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Linear classifier



Introduction

1. In this session, we will study the family of linear classifiers, one of the most useful families of
hypothesis classes.

2. Many learning algorithms that are being widely used in practice rely on linear predictors because
of

I the ability to learn them efficiently in many cases,
I linear predictors are intuitive,
I are easy to interpret, and
I fit the data reasonably well in many natural learning problems.

3. A linear classifier separates different classes by a linear separator.
2 Lecture 10: SVM

Figure 10.1: A linear classifier

VC-dimension or Rademacher complexity) provide better learning guarantees. One of the
simplest classes of classification rules are the class of linear classifiers or hyperplanes. A
hyperplane (w, b) separates a sample S if for every (x, y) 2 S we have: sign(w ⇤ x + b) = y.
Figure 10.1 shows a hyperplane that separates a set of points to two classes, Red and Blue.
For the remainder of this text we’ll assume that the training set is linearly separable, e.g.
there exists a hyperplane (w, b) that separates between the two classes completely.

Definition We define our hypothesis class H of linear classifiers as,

H = {x ! sign(w · x + b)|w 2 Rn, b 2 R}. (10.1)

10.2.2 Choosing a good hyperplane

In previous lectures we studied the Perceptron and Winnow algorithms that learn a hyper-
plane by continuously adjusting the weights of the current hyperplane (by iterating through
the training set, and readjusting whenever the current hyperplane errs). Intuitively, consider
two cases of positive classification by some linear classifier, where in one case w ·x1 + b = 0.1
and in the other case w · x2 + b = 100. We are more confident in the decision made by
the classifier for the latter point than the former. In the SVM algorithm we’ll choose a
hyperplane that maximizes the margin between the two classes. The simplest definition of
the margin would be to consider the absolute value of w · x + b and is called the Functional
Margin:

Definition We define the Functional Margin of S as,

�̂s = min
i2{1,...,m}

�̂i, (10.2)
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Binary classification problem

1. Training data: sample drawn iid from set X ⊆ Rn according to some distribution D.

S = {(x1, y1), . . . , (xm, ym)} ∈ X × {−1,+1}.

2. Problem: find hypothesis h : X 7→ {−1,+1} in Hn with small generalization error R(h).

3. Hypothesis space: Hn = {x 7→ sgn (〈w , x〉+ b) | w ∈ Rn, b ∈ R}.
4. A linear classifier is defined as h(x) = sgn (〈w , x〉+ b).

5. Vector w is orthogonal to the separator.

90 Linear Predictors

let w′ = (b,w1,w2, . . .wd) ∈ Rd+1 and let x′ = (1,x1,x2, . . . ,xd) ∈ Rd+1. Therefore,

hw,b(x) = ⟨w,x⟩+ b = ⟨w′,x′⟩.

It follows that each affine function in Rd can be rewritten as a homogenous linear
function in Rd+1 applied over the transformation that appends the constant 1 to
each input vector. Therefore, whenever it simplifies the presentation, we will omit
the bias term and refer to Ld as the class of homogenous linear functions of the form
hw(x) = ⟨w,x⟩.

Throughout the book we often use the general term “linear functions” for both
affine functions and (homogenous) linear functions.

9.1 HALFSPACES

The first hypothesis class we consider is the class of halfspaces, designed for binary
classification problems, namely, X = Rd and Y = {− 1,+1}. The class of halfspaces is
defined as follows:

H Sd = sign ◦ Ld = {x'→ sign(hw,b(x)) : hw,b ∈ Ld}.

In other words, each halfspace hypothesis in H Sd is parameterized by w ∈ Rd and
b ∈ R and upon receiving a vector xthe hypothesis returns the label sign(⟨w,x⟩+ b).

To illustrate this hypothesis class geometrically, it is instructive to consider the
case d = 2. Each hypothesis forms a hyperplane that is perpendicular to the vector
w and intersects the vertical axis at the point (0,− b/w2). The instances that are
“above” the hyperplane, that is, share an acute angle with w, are labeled positively.
Instances that are “below” the hyperplane, that is, share an obtuse angle with w, are
labeled negatively.

w

−

+

−

+

In Section 9.1.3 we will show that VCdim(H Sd) = d + 1. It follows that we
can learn halfspaces using the ERM paradigm, as long as the sample size is
!

(
d+log(1/δ)

ϵ

)
. Therefore, we now discuss how to implement an ERM procedure

for halfspaces.
We introduce in the following two solutions to finding an ERM halfspace in the

realizable case. In the context of halfspaces, the realizable case is often referred to
as the “separable” case, since it is possible to separate with a hyperplane all the
positive examples from all the negative examples. Implementing the ERM rule in
the nonseparable case (i.e., the agnostic case) is known to be computationally hard
(Ben-David and Simon, 2001). There are several approaches to learning nonsepa-
rable data. The most popular one is to use surrogate loss functions, namely, to learn
a halfspace that does not necessarily minimize the empirical risk with the 0− 1 loss,
but rather with respect to a diffferent loss function. For example, in Section 9.3 we

6. We shown that VC(Hn) = n + 1.

7. This shows that we can learn this space using the ERM paradigm, as long as the sample size is
(n + 1) + log(1/δ)

ε
.

