
Deep learning

Convolutional Networks1

Hamid Beigy

Sharif University of Technology

November 21, 2021

1Some slides are taken from B. Raj’s slides

Table of contents

1. Introduction

2. Example

3. Training the network with shared parameter

4. Convolution

5. Convolutional Neural networks

6. Convolutional neural network architectures

7. Case studies

8. Reading

1/67

Introduction

Introduction

1. Consider a Perceptron with threshold activation function

x2 w2 Σ f

Activate
function

y

Output

x1 w1

x3 w3

Weights

Bias
b

Inputs

y =

{
1 if wT x ≥ b

0 otherwise

2. What do the weights tell us?

3. The Perceptron fires if the inner product between the weights and the inputs

exceeds a threshold.

2/67

The weight as a template

1. In Perceptron, we have

w>x ≥ b

cos(θ) ≥ b

‖x‖ ‖w‖

θ < cos−1
(

b

‖x‖ . ‖w‖

)

The weight as a “template”

• A perceptron fires if its input is within a specified angle of its weight
– Represents a convex region on the surface of the sphere!

• I.e. the perceptron fires if the input vector is close enough to the weight
vector
– If the input pattern matches the weight pattern closely enough

7

w

𝐱T𝐰 > T

⇒ cos θ >
T

𝐱 𝐰

⇒ θ < cos−1
T

𝐱 𝐰

x1

x2

x3

xN

𝐰
𝐱 θ

2. The Perceptron fires if the input vector is close enough to the weight vector.

3/67

The weights as a correlation filter

1. If the correlation between the weight pattern and the inputs exceeds a threshold,

Perceptron fires.

2. The Perceptron is a correlation filter.The weights as a correlation filter

• If the correlation between the weight pattern
and the inputs exceeds a threshold, fire

• The perceptron is a correlation filter!
8

W X X

Correlation = 0.57 Correlation = 0.82
𝑦 = ൞

1 𝑖𝑓
𝑖

𝑤𝑖x𝑖 ≥ 𝑇

0 𝑒𝑙𝑠𝑒 4/67

MLP as a cascade of feature detectors

1. Consider a classification task in which, we want to classify digit images from

non-digit images.

The MLP as a cascade of feature
detectors

• The network is a cascade of feature detectors
– Higher level neurons compose complex templates from features

represented by lower-level neurons
• Compute the OR, AND, or majority of the patterns from the lower layer 10

DIGIT OR NOT?

2. The network is a cascade of feature detectors

3. Higher level neurons compose complex templates from features represented by

lower-level neurons.

5/67

Example

Finding a word in a signal

1. Does the following signal contain the word Hello?A problem

• Does this signal contain the word “Welcome”?
• Compose an MLP for this problem.

– Assuming all recordings are exactly the same length..
13

2. Can MLP be used to solve the above problem?

6/67

The first solution: using a MLP for the entire signal

1. We can use a large network.Finding a Welcome

• Trivial solution: Train an MLP for the entire
recording

14

7/67

Problem with the first solution

1. Network that finds a Hello in the top recording will not find it in the lower one

I Unless trained with both
I Will require a very large network and a large amount of training data to cover every

case
Finding a Welcome

• Problem with trivial solution: Network that finds a “welcome” in
the top recording will not find it in the lower one
– Unless trained with both
– Will require a very large network and a large amount of training data

to cover every case
15

8/67

Finding Hello

1. We need a simple network that will fire regardless of the location of Hello and not

fire when there is none.Finding a Welcome

• Need a simple network that will fire regardless
of the location of “Welcome”
– and not fire when there is none

16

9/67

The need for shift invariance

1. In many problems the location of a pattern is not important (Only the presence of

the pattern). Finding a Welcome

• Need a simple network that will fire regardless
of the location of “Welcome”
– and not fire when there is none

16

2. Conventional MLPs are sensitive to the location of the pattern.

3. Network must be shift invariant
10/67

The second solution: scanning signal

1. Use a sliding window and scan for the target word.Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)

MAX

29

2. Does Hello occur in this recording?

I We have classified many windows individually
I Hello may have occurred in any of them.

