 7→ {−1,+1}} with VC-dimension d . Fix ρ > 0. Then, for any δ > 0,
with probability at least (1− δ), the following holds for all h ∈ conv(H)

R(h) ≤ R̂S ,ρ(h) +
2

ρ

√√√√2d log
em

d
m

+

√
log(1/δ)

2m

38/47

Margin-based analysis

These bounds can be generalized to hold uniformly for all ρ ∈ (0, 1], at the price of an

additional term of the form of

√√√√ log log2
2

δ
m

.

The given bound can not be directly applied to the function g returned by AdaBoost,
since it is not a convex combination of base hypotheses, but they can be applied to its
normalized version ḡ ∈ conv(H).

Notice that from the point of view of binary classification, ḡ and g are equivalent but
their empirical margin losses are distinct.

Theorem (Bound on empirical margin loss)

Let g =
∑T

t=1 αtht denote the function returned by AdaBoost after T rounds of
boosting and assume for all t ∈ {1, . . . ,T} that εt <

1
2 , which implies αt > 0. Then

for any ρ > 0, the following holds

R̂S,ρ(h) ≤ 2T
T∏

t=1

√
ε1−ρt (1− εt)1+ρ

39/47

Margin-based analysis

Proof of Bound on empirical margin loss.

1. Recall that

I[u ≤ 0] ≤ e−u. Zt = 2
√
εt(1− εt)

Dt+1(i) =
exp[−yig(xi)]

m
∏T

t=1 Zt

αt =
1

2
log

(
1− εt
εt

)

2. Then, we can write

1

m

m∑

i=1

I [yg(xi)− ρ ‖α‖1 ≤ 0] ≤ 1

m

m∑

i=1

exp [−yig(xi) + ρ ‖α‖1]

=
1

m

m∑

i=1

eρ‖α‖1

[
m

T∏

t=1

Zt

]
DT+1(i)

= eρ‖α‖1

[
m

T∏

t=1

Zt

]
= eρ

∑
t′ αt′

[
m

T∏

t=1

Zt

]

= 2T
T∏

t=1

[√
1− εt
εt

]ρ√
εt(1− εt)

40/47

Margin maximization

1. Does AdaBoost maximize L1-geometric margin?

2. Maximum margin for a linearly separable sample S = {(x1, y1), . . . , (xm, ym)} is

ρ = max
α

min
i∈{1,2,...,m}

yi 〈α,h(xi)〉
‖α‖1

3. Then, the optimization problem can be written as

max
α
ρ

subject to
yi 〈α,h(xi)〉
‖α‖1

≥ ρ ∀i ∈ {1, 2, . . . ,m}.

4. Since
〈α,h(xi)〉
‖α‖1

is invariant to scaling of α, we can restrict ourselves to ‖α‖1 = 1.

41/47

Margin maximization

1. Since
〈α,h(xi)〉
‖α‖1

is invariant to scaling of α, we can restrict ourselves to ‖α‖1 = 1.

2. Then AdaBoost leads to the following optimization problem

max
α
ρ

subject to yi 〈α,h(xi)〉 ≥ ρ ∀i ∈ {1, 2, . . . ,m}
(

T∑

t=1

αt = 1

)
∧ (αt ≥ 0 ∀t ∈ {1, 2, . . . ,T}) .

3. The empirical results do not show a systematic benefit for the solution of the LP.

4. In many cases, AdaBoost outperforms LP algorithm.

5. The margin theory described does not seem sufficient to explain that performance.

42/47

Margins of SVM and AdaBoost

156 Chapter 7 Boosting

Norm || · ||2. Norm || · ||∞.

Figure 7.6
Maximum margin hyperplanes for norm-2 and norm-1.

First note that a function f =
PT

t=1 ↵tht that is a linear combination of base

hypotheses h1, . . . , hT can be equivalently expressed as an inner product f = ↵ ·h,

where ↵ = (↵1, . . . ,↵T)> and h = [h1, . . . , hT]>. This makes the similarity between

the linear hypotheses considered in this chapter and those of chapter 5 and chapter 6

evident: the vector of base hypothesis values h(x) can be viewed as a feature vector

associated to x, which was denoted by �(x) in previous chapters, and ↵ is the

weight vector that was denoted by w. For ensemble linear combinations such as

those returned by AdaBoost, additionally, the weight vector is non-negative: ↵ � 0.

Next, we introduce a notion of geometric margin for such ensemble functions which

di↵ers from the one introduced for SVMs only by the norm-1 used instead of norm-2,

using the notation just introduced.

Definition 7.3 (L1-geometric margin) The L1-geometric margin ⇢f (x) of a linear func-

tion f =
PT

t=1 ↵tht with ↵ 6= 0 at a point x 2 X is defined by

⇢f (x) =
|f(x)|
k↵k1

=
|PT

t=1 ↵tht(x)|
k↵k1

=

��↵ · h(x)
��

k↵k1
. (7.10)

The L1-margin of f over a sample S = (x1, . . . , xm) is its minimum margin at the

points in that sample:

⇢f = min
i2[m]

⇢f (xi) = min
i2[m]

��↵ · h(xi)
��

k↵k1
. (7.11)

This definition of geometric margin di↵ers from definition 5.1 given in the context

of the SVM algorithm only by the norm used for the weight vector: L1-norm here,

L2-norm in definition 5.1. To distinguish them in the discussion that follows, let

⇢1(x) denote the L1-margin and ⇢2(x) the L2-margin at point x (definition 5.1):

⇢1(x) =
|↵ · h(x)|
k↵k1

and ⇢2(x) =
|↵ · h(x)|
k↵k2

.

43/47

Summary

Summary

1. AdaBoost offers several advantages

I It is simple.

I Its implementation is straightforward.

I The time complexity of each round of boosting as a function of the sample size is

rather favorable. If AdaBoost uses Decision Stumps as base classifier, the running

time is O(mnT).

I AdaBoost benefits from a rich theoretical analysis.

44/47

Summary

1. There are many theoretical questions related to AdaBoost algorithm

I The algorithm in fact does not maximize the margin.

I The algorithms that do maximize the margin do not always outperform it.

I The need to select the parameter T and B. Larger values of T can lead to

overfitting. In practice, T is typically determined via cross-validation.

I We must control complexity of B in order to guarantee generalization; insufficiently

complex B could lead to low margins.

I The performance of AdaBoost in the presence of noise, at least in some tasks,

degrades.

45/47

Readings

1. Section 14.3 of Christopher M Bishop Book1.

2. Chapter 10 of Shai Shalev-Shwartz and Shai Ben-David Book2.

3. Chapter 7 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar
Book3.

46/47

References

Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Berlin,
Heidelberg: Springer-Verlag.

Mohri, Mehryar, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of
Machine Learning. Second Edition. MIT Press.

Shalev-Shwartz, Shai and Shai Ben-David (2014). Understanding machine learning:
From theory to algorithms. Cambridge University Press.

47/47

Questions?

cba

47/47

	Introduction
	Adaptive Boosting
	Generalization bound of AdaBoost
	Margin-based analysis
	Summary