8. Implementing the ERM rule in the nonseparable case is known to be computationally hard.
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Linear programming

1. Linear programs are problems that can be expressed as maximizing a linear function subject to
linear inequalities. That is

max
w∈Rn

〈u,w〉

subject to Aw ≥ v .

where
I w ∈ Rn is the vector of variables we wish to determine.
I A is an m × n matrix.
I u ∈ Rn and v ∈ Rn are vectors.

2. Linear programs can be solved efficiently.
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Linear programming for designing linear classifiers

1. Suppose that the training data is linearly separable.

2. We are interested to find w and b that results in zero training error.

3. Let w = (b,w1,w2, . . . ,wn) and x = (1, x1, . . . , xn).

4. Hence, we are looking for w ∈ Rn+1 such that for all i

sign(〈w , xi 〉) = yi

5. Equivalently, we are looking for w ∈ Rn+1 such that for all i

yi 〈w , xi 〉 > 0.

6. Let w∗ be a vector that satisfies this condition.

7. Define γ = mini (yi 〈w∗, xi 〉) and let w̄ = w∗
γ

. Therefore, for all i we have

yi 〈w̄ , xi 〉 =
1

γ
yi 〈w∗, xi 〉 ≥ 1.

8. We have thus shown that there exists a vector that for all i satisfies

yi 〈w , xi 〉 > 1.
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Linear programming for designing linear classifiers

1. We have thus shown that there exists a vector that for all i satisfies

yi 〈w , xi 〉 > 1.

2. To find a vector that satisfies the above inequality,
I Set A to be m × (n + 1) matrix whose rows are the instances multiplied by yi : Aij = yi × xij ,.
I Set v to be (1, 1, . . . , 1) ∈ Rn+1.

3. Then the above inequality becomes

Aw > v .

4. The LP form requires a maximization objective, thus, we set a dummy objective,
u = (0, . . . , 0) ∈ Rn+1.

5. There are other algorithm for finding the linear classifier such as Perceptron.
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Support vector machines

1. Consider the problem of finding a separating hyperplane for a linearly separable dataset
S = {(x1, y1), (x2, y2), . . . , (xm, ym)} with xi ∈ Rn and yi ∈ {−1,+1}.

2. Which of the infinite hyperplanes should we choose?

Which separating hyperplane is better ?

x

x

Intuitively, dashed black is better

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 3 / 31

I Hyperplanes that pass too close to the training examples will be sensitive to noise and, therefore, less
likely to generalize well for data outside the training set.

I It is reasonable to expect that a hyperplane that is farthest from all training examples will have better
generalization capabilities.

3. We can find the maximum margin linear classifier by first identifying a classifier that correctly
classifies all the examples and then increasing the geometric margin until we cannot increase the
margin any further.

4. We can also set up an optimization problem for directly maximizing the geometric margin.
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Support vector machines (cont.)

1. What is the margin of a classifier?

Margin and Support Vectors

Recall: a separating hyperplane is defined by (w, b) s.t.
8i, yi(hw,xii + b) > 0
The margin of a separating hyperplane is the distance of the closest
example to it: mini |hw,xii + b|

The closest examples are called support vectors

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 5 / 31
2. The goal of SVM is to maximize the margin.

Margin and Support Vectors

Recall: a separating hyperplane is defined by (w, b) s.t.
8i, yi(hw,xii + b) > 0
The margin of a separating hyperplane is the distance of the closest
example to it: mini |hw,xii + b|
The closest examples are called support vectors

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 5 / 313. The closest examples are called support vectors.
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Support vector machines (cont.)

1. We will need the classifier to be correct on all the training examples (yk 〈w , xk〉 ≥ γ for all
k = 1, 2, . . . ,m) subject to these constraints, we would like to maximize the geometric margin
( γ
‖w‖ ). Hence, we have (Let b = 0)

Maximize
γ

‖w‖ subject to yk 〈w , xk〉 ≥ γ for all k = 1, 2, . . . ,m

2. We can alternatively minimize the inverse ‖w‖
γ

or the inverse squared ‖w‖
2

γ2 subject to the same
constraints.

Minimize
1

2

‖w‖2

γ2
subject to yk 〈w , xk〉 ≥ γ for all k = 1, 2, . . . ,m

Factor 1
2

is included merely for later convenience.

3. The above problem can be written as

Minimize
1

2

∥∥∥∥wγ
∥∥∥∥2

subject to yk
〈(

w
γ

)
, xk
〉
≥ 1 for all k = 1, 2, . . . ,m

4. This problem tells the dependency on the ratio w
γ

not w or γ separately.

5. Scaling w by a constant also doesn’t change the decision boundary. We can therefore fix γ = 1
and solve for w .
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Support vector machines (cont.)

1. By fixing γ = 1 and solving for w , we obtain

Minimize
1

2
‖w‖2 subject to yk 〈w , xk〉 ≥ 1 for all k = 1, 2, . . . ,m

2. This optimization problem is in the standard SVM form and is a quadratic programming problem.

3. We will modify the linear classifier here slightly by adding an offset term so that the decision
boundary does not have to go through the origin. In other words, the classifier that we consider
has the form

h(x) = sgn (〈w , x〉+ b)

w is the weight vector b is the bias of the separating hyperplane. The hyperplane is shown by
(w , b).