3. Maximum of all the outputs (Equivalent of Boolean OR)

11/67

The second solution: scanning signal

1. Use a sliding window and scan for the target word.Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Finding a welcome in adjacent windows makes it more likely that we didn’t find
noise

Perceptron

30

2. Does Hello occur in this recording?

3. Use a Perceptron to decide.

12/67

The second solution: scanning signal

1. Use a sliding window and scan for the target word.Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence
– Or even an MLP 31

2. Does Hello occur in this recording?

3. Use a MLP to decide.

13/67

The second solution: scanning signal

1. The entire operation can be viewed as one large network.Solution: Scan

• “Does welcome occur in this recording?”
– Maximum of all the outputs (Equivalent of Boolean OR)
– Or a proper softmax/logistic

• Adjacent windows can combine their evidence
– Or even an MLP 31

2. With many subnetworks, one per window

3. Restriction: All subnets are identical (why?)

14/67

The second solution: scanning signal

1. What are the properties of this network?

Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the
subnet must equally update all copies

53

2. The sub-networks are shared parameter networks.

3. All lower-level subnets are identical (Are all searching for the same pattern?)

4. Any update of the parameters of one copy of the subnet must equally update all

copies

15/67

The second solution: scanning signal

1. What are the properties of this network?

Training the network: constraint

• These are shared parameter networks
– All lower-level subnets are identical

• Are all searching for the same pattern

– Any update of the parameters of one copy of the
subnet must equally update all copies

53

2. The network is sparse.

3. All sub-networks are used for local regions.

16/67

Substring problem

1. We have two strings s1 and s2 with lengths n1 and n2, respectively.

2. Assume that n1 � n2.

3. Is s2 a substring of s1?

4. What is the solution?

17/67

Training the network with shared parameter

Training the network with shared parameter

1. We use conventional back-propagation to learn the parameters.

2. By Providing many training examples, we use Gradient descent to minimize the

cost function.

3. There are shared parameter networks and any update of the parameters of one

copy of the subnet must equally update all copies.

4. Consider a simple network with the following parameter sharing wij = wkl = ws

5. We can calculate the gradient with respect to ws .

∂J(w)

∂ws
=
∂J(w)

∂wij

∂wij

∂ws
+
∂J(w)

∂wkl

∂wkl

∂ws

=
∂J(w)

∂wij
+
∂J(w)

∂wkl

18/67

Convolution

Convolution

1. The following operation is called convolution.

s(t) =

∫ +∞

−∞
x(τ)w(t − τ)dτ

2. The convolution operation is typically denoted with an asterisk(*).

s(t) = (x ∗ w)(t) =

∫ +∞

−∞
x(τ)w(t − τ)dτ

3. This operation has two steps: flipping and shifting

4. Then multiplication and integration.

19/67

Discrete convolution

1. If we now assume that x and w are defined only on integer t, we can define the

discrete convolution:

s[n] = (x ∗ w)[n] =
∞∑

m=−∞
x [m]w [n −m]

2. What is the relation of convolution and cross-correlation?

20/67

Discrete convolution

1. In practice, we often use convolutions over more than one axis at a time.

s[i , j] = (I ∗ K)[i , j] =
∞∑

m=−∞

∞∑
n=−∞

I [m, n]K [i −m, j − n]

2. The input is usually a multidimensional array of data.

3. The kernel is usually a multidimensional array of parameters that should be

learned.

4. We assume that these functions are zero everywhere but the finite set of points

for which we store the values.

5. We can implement the infinite summation as a summation over a finite number of

array elements.

21/67

Convolution (example)

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

Convolutions

Credit: UFLDL Wiki

Ali Ghodsi Deep Learning

22/67

Convolutional Neural networks

Convolutional Neural networks

1. Convolutional neural network is a kind of feed-forward neural network that is able

to extract features from data with convolution structures (Li et al. 2020).

2. The architecture of CNN is inspired by visual perception.

3. A convolutional layer is a network layer that implements convolution.

4. A convolutional neural network is a feed–forward network in which at least one

layer is convolution layer.