4. The bias parameter changes the optimization problem to

Minimize
1

2
‖w‖2 subject to yk (〈w , xk〉+ b) ≥ 1 for all k = 1, 2, . . . ,m

5. Note that the bias only appears in the constraints. This is different from simply modifying the
linear classifier through origin by feeding it with examples that have an additional constant
component, i.e., x ′ = [1; x ].
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Support vector machines (cont.)

1. The optimization problem for SVM is defined as

Minimize
1

2
‖w‖2 subject to yk (〈w , xk〉+ b) ≥ 1 for all k = 1, 2, . . . ,m

2. In order to solve this constrained optimization problem, we introduce Lagrange multipliers αn ≥ 0,
with one multiplier αk for each of the constraints giving the Lagrangian function

L(w , b, α) =
1

2
‖w‖2 −

m∑
k=1

αk [yk (〈w , xk〉+ b)− 1]

where α = (α1, α2, . . . , αm)T .

3. Note the minus sign in front of the Lagrange multiplier term, because we are minimizing with
respect to w and b, and maximizing with respect to α. please read Appendix E of Bishop1.

4. Setting the derivatives of L(w , b, α) with respect to w and b equal to zero, we obtain the
following two equations

∂L

∂w
= 0⇒ w =

m∑
k=1

αkykxk

∂L

∂b
= 0⇒ 0 =

m∑
k=1

αkyk
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Support vector machines (cont.)

1. L has to be minimized with respect to the primal variables w and b and maximized with respect
to the dual variables αk . Eliminating w and b from L(w , b, a) using these conditions then gives
the dual representation of the problem in which we maximize

ψ(α) =
m∑

k=1

αk −
1

2

m∑
k=1

m∑
j=1

αkαjykyj 〈xk , xj〉

2. We need to maximize ψ(α) subject to the following constraints

αk ≥ 0 ∀k
m∑

k=1

αkyk = 0

3. The constrained optimization of this form satisfies the Karush-Kuhn-Tucker (KKT) conditions,
which in this case require that the following three properties hold

αk ≥ 0

ykg(xk) ≥ 1

αk [ykg(xk)− 1] = 0
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Support vector machines (cont.)

1. For optimal αk ’s,
αk [1− yk (〈w , xk〉+ b)] = 0

2. αk is non-zero only if xk lies on one of the two margin boundaries, i.e., for which
yk (〈w , xk〉+ b) = 1

3. These examples are called support vectors.

4. To classify a data x using the trained model, we evaluate the following function

h(x) = sgn

(
m∑

k=1

αkyk 〈xk , x〉

)
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Leave-one-out analysis of SVM

1. Leave-one-out is a method to estimate true error of a classifier and is defined as

Definition (Leave-one-out error)

Let h be the hypothesis output by learning algorithm A after receiving sample S of size m. Then,the
leave-one-out error of A over S is:

R̂LOO(A) =
1

m

m∑
i=1

I
[
hS−{xi}(xi ) 6= yi

]

2. Thus, for each i ∈ {1, 2, . . . ,m}, A is trained on all the points in S except for xi , and its error is
then computed using xi . The leave-one-out error is the average of these errors.

3. In general, computing the leave-one-out error may be costly since it requires training m times on
samples of size m − 1.
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Leave-one-out analysis of SVM

Leave-one-out error has the following property.

Lemma

The average leave-one-out error for samples of size m ≥ 2 is an unbiased estimate of the average
generalization error for samples of size m − 1:

E
S∼Dm

[
R̂LOO(A)

]
= E

S′∼Dm−1
[R(hS′)]

where D denotes the distribution according to which points are drawn.

Proof.

By the linearity of expectation, we can write

E
S∼Dm

[
R̂LOO(A)

]
=

1

m

m∑
i=1

E
S∼Dm

[
I
[
hS−{xi}(xi ) 6= yi

]]
= E

S∼Dm

[
I
[
hS−{xi}(xi ) 6= yi

]]
= E

S′∼Dm−1,x1∼D
[I [hS′(x1) 6= y1]]

= E
S′∼Dm−1

[R(hS′)] .
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Leave-one-out analysis of SVM

Theorem

Let hS be the optimal hyperplane for a sample S and let NSV (S) be the number of support vectors
defining hS .Then,

E
S∼Dm

[R(hS)] ≤ E
S∼Dm+1

[
NSV (S)

m + 1

]

Proof.

1. Let S be a linearly separable sample of m + 1.

2. If x is not a support vector for hS , removing it does not change the SVM solution. Thus,
hS−{x} = hS and hS−{x} correctly classifies x .

3. By contraposition, if hS−{x} misclassifies x , x must be a support vector, which implies

R̂LOO(SVM) ≤ NSV (S)

m + 1
.

4. Taking the expectation of both sides and using the previous lemma yields the result.
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Leave-one-out analysis of SVM

1. This Theorem gives a sparsity argument in favor of SVMs: the average error of the algorithm is
upper bounded by the average fraction of support vectors.

2. We hope that for many distributions seen in practice, a relatively small number of the training
points will lie on the marginal hyperplanes.

3. The solution will then be sparse in the sense that a small fraction of the dual variables αi will be
non-zero.

4. This bound is relatively weak since it applies only to the average generalization error of the
algorithm over all samples of size m.

5. It provides no information about the variance of the generalization error.
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Support vector machines (cont.)

1. We have assumed that the training data are linearly separable in the feature space.

2. The resulting SVM will give exact separation of the training data.

3. In the practice, the class-conditional distributions may overlap, in which the exact separation of
the training data can lead to poor generalization.

4. We need a way to modify the SVM so as to allow some training examples to be miss-classified.

5. To do this, we introduce slack variables (ξk ≥ 0) (distance by which it violates the margin); one
slack variable for each training example.

6. The slack variables are defined by ξk = 0 for examples that are inside the correct boundary margin
and ξk = |yk − g(xk)| for other examples, where g(x) = 〈w , x〉+ b.

7. Thus for data point that is on the decision boundary g(xk) = 0 will have ξk = 1 and the data
points with ξk ≥ 1 will be misclassified.
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Support vector machines (cont.)

1. The exact classification constraints will be

ykg(xk) ≥ 1− ξk for k = 1, 2, . . . ,m

2. Our goal is now to maximize the margin while softly penalizing points that lie on the wrong side
of the margin boundary. We therefore minimize

C
m∑

k=1

ξk +
1

2
‖w‖2

C > 0 controls the trade-off between the slack variable penalty and the margin.

3. We now wish to solve the following optimization problem.

Minimize
1

2
‖w‖2 + C

m∑
k=1

ξk subject to ykg(xk) ≥ 1− ξk for all k = 1, 2, . . . ,m

4. The corresponding Lagrangian is given

L(w , b, α) =
1

2
‖w‖2 + C

m∑
k=1

ξk −
m∑

k=1

αk [ykg(xk)− 1 + ξk ]−
m∑

k=1

βkξk

where αk ≥ 0 and βk ≥ 0 are Lagrange multipliers.

19/37



Margin theory



Margin

1. The geometric margin of a point for a linear classifier is defined as

Definition (Geometric margin of a point)

The geometric margin (margin) of a point x for a linear classifier h : x 7→ 〈w , x〉+ b, denoted by
ρ(x), is its distance to the hyperplane 〈w , x〉+ b = 0,

ρ(x) =
|〈w , x〉+ b|
‖w‖

2. The geometric margin of a linear classifier is defined as

Definition (Geometric margin of a classifier)

The geometric margin (margin) of a linear classifier h : x 7→ 〈w , x〉+ b for a sample
S = {(x1, y1), . . . , (xm, ym)}, denoted by ρg , is the minimum margin of the points in that sample:

ρg = min
1≤i≤m

|〈w , xi 〉+ b|
‖w‖

Margin

w

x

v

Given hyperplane defined by L = {v : hw,vi + b = 0}, and given x,
the distance of x to L is

d(x, L) = min{kx � vk : v 2 L}

Claim: if kwk = 1 then d(x, L) = |hw,xi + b|

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 4 / 31

Margin and Support Vectors

Recall: a separating hyperplane is defined by (w, b) s.t.
8i, yi(hw,xii + b) > 0
The margin of a separating hyperplane is the distance of the closest
example to it: mini |hw,xii + b|
The closest examples are called support vectors

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 5 / 31
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Bound on VC dimension of SVM

1. The VC-dimension of the family of hyperplanes or linear hypotheses in Rn is n + 1.

2. This result yields that for any δ > 0, with probability at least 1− δ, for any h ∈ H, we have

R(h) ≤ R̂(h) +

√√√√√2(n + 1) log

(
em

n + 1

)
m

+

√
log(1/δ)

2m

3. When the dimension of the feature space n is large compared to the sample size m (n� m), this
bound is uninformative.

4. The theorem (VC-dimension of canonical hyperplanes) presents a bound on the VC-dimension
of canonical hyperplanes.

5. This bound does not depend on the dimension of feature space n, but only on the margin and the
radius r of the sphere containing the data.
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Bound on VC dimension of SVM

Lemma (Cauchy-Schwarz inequality)

For all x , y ∈ Rn
+,

|〈x , y〉| ≤ ‖x‖2 ‖y‖2

with equality iff x and y are collinear.

Lemma (Jensen’s inequality)

Let x be a random variable taking values in a non-empty convex set C ⊆ Rn with a finite expectation

E [x ], and f a measurable convex function defined over C . Then, E [x ] is in C , E [f (x)] is finite, and
we have f (E [x ]) ≤ E [f (x)].

Theorem (VC-dimension of canonical hyperplanes)

Let S ⊆ {x | ‖x‖ ≤ r}. Then, the VC-dimension d of the set of canonical hyperplanes
{x 7→ sgn (〈w , x〉) | minx∈S |〈w , x〉| = 1 ∧ ‖w‖ ≤ Λ} verifies

d ≤ (rΛ)2
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Bound on VC dimension of SVM

Proof.

Let {x1, . . . , xd} be a set fully shattered.Then, for all y ∈ {−1,+1} , there exists w such that for all
i ∈ {1, 2, . . . ,m}, we have 1 ≤ 〈w , xi 〉. Summing up the inequalities gives

d ≤

〈
w ,

d∑
i=1

yixi

〉
≤ ‖w‖

∥∥∥∥∥
d∑

i=1

yixi

∥∥∥∥∥ ≤ Λ

∥∥∥∥∥
d∑

i=1

yixi

∥∥∥∥∥ . By using Cauchy-Schwarz ineq.