5. Convolutional neural networks have the following characteristics

I Sparse & local interactions
I Parameter sharing
I Down-sampling dimensionality reduction
I Equi-variant representations

23/67

Sparse connectivity

1. Sparse vs dense connectivity

CONVOLUTIONAL NETWORKS

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

Figure 9.3: Sparse connectivity, viewed from above. We highlight one output unit, s3, and
highlight the input units in x that affect this unit. These units are known as the receptive
field of s3. (Top)When s is formed by convolution with a kernel of width 3, only three
inputs affect s3. (Bottom)When s is formed by matrix multiplication, connectivity is no
longer sparse, so all the inputs affect s3.

x1x1 x2x2 x3x3

h2h2h1h1 h3h3

x4x4

h4h4

x5x5

h5h5

g2g2g1g1 g3g3 g4g4 g5g5

Figure 9.4: The receptive field of the units in the deeper layers of a convolutional network
is larger than the receptive field of the units in the shallow layers. This effect increases if
the network includes architectural features like strided convolution (figure 9.12) or pooling
(section 9.3). This means that even though direct connections in a convolutional net are
very sparse, units in the deeper layers can be indirectly connected to all or most of the
input image.

327

11 - 15: Convolutional neural networks Prof. J.C. Kao, UCLA

Convolutional layers have sparse interactions

Convolutional layers have sparse interactions or sparse connectivity. The idea
of sparse connectivity is illustrated below, where each output is connected to a
small number of inputs.

Fully connected layers:

h21 h22 h23 h24 h25

h11 h12 h13 h14 h15

Sparsely connected layers:

h21 h22 h23 h24 h25

h11 h12 h13 h14 h15

24/67

Sparse connectivity

1. Sparse connectivity in multi-layers

11 - 18: Convolutional neural networks Prof. J.C. Kao, UCLA

Convolutional layers have sparse interactions (cont.)

A concern of sparse interactions is that information information from di↵erent
parts of the input may not interact. For example, a self-driving car should know
where obstacles are from all over the image to avoid them.

This argues that networks should be composed of more layers, since units in
deeper layers indirectly interact with larger portions of the input.

h31 h32 h33 h34 h35

h21 h22 h23 h24 h25

h11 h12 h13 h14 h15

25/67

Parameter sharing

1. In CNNs each member of the kernel is used at every position of the input

CHAPTER 9

is used exactly once when computing the output of a layer. It is multiplied by
one element of the input and then never revisited. As a synonym for parameter
sharing, one can say that a network has tied weights, because the value of the
weight applied to one input is tied to the value of a weight applied elsewhere. In
a convolutional neural net, each member of the kernel is used at every position
of the input (except perhaps some of the boundary pixels, depending on the
design decisions regarding the boundary). The parameter sharing used by the
convolution operation means that rather than learning a separate set of parameters
for every location, we learn only one set. This does not affect the runtime of
forward propagation—it is still O(k ⇥ n)—but it does further reduce the storage
requirements of the model to k parameters. Recall that k is usually several orders
of magnitude smaller than m. Since m and n are usually roughly the same size, k is
practically insignificant compared to m⇥n. Convolution is thus dramatically more
efficient than dense matrix multiplication in terms of the memory requirements
and statistical efficiency. For a graphical depiction of how parameter sharing works,
see figure 9.5.

As an example of both of these first two principles in action, figure 9.6 shows
how sparse connectivity and parameter sharing can dramatically improve the
efficiency of a linear function for detecting edges in an image.

x1x1 x2x2 x3x3

s2s2s1s1 s3s3

x4x4

s4s4

x5x5

s5s5

x1x1 x2x2 x3x3 x4x4 x5x5

s2s2s1s1 s3s3 s4s4 s5s5

Figure 9.5: Parameter sharing. Black arrows indicate the connections that use a particular
parameter in two different models. (Top)The black arrows indicate uses of the central
element of a 3-element kernel in a convolutional model. Because of parameter sharing, this
single parameter is used at all input locations. (Bottom)The single black arrow indicates
the use of the central element of the weight matrix in a fully connected model. This model
has no parameter sharing, so the parameter is used only once.