Taking the expectation over y ∼ U (uniform) yields

d ≤Λ E
y∼U

[∥∥∥∥∥
d∑

i=1

yixi

∥∥∥∥∥
]
≤ Λ

√√√√√ E
y∼U

∥∥∥∥∥
d∑

i=1

yixi

∥∥∥∥∥
2
 By using Jensen’s ineq.

=Λ

√√√√ d∑
i,j=1

E [yiyj ] 〈xi , xj〉

=Λ

√√√√ d∑
i=1

〈xi , xi 〉

=Λ
√
dr 2 = Λr

√
d

Thus
√
d ≤ Λr and d ≤ (Λr)2.
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Margin theory

1. In this session, learning guarantees are presented, which are independent of dimension n.

2. These guarantees are the notion of confidence margin and hold for real-valued functions.

Definition (Confidence margin)

The confidence margin of a real-valued function h at (x , y) ∈ X × Y is ρh(x , y) = yh(x).
I When yh(x) > 0, h classifies x correctly but we interpret the magnitude of |h(x)| as the confidence of

the prediction made by h.

I The relationship with geometric margin for linear functions h : x 7→ 〈w , x〉+ b is

|ρh(x , y)| ≥ ρg ‖w‖ .

Margin and Support Vectors

Recall: a separating hyperplane is defined by (w, b) s.t.
8i, yi(hw,xii + b) > 0
The margin of a separating hyperplane is the distance of the closest
example to it: mini |hw,xii + b|
The closest examples are called support vectors

Shai Shalev-Shwartz (Hebrew U) IML Lecture 8 SVM 5 / 31
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Margin loss function

1. In view of definition of confidence margin, for any parameter ρ > 0, we will define a ρ−margin
loss that,

I penalizes h with the cost of 1 when it misclassifies point x i.e. yh(x) ≤ 0
I penalizes h (linearly) when it correctly classifies h with confidence less than or equal to ρ i.e.

yh(x) ≤ ρ.

Definition

Margin loss function For any ρ > 0, the ρ−margin loss is the function Lρ : R× R 7→ R+ defined for
all y , y ′ ∈ R by Lρ(y , y ′) = Φρ(yy ′) with,

Φρ(x) = min

(
1,max

(
0, 1− x

ρ

))
=


1 if x ≤ 0

1− x

ρ
if 0 ≤ x ≤ ρ

0 if ρ ≥ x

The parameter ρ > 0 can be interpreted as the confidence margin demanded from a hypothesis h.

5.4 Margin theory 93

Figure 5.6
The margin loss illustrated in red, defined with respect to margin parameter ⇢ = 0.7.

In all the results that follow, the empirical margin loss can be replaced by this

upper bound, which admits a simple interpretation: it is the fraction of the points

in the training sample S that have been misclassified or classified with confidence

less than ⇢. In other words, the upper bound is then the fraction of the points in

the training data with margin less than ⇢. This corresponds to the loss function

indicated by the blue dotted line in figure 5.6.

A key benefit of using a loss function based on �⇢ as opposed to the zero-one loss

or the loss defined by the blue dotted line of figure 5.6 is that �⇢ is 1/⇢-Lipschitz,

since the absolute value of the slope of the function is at most 1/⇢. The following

lemma bounds the empirical Rademacher complexity of a hypothesis set H after

composition with such a Lipschitz function in terms of the empirical Rademacher

complexity of H. It will be needed for the proof of the margin-based generalization

bound.

Lemma 5.7 (Talagrand’s lemma) Let �1, . . . ,�m be l-Lipschitz functions from R to R
and �1, . . . ,�m be Rademacher random variables. Then, for any hypothesis set H

of real-valued functions, the following inequality holds:

1

m
E
�

h
sup
h2H

mX

i=1

�i(�i � h)(xi))
i
 l

m
E
�

h
sup
h2H

mX

i=1

�ih(xi)
i

= l bRS(H) .

In particular, if �i = � for all i 2 [m], then the following holds:

bRS(� �H)  l bRS(H) .

Proof: First we fix a sample S = (x1, . . . , xm), then, by definition,

1

m
E
�

h
sup
h2H

mX

i=1

�i(�m � h)(xi)
i

=
1

m
E

�1,...,�m�1

h
E
�m

h
sup
h2H

um�1(h) + �m(�m � h)(xm)
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Margin loss function

1. The empirical margin loss is similarly defined as the margin loss over the training sample.

Definition (Empirical margin loss function)

Given a sample S = {(x1, y1), . . . , (xm, ym)} and a hypothesis h, the empirical margin loss is defined
by

R̂ρ(h) =
1

m

m∑
i=1

Φρ(yih(xi ))

2. It is clear that Φρ(x) is 1/ρ− Lipschitz .

3. Note that, for any i ∈ {1, 2, . . . ,m}, we have Φρ(yih(xi )) ≤ I [yih(xi ) ≤ ρ] and we have

1

m

m∑
i=1

Φρ(yih(xi )) ≤ 1

m

m∑
i=1

I [yih(xi ) ≤ ρ]

4. In generalization bounds, the empirical margin loss can be replaced by this upper bound.

5.4 Margin theory 93

Figure 5.6
The margin loss illustrated in red, defined with respect to margin parameter ⇢ = 0.7.