328

26/67

Equivariance

1. A function f (.) is equivariant to a function g(.) if f (g(x)) = g(f (x)).

2. A convolutional layer is equivariance to translation.

3. For example

g(x)[i] = g(x)[i − 1]

4. If we apply this transformation to x , then apply convolution, the result will be the

same as if we applied convolution to x , then applied the transformation to the

output. (Check it.)

5. If we move an object in the image, its representation will move the same amount

in the output

6. Note that convolution is not equivariant to some other transformations, such as

changes in the scale or rotation of an image.

27/67

Convolutional Neural networks

1. The components of a typical convolutional neural network layer.

CONVOLUTIONAL NETWORKS

Convolutional Layer

Input to layer

Convolution stage:
Affine transform

Detector stage:
Nonlinearity

e.g., rectified linear

Pooling stage

Next layer

Input to layers

Convolution layer:
Affine transform

Detector layer: Nonlinearity
e.g., rectified linear

Pooling layer

Next layer

Complex layer terminology Simple layer terminology

Figure 9.7: The components of a typical convolutional neural network layer. There are two
commonly used sets of terminology for describing these layers. (Left)In this terminology,
the convolutional net is viewed as a small number of relatively complex layers, with each
layer having many “stages.” In this terminology, there is a one-to-one mapping between
kernel tensors and network layers. In this book we generally use this terminology. (Right)In
this terminology, the convolutional net is viewed as a larger number of simple layers; every
step of processing is regarded as a layer in its own right. This means that not every “layer”
has parameters.

translate the input by a small amount, the values of most of the pooled outputs
do not change. See figure 9.8 for an example of how this works. Invariance to local
translation can be a useful property if we care more about whether some feature
is present than exactly where it is. For example, when determining whether an
image contains a face, we need not know the location of the eyes with pixel-perfect
accuracy, we just need to know that there is an eye on the left side of the face
and an eye on the right side of the face. In other contexts, it is more important to
preserve the location of a feature. For example, if we want to find a corner defined
by two edges meeting at a specific orientation, we need to preserve the location of
the edges well enough to test whether they meet.

331

28/67

Convolutional Neural networks

1. To build a CNN model, four components are typically needed (Li et al. 2020).

Convolution The outputs of convolution can be called feature maps.

Padding Padding enlarges the input with zero value.

Stride For controlling the density of convolving, stride used.

Pooling As a result, Pooling (down-sampling) such as max pooling and average

pooling obviates large number of features in feature map.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

recognition. Ajmal et al. [16] discussed CNN for image
segmentation. These reviews mentioned above mainly
reviewed the applications of CNN in different scenarios without
considering CNN from a general perspective. Also, due to the
rapid development of CNN, lots of inspiring ideas in this field
have been proposed, but these reviews did not fully cover them.

In this paper, we focus on analyzing and discussing CNN. In
detail, the key contributions of this review are as follows: 1) We
provide a brief overview of CNN, including some basic
building blocks of modern CNN, in which some fascinating
convolution structures and innovations are involved. 2) Some
classic CNN-based models are covered, from LeNet-5, AlexNet
to MobileNet v3 and GhostNet. Innovations of these models are
emphasized to help readers draw some useful experience from
masterpieces. 3) Several representative activation functions,
loss functions, and optimizers are discussed. We reach some
conclusions about them through experiments. 4) Although
applications of two-dimensional convolution are widely used,
one-dimensional and multi-dimensional ones should not be
ignored. Some of typical applications are presented. 5) We raise
several points of view on prospects for CNN. Part of them are
intended to refine existing CNNs, and the others create new
networks from scratch.

We organize the rest of this paper as follows: Section 2 takes
an overview of modern CNN. Section 3 introduces many
representative and classic CNN-based models. We mainly
focus on the innovations of these models, but not all details.
Section 4 discusses some representative activation functions,
loss functions, and optimizers, which can help readers select
them appropriately. Section 5 covers some applications of CNN
from the perspective of different dimensional convolutions.
Section 6 discusses current challenges and several promising
directions or trends of CNN for future work. Section 7
concludes the survey by giving a bird view of our contributions.

II. BRIEF OVERVIEW OF CNN
Convolutional neural network is a kind of feedforward neural

network that is able to extract features from data with
convolution structures. Different from the traditional feature
extraction methods [17], [18], [19] , CNN does not need to
extract features manually. The architecture of CNN is inspired
by visual perception [20]. A biological neuron corresponds to
an artificial neuron; CNN kernels represent different receptors
that can respond to various features; activation functions
simulate the function that only neural electric signals exceeding
a certain threshold can be transmitted to the next neuron. Loss
functions and optimizers are something people invented to
teach the whole CNN system to learn what we expected.
Compared with general artificial neural networks, CNN
possesses many advantages: 1) Local connections. Each neuron
is no longer connected to all neurons of the previous layer, but
only to a small number of neurons, which is effective in
reducing parameters and speed up convergence; 2) Weight
sharing. A group of connections can share the same weights,
which reduces parameters further. 3) Down-sampling
dimensionality reduction. A pooling layer harnesses the
principle of image local correlation to down-sample an image,

which can reduce the amount of data while retaining useful
information. It can also reduce the number of parameters by
removing trivial features. The three appealing characteristics
make CNN become one of the most representative algorithms
in the deep learning field.

To be specific, in order to build a CNN model, four
components are typically needed. Convolution is a pivotal step
for feature extraction. The outputs of convolution can be called
feature maps. When setting a convolution kernel with a certain
size, we will lose information in the border. Hence, padding is
introduced to enlarge the input with zero value, which can
adjust the size indirectly. Besides, for the sake of controlling the
density of convolving, stride is employed. The larger the stride,
the lower the density. After convolution, feature maps consist
of a large number of features that is prone to causing overfitting
problem [21]. As a result, pooling [22] (a.k.a. down-sampling)
is proposed to obviate redundancy, including max pooling and
average pooling. The procedure of a CNN is shown in Fig. 1.

Furthermore, in order for convolution kernels to perceive

larger area, dilated convolution [23] was proposed. A general 3
× 3 convolution kernel is shown in Fig. 2 (a), and a 2-dilated 3
× 3 convolution kernel and a 4-dilated 3 × 3 convolution kernel
are shown in Fig. 2 (b) and (c). Note that there is an empty value
(filling with zero) between each convolution kernel point. Even
though the valid kernel points are still 3 × 3, a 2-dilated
convolution has a 7 × 7 receptive field, and a 4-dilated
convolution has a 15 × 15 receptive field.

As shown in Fig. 3, deformable convolution [23] was

proposed to handle the problem that the shape of objects in the
real world are usually irregular. Deformable convolution is able
to only focus on what they are interested in, making the feature
maps are more representative.

Input

*
1 0 1
0 1 0
1 0 1

Padding Conv kernel

Stride = 2

0 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 0 0 1 0

0 0 1 1 0

1

0

0

0

0

0

1

1

0

0

1

0

0

0

0 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 1 0 1

0 0

00

0 0 0 1 0

0 0 1 1 0

1

0

0

0

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 00

0 0 0 0 0 00

0

0

0

0

0

0

0

×1 ×1×0

×0 ×0×1

×1 ×1×0
0 1 1 0

1 3 3 1

2 2 2 2

0 1 3 2

3 3

2 3

Max
Pooling

Fig. 1. Procedure of a two-dimensional CNN

(c)

. ..

. ..

. ..

. . .

. . .

. . .
(a)

. . .

. . .

. . .

(b)
Fig. 2. Comparison between general convolution kernel and dilated convolution
kernel. (a) A general 3 × 3 convolution kernel (b) A 2-dilated 3 × 3 convolution
kernel (c) A 4-dilated 3 × 3 convolution kernel

. . .

. . .

. . .

. . .

. . .

. . .

. .
.

.
.

. .
.

.

(a) (b)

Fig. 3. Comparison between general convolution kernel and deformable
convolution kernel. (a) A general 3 × 3 convolution kernel (b) A deformable 3
× 3 convolution kernel

29/67

Convolutional stage

The convolutional stage is

C
onvolutional neural netw

ork
-

Y
ou should all know

 convolution
-

D
ifference betw

een convolution and
correlation is irrelevant (flipping filter)

-
W

hen w
e deal w

ith channels or features
there are som

e options

For convolution kernels to perceive larger

area, dilated convolution used (Li et al.