In all the results that follow, the empirical margin loss can be replaced by this

upper bound, which admits a simple interpretation: it is the fraction of the points

in the training sample S that have been misclassified or classified with confidence

less than ⇢. In other words, the upper bound is then the fraction of the points in

the training data with margin less than ⇢. This corresponds to the loss function

indicated by the blue dotted line in figure 5.6.

A key benefit of using a loss function based on �⇢ as opposed to the zero-one loss

or the loss defined by the blue dotted line of figure 5.6 is that �⇢ is 1/⇢-Lipschitz,

since the absolute value of the slope of the function is at most 1/⇢. The following

lemma bounds the empirical Rademacher complexity of a hypothesis set H after

composition with such a Lipschitz function in terms of the empirical Rademacher

complexity of H. It will be needed for the proof of the margin-based generalization

bound.

Lemma 5.7 (Talagrand’s lemma) Let �1, . . . ,�m be l-Lipschitz functions from R to R
and �1, . . . ,�m be Rademacher random variables. Then, for any hypothesis set H

of real-valued functions, the following inequality holds:

1

m
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�

h
sup
h2H

mX

i=1

�i(�i � h)(xi))
i
 l

m
E
�

h
sup
h2H

mX

i=1

�ih(xi)
i

= l bRS(H) .

In particular, if �i = � for all i 2 [m], then the following holds:

bRS(� �H)  l bRS(H) .

Proof: First we fix a sample S = (x1, . . . , xm), then, by definition,
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sup
h2H
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i=1

�i(�m � h)(xi)
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=
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E

�1,...,�m�1

h
E
�m

h
sup
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um�1(h) + �m(�m � h)(xm)
ii

,

26/37



General margin bound

Lemma (Talagrand’s Lemma)

Let Φ : R 7→ R be an L−Lipschitz function. Then, for any hypothesis set H of real-valued functions,

R̂S(Φ ◦ H) ≤L× R̂S(H)

Proof.

Please read the proof of Lemma 5.7 of Mehryar Mohri and Afshin Rostamizadeh and Ameet
Talwalkar Booka.
aMehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar (2018). Foundations of Machine Learning. Second Edition.

MIT Press.
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General margin bound

The proof of the following Theorem given in class.

Theorem (Generalization bound based on Rademacher complexity)

Let G be a family of functions mapping from Z to [0, 1]. Then, for any δ > 0, with probability at
least 1− δ over the draw of an IID sample S of size m, each of the following holds for all g ∈ G:

E [g(z)] ≤ 1

m

m∑
i=1

g(zi ) + 2Rm(G) + O

√ ln 1
δ

m


E [g(z)] ≤ 1

m

m∑
i=1

g(zi ) + 2R̂S(G) + O

√ ln 2
δ

m



Theorem (General margin bound for linear classifiers )

Let H be a set of real-valued functions. Fix ρ > 0. For any δ > 0, with probability at least 1− δ, the
following hold for all h ∈ H:

R(h) ≤R̂ρ(h) +
2

ρ
Rm(H) +

√
log(1/δ)

2m

R(h) ≤R̂ρ(h) +
2

ρ
R̂S(H) + 3

√
log(1/δ)

2m
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General margin bound

Proof of general margin bound for linear classifiers.

Let H̃ = {z = (x , y) 7→ yh(x) | h ∈ H}. Consider the family of functions taking values in [0, 1]

H̃ = {Φρ ◦ h | h ∈ H}.

By the theorem given in the previous slide (generalization bound based on Rademacher
complexity), with probability at lease 1− δ for all g ∈ H̃, we have

E [g(z)] ≤ 1

m

m∑
i=1

g(zi ) +
2

ρ
Rm(H) +

√
log(1/δ)

2m

Thus

E [Φρ(yh(x))] ≤ R̂ρ(h) +
2

ρ
Rm(H̃) +

√
log(1/δ)

2m

Since Φρ is
1

ρ
−Lipschitz by Talagrand’s lemma, Then

Rm(H̃) ≤ 1

ρ
Rm(H) =

1

ρm
E
σ,S

[
sup
h∈H

m∑
i=1

σih(xi )

]
=

1

ρ
Rm(H)

Since I [yh(x) < 0] ≤ Φρ(yh(x)), this shows the first statement, and similarly the second one.

29/37



General margin bound

1. This generalization bounds

(
R(h) ≤ R̂ρ(h) +

2

ρ
Rm(H) +

√
log(1/δ)

2m

)
suggest a trade-off:

a larger value of ρ decreases the complexity term, but tends to increase the empirical margin-loss
R̂ρ(h) by requiring from a hypothesis h a higher confidence margin.

2. If for a relatively large value of ρ the empirical margin loss of h remains relatively small, then h
benefits from a very favorable guarantee on its generalization error.

3. For the above theorem, the margin parameter ρ must be selected beforehand. But, the bounds of
the theorem can be generalized to hold uniformly for all ρ ∈ (0, 1] at the cost of a modest

additional term

√
log log(2/ρ)

m
as shown in the following Theorem.