2020).

(a) A general 3× 3 convolution kernel.

(b) A 2-dilated 3× 3 convolution kernel.

(c) A 4-dilated 3× 3 convolution kernel.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

2

recognition. Ajmal et al. [16] discussed CNN for image
segmentation. These reviews mentioned above mainly
reviewed the applications of CNN in different scenarios without
considering CNN from a general perspective. Also, due to the
rapid development of CNN, lots of inspiring ideas in this field
have been proposed, but these reviews did not fully cover them.

In this paper, we focus on analyzing and discussing CNN. In
detail, the key contributions of this review are as follows: 1) We
provide a brief overview of CNN, including some basic
building blocks of modern CNN, in which some fascinating
convolution structures and innovations are involved. 2) Some
classic CNN-based models are covered, from LeNet-5, AlexNet
to MobileNet v3 and GhostNet. Innovations of these models are
emphasized to help readers draw some useful experience from
masterpieces. 3) Several representative activation functions,
loss functions, and optimizers are discussed. We reach some
conclusions about them through experiments. 4) Although
applications of two-dimensional convolution are widely used,
one-dimensional and multi-dimensional ones should not be
ignored. Some of typical applications are presented. 5) We raise
several points of view on prospects for CNN. Part of them are
intended to refine existing CNNs, and the others create new
networks from scratch.

We organize the rest of this paper as follows: Section 2 takes
an overview of modern CNN. Section 3 introduces many
representative and classic CNN-based models. We mainly
focus on the innovations of these models, but not all details.
Section 4 discusses some representative activation functions,
loss functions, and optimizers, which can help readers select
them appropriately. Section 5 covers some applications of CNN
from the perspective of different dimensional convolutions.
Section 6 discusses current challenges and several promising
directions or trends of CNN for future work. Section 7
concludes the survey by giving a bird view of our contributions.

II. BRIEF OVERVIEW OF CNN
Convolutional neural network is a kind of feedforward neural

network that is able to extract features from data with
convolution structures. Different from the traditional feature
extraction methods [17], [18], [19] , CNN does not need to
extract features manually. The architecture of CNN is inspired
by visual perception [20]. A biological neuron corresponds to
an artificial neuron; CNN kernels represent different receptors
that can respond to various features; activation functions
simulate the function that only neural electric signals exceeding
a certain threshold can be transmitted to the next neuron. Loss
functions and optimizers are something people invented to
teach the whole CNN system to learn what we expected.
Compared with general artificial neural networks, CNN
possesses many advantages: 1) Local connections. Each neuron
is no longer connected to all neurons of the previous layer, but
only to a small number of neurons, which is effective in
reducing parameters and speed up convergence; 2) Weight
sharing. A group of connections can share the same weights,
which reduces parameters further. 3) Down-sampling
dimensionality reduction. A pooling layer harnesses the
principle of image local correlation to down-sample an image,

which can reduce the amount of data while retaining useful
information. It can also reduce the number of parameters by
removing trivial features. The three appealing characteristics
make CNN become one of the most representative algorithms
in the deep learning field.

To be specific, in order to build a CNN model, four
components are typically needed. Convolution is a pivotal step
for feature extraction. The outputs of convolution can be called
feature maps. When setting a convolution kernel with a certain
size, we will lose information in the border. Hence, padding is
introduced to enlarge the input with zero value, which can
adjust the size indirectly. Besides, for the sake of controlling the
density of convolving, stride is employed. The larger the stride,
the lower the density. After convolution, feature maps consist
of a large number of features that is prone to causing overfitting
problem [21]. As a result, pooling [22] (a.k.a. down-sampling)
is proposed to obviate redundancy, including max pooling and
average pooling. The procedure of a CNN is shown in Fig. 1.

Furthermore, in order for convolution kernels to perceive

larger area, dilated convolution [23] was proposed. A general 3
× 3 convolution kernel is shown in Fig. 2 (a), and a 2-dilated 3
× 3 convolution kernel and a 4-dilated 3 × 3 convolution kernel
are shown in Fig. 2 (b) and (c). Note that there is an empty value
(filling with zero) between each convolution kernel point. Even
though the valid kernel points are still 3 × 3, a 2-dilated
convolution has a 7 × 7 receptive field, and a 4-dilated
convolution has a 15 × 15 receptive field.

As shown in Fig. 3, deformable convolution [23] was

proposed to handle the problem that the shape of objects in the
real world are usually irregular. Deformable convolution is able
to only focus on what they are interested in, making the feature
maps are more representative.

Input

*
1 0 1
0 1 0
1 0 1

Padding Conv kernel

Stride = 2

0 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 0 0 1

0 0 0 1 0

0 0 1 1 0

1

0

0

0

0

0

1

1

0

0

1

0

0

0

0 0 1 0 0

0 1 0 1 0

1 1 0 0 1

0 1 0 0 1

0 1 1 0 1

0 0

00

0 0 0 1 0

0 0 1 1 0

1

0

0

0

0

0

1

1

0

0

1

0

0

0

0

0

0

0

0

0

0

0 0 0 0 0 00

0 0 0 0 0 00

0

0

0

0

0

0

0

×1 ×1×0

×0 ×0×1

×1 ×1×0
0 1 1 0

1 3 3 1

2 2 2 2

0 1 3 2

3 3

2 3

Max
Pooling

Fig. 1. Procedure of a two-dimensional CNN

(c)

. ..

. ..

. ..

. . .

. . .

. . .
(a)

. . .

. . .

. . .

(b)
Fig. 2. Comparison between general convolution kernel and dilated convolution
kernel. (a) A general 3 × 3 convolution kernel (b) A 2-dilated 3 × 3 convolution
kernel (c) A 4-dilated 3 × 3 convolution kernel

. . .

. . .

. . .

. . .

. . .

. . .

. .
.

.
.

. .
.

.

(a) (b)

Fig. 3. Comparison between general convolution kernel and deformable
convolution kernel. (a) A general 3 × 3 convolution kernel (b) A deformable 3
× 3 convolution kernel

30/67

Convolutional stage

1. Now, we don’t have just one filter in a convolutional layer, but multiple filters.

2. We call each output (matrix) a slice.

11 - 12: Convolutional neural networks Prof. J.C. Kao, UCLA

Convolutional layer (cont.)

Now, we don’t have just one filter in a convolutional layer, but multiple filters.
We call each output (matrix) a slice.

Input OutputFilters Convolution

.

.

.

31/67

Convolutional stage

1. Multiple filters.

Fei-Fei Li & Justin Johnson & Serena Yeung April 18, 2017Lecture 5 -Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 5 - April 18, 201734

32

32

3

Convolution Layer

activation maps

6

28

28

For example, if we had 6 5x5 filters, we’ll get 6 separate activation maps:

We stack these up to get a “new image” of size 28x28x6!
32/67

Padding

1. Usually, we specify a variable pad which is the amount of zeros to pad on each

border.

11 - 22: Convolutional neural networks Prof. J.C. Kao, UCLA

Convolution padding (cont.)

For the rest of the class, we’ll assume convolution is only applied when the
filter completely overlaps the input. Now, the input and output will remain the
same size is the input is zero-padded with wf � 1 total zeros (i.e., (wf � 1)/2
zeros on the left and right of the matrix) and the height is zero-padded with
hf � 1 total zeros (i.e., (hf � 1)/2 zeros on the top and bottom of the matrix).

Usually, we specify a variable pad which is the amount of zeros to pad on each
border.

0 0 0 0 0
0 0
0 0

0 0 0 0 0
0 0

0 0 0 0 0 0 0
0 0 0 0 0 00
0 0 0 0
0 0 00

0 0 0 0 0 0 0
0 0 0 0 0 00

0 0 0 0

pad = 1 pad = 2pad = 0

The output of the convolution is now (w � wf + 1 + 2pad, h � hf + 1 + 2pad).

33/67

Convolution stride

1. Another variable to control is the stride, which defines how much the filter moves

in the convolution.