Theorem

Let H be a set of real-valued functions. Fix r > 0. Then, for any δ > 0,with probability at least1− δ,
each of the following hold for all h ∈ H and ρ ∈ (0, r ]

R(h) ≤R̂ρ(h) +
4

ρ
Rm(H) +

√
log log(2r/ρ)

m
+

√
log(1/δ)

2m

R(h) ≤R̂ρ(h) +
4

ρ
R̂S(H) +

√
log log(2r/ρ)

m
+ 3

√
log(1/δ)

2m
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Rademacher complexity of linear hypotheses

Theorem (Rademacher complexity of linear hypotheses)

Let S ⊆ {x | ‖x‖ ≤ r} be a sample of size m and let H = {x 7→ 〈w , x〉 | ‖w‖ ≤ Λ}. Then

R̂S(H) ≤
√

r 2Λ2

m

Proof.

R̂S(H) =
1

m
E
σ

[
sup
‖w‖≤Λ

m∑
i=1

σi 〈w , xi 〉

]
=

1

m
E
σ

[
sup
‖w‖≤Λ

〈
w ,

m∑
i=1

σixi

〉]

≤ Λ

m
E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
]
≤ Λ

m

√√√√E
σ

[∥∥∥∥∥
m∑
i=1

σixi

∥∥∥∥∥
2]

=
Λ

m

√√√√E
σ

[
m∑

i,j=1

σiσj 〈xi , xj〉

]

≤ Λ

m

√√√√ m∑
i=1

‖xi‖2

≤Λ
√
mr 2

m
=

√
r 2Λ2

m
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Margin bound (linear classifier)

Corollary (Margin bound (linear classifier))

Let ρ > 0 and H = {x 7→ 〈w , x〉 | ‖w‖ ≤ Λ}. Let also S ⊆ {x | ‖x‖ ≤ r} be a sample of size m.
Then for any δ > 0 with probability at least 1− δ for any h ∈ H,

R(h) ≤R̂ρ(h) + 2

√
r 2Λ2/ρ2

m
+ 3

√
log(2/δ)

2m

Proof.

Follows directly general margin bound and bound on R̂S(H) for linear classifiers.

1. This bound for linear hypotheses is remarkable, it does not depend directly on n, but only on ρ.

2. R(h) can be small when
ρ

rΛ
is large; while R̂ρ(h) is relatively small.

3. R̂ρ(h) is small when few points are either classified incorrectly or correctly, but with margin ≤ ρ.

4. When S is linearly separable, for a linear hypothesis with geometric margin ρg and the choice of
the confidence margin parameter ρ = ρg , R̂ρ(h) is zero.

5. Thus, if ρg is relatively large, this provides a strong guarantee for the generalization error of the
corresponding linear hypothesis.
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Summary



Summary

1. Generalization bound does not depend on the dimension but on the margin.
2. This suggests seeking a large-margin separating hyperplane in a higher-dimensional feature space.
3. Taking dot products in a high-dimensional feature space can be very costly.
4. For any ρ > 0, the ρ-margin loss function is upper bounded by the ρ-hinge loss.

Φρ(x) = min

(
1,max

(
0, 1− x

ρ

))
≤ max

(
0, 1− x

ρ

)
5.3 Non-separable case 89

Figure 5.5
Both the hinge loss and the quadratic hinge loss provide convex upper bounds on the binary
zero-one loss.

5.3.2 Support vectors
As in the separable case, the constraints are a�ne and thus qualified. The objective

function as well as the a�ne constraints are convex and di↵erentiable. Thus, the

hypotheses of theorem B.30 hold and the KKT conditions apply at the optimum.

We use these conditions to both analyze the algorithm and demonstrate several

of its crucial properties, and subsequently derive the dual optimization problem

associated to SVMs in section 5.3.3.

We introduce Lagrange variables ↵i � 0, i 2 [m], associated to the first m

constraints and �i � 0, i 2 [m] associated to the non-negativity constraints of the

slack variables. We denote by ↵ the vector (↵1, . . . ,↵m)> and by � the vector

(�1, . . . ,�m)>. The Lagrangian can then be defined for all w 2 RN , b 2 R, and

⇠,↵,� 2 Rm
+ , by

L(w, b, ⇠,↵,�) =
1

2
kwk2+C

mX

i=1

⇠i�
mX

i=1

↵i[yi(w ·xi +b)�1+⇠i]�
mX

i=1

�i⇠i . (5.25)

The KKT conditions are obtained by setting the gradient of the Lagrangian with

respect to the primal variables w, b, and ⇠is to zero and by writing the complemen-

5. The bounds given in these slides can be extended for other loss functions such as hinge loss
function. Hence,

R(h) ≤ 1

m

m∑
i=1

max

(
0, 1− yi 〈w, xi 〉

ρ

)
+

4

ρ

√
r 2/ρ2

m
+

√
log log(2r/ρ)

m
+

√
log(1/δ)

2m
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Summary

1. Since for any ρ > 0, h/ρ admits the same generalization error as h with probability of at least
(1− δ), then the following holds for all h ∈ {x 7→ 〈w , x〉 | ‖w‖ ≤ 1/ρ} and for all ρ > 0:

R(h) ≤ 1

m

m∑
i=1

max (0, 1− yi 〈w, xi 〉) + 4

√
r 2/ρ2

m
+

√
log log(2r/ρ)

m
+

√
log(1/δ)

2m

2. This inequality can be used to derive an algorithm that selects w and ρ > 0 to minimize the
right-hand side.

3. The minimization with respect to ρ > 0 does not lead to a convex optimization, which may not be
optimal.

4. Thus, instead, ρ > 0 is left as a free parameter of the algorithm, typically determined via
cross-validation.
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Summary

1. Only the first term of the right-hand side depends on w for any ρ > 0, Thus we have:

min
‖w‖2≤ 1

ρ2

1

m

m∑
i=1

max (0, 1− yi 〈w, xi 〉)

2. Introducing a Lagrange variableλ ≥ 0, we obtain

min
w
λ ‖w‖2 +

1

m

m∑
i=1

max (0, 1− yi 〈w, xi 〉)

3. For any ρ > 0, there exists an equivalent dual variable λ ≥ 0 that achieves the same optimal w, λ
can be freely selected via cross-validation.

4. The resulting algorithm precisely coincides with SVMs using an alternative objective function.

5. The advantage of the hinge loss is that it is convex, while the margin loss is not.

6. This bound suggests seeking a large-margin hyperplane in a higher-dimensional feature space.

7. Taking dot products in a high-dimensional feature space can be very costly and solution is based
on kernels.
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Readings

1. Appendix E of Christopher M. Bishop Book (Bishop 2006)

2. Section 9.1 and Chapter 15 of Shai Shalev-Shwartz and Shai Ben-David Book (Shalev-Shwartz
and Ben-David 2014)

3. Chapter 4 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book (Mohri,
Rostamizadeh, and Talwalkar 2018).
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Lagrangian optimization



Lagrangian optimization

I Assume that we have a primal optimization problem of the form,

min
x
φ(x) subject to gi (x) ≥ 0 for i = 1, 2, . . . , l

I Assume that φ is convex and the constraints gi are linear.

I We can construct the Lagrangian optimization problem as follows,

max
α

min
x

L(x , α) = max
α

min
x

(
φ(x)−

l∑
i=1

αigi (x)

)

such that
αi ≥ 0 for i = 1, 2, . . . , l

I The values α1, . . . , αl are called the Lagrangian multipliers.

I We call x the primal variable and α the dual variable.



Lagrangian optimization (cont.)

I We have

max
α

min
x

L(x , α) = max
α

min
x

(
φ(x)−

l∑
i=1

αigi (x)

)
I Let x = x∗ be an optimum then

max
α

L(x∗, α) = max
α

(
φ(x∗)−

l∑
i=1

αigi (x
∗)

)
I Let α = α∗ be an optimum then

min
x

L(x , α∗) = min
x

(
φ(x)−

l∑
i=1

α∗i gi (x)

)
I This implies that our solutions are saddle points on the graph of the function L(x , α)

I An important observation is that at the saddle point the identity

∂L

∂x
= 0

I Here, the point x∗ represents an optimum of L with respect to x .



Lagrangian optimization (cont.)

I Let α∗ and x∗ be a solution to the Lagrangian such that,

max
α

min
x

L(x , α) = L(x∗, α∗) = φ(x∗)−
l∑

i=1

α∗i gi (x
∗)

I Then x∗ is a solution to the primal objective function if and only if the following conditions hold

∂

∂x
L(x∗, α∗) = 0,

α∗i gi (x
∗) = 0,

gi (x
∗) ≥ 0,

α∗i ≥ 0,

for i = 1, 2, . . . , l .

I These conditions are collectively referred to as the Karush-Kuhn-Tucker (KKT) conditions and if
satisfied ensure that (Why? Please verify it.)

L(x∗, α∗) = φ(x∗)

I The KKT conditions are always satisfied for convex optimization problems.



Lagrangian optimization (cont.)

I Assume that x∗ be an optimum, that is,

∂

∂x
L(x∗, α) = 0,

I Then we can rewrite our Lagrangian as an objective function of only the dual variable,

L(x∗, α) = ψ(α),

the function ψ the Lagrangian dual.

I This gives us our new, dual optimization problem

max
α
ψ(α) subject to αi ≥ 0 for i = 1, 2, . . . , l

I If the KKT conditions are satisfied

max
α
ψ(α) = ψ(α∗) = L(α∗, x∗) = φ(x∗).



Lagrangian optimization (Example)

I Consider the convex optimization problem,

min
x
φ(α) = min

x

1

2
x2 subject to g(x) = x − 2 ≥ 0

An Example
Consider the convex optimization problem,

min φ(x) = min
1

2
x
2
,

subject to the linear constraint

g(x) = x − 2 ≥ 0,

with x ∈ R.

– p. 9/1

I The Lagrangian is

L(x , α) =
1

2
x2 − α(x − 2).

I This saddle point occurs where the gradient of the Lagrangian with respect to x is equal to zero,

∂L

∂x
(α, x∗) = x∗ − α = 0

I Solving for x∗ gives x∗ = α. Now, substituting x∗ = α into the Lagrangian gives

L(α, x∗) =
1

2
α2 − α2 + 2α = 2α− 1

2
α2



Lagrangian optimization (Example)

I We can write dual optimization form with ψ(α) = L(α, x∗) as

max
α
ψ(α) = max

α

(
2α− 1

2
α2

)
subject to α ≥ 0

I Since L(x , α) is convex, we can write

∂ψ

∂α
(α∗) = 2− α = 0

I This means that x∗ = α∗ = 2.



Questions?
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