11 - 24: Convolutional neural networks Prof. J.C. Kao, UCLA

Convolution stride

Another variable to control is the stride, which defines how much the filter
moves in the convolution. For normal convolution, stride = 1, which denotes
that the filter is dragged across every part of the input. Consider a 7 ⇥ 7 input
with a 3 ⇥ 3 filter. If convolution is only applied where the kernel overlaps the
input, the output is 5 ⇥ 5. With stride = 2, the output is 3 ⇥ 3.

stride = 2 stride = 2

34/67

Deformable convolution

1. To handle irregular shapes, deformable convolution is used (Dai et al. 2017)

35/67

Detector stage

1. In the second stage, each linear activation is run through a nonlinear activation

function, such as the rectified linear activation function. This stage is sometimes

called the detector stage.

36/67

Pooling stage

1. CNNs also incorporate pooling layers, where an operation is applied to all elements

within the filtering extent. This corresponds, effectively, to downs–sampling.

2. The pooling filter has width and height and is applied with a given stride. It is

most common to use the max() operation as the pooling operation.

11 - 26: Convolutional neural networks Prof. J.C. Kao, UCLA

Pooling layer

CNNs also incorporate pooling layers, where an operation is applied to all
elements within the filtering extent. This corresponds, e↵ectively, to
downsampling.

The pooling filter has width and height (wp, hp) and is applied with a given
stride. It is most common to use the max() operation as the pooling operation.

Input Output

1 2 3 4

5 6 7 8

1 3 5 7

2 4 6 8

6 8

4 8

2⇥ 2 max pool

stride 2

37/67

Pooling stage

1. Invariance example:

11 - 28: Convolutional neural networks Prof. J.C. Kao, UCLA

Pooling layer (cont.)

Invariance example:

0.3 1.5 1.5 1.5 3.1

0.2 0.3 1.5 0.8 3.1

Inputs shifted by 1. Five inputs change but only three outputs change.

1.2 1.2 1.5 1.5 1.5

1.2 0.2 0.3 1.5 0.8

2. Inputs shifted by 1. Five inputs changed but only three outputs changed.

11 - 28: Convolutional neural networks Prof. J.C. Kao, UCLA

Pooling layer (cont.)

Invariance example:

0.3 1.5 1.5 1.5 3.1

0.2 0.3 1.5 0.8 3.1

Inputs shifted by 1. Five inputs change but only three outputs change.

1.2 1.2 1.5 1.5 1.5

1.2 0.2 0.3 1.5 0.8

38/67

Convolution and pooling as an infinitely strong prior

1. A weak prior is a prior distribution with high entropy, such a Gaussian distribution

with high variance.

2. A strong prior has very low entropy, such as a Gaussian distribution with low

variance.

3. An infinitely strong prior places zero probability on some parameters.

4. A convolutional net is similar to a fully connected net with an infinitely strong

prior over its weights

5. The weights for one hidden unit must be identical to the weights of its neighbor,

but shifted in space.

6. The use of pooling is in infinitely strong prior that each unit should be invariant to

small translations.

39/67

Convolutional neural network architectures

Convolutional neural network architectures

1. Typically, convolutional neural networks are comprised of units that are composed
of:

I Several paired convolutional-relu layers.
I Potentially one max pooling layer.

2. These units are cascaded. Finally, a CNN may end with a fully connected-relu

layer, followed by a softmax classifier.

11 - 29: Convolutional neural networks Prof. J.C. Kao, UCLA

Convolutional neural network architectures

Typically, convolutional neural networks are comprised of units that are
composed of:

• Several paired convolutional-relu layers.

• Potentially one max pooling layer.

These units are cascaded. Finally, a CNN may end with a fully connected-relu
layer, followed by a softmax classifier. To illustrate this, we borrow the plate
notation from graphical models, where:

Convolutional layer

relu
m

=

Convolutional layer

relu

Convolutional layer

relu

Convolutional layer

relu

...

...

...

...

m repeats

40/67

Convolutional neural network architectures

1. The following describes a fairly typical CNN architecture.

1
1

-
3
0
:

C
o
n
vo

lu
ti
o
n
a
l
n
eu

ra
l
n
et

w
or

k
s

P
ro

f.
J.

C
.
K

a
o
,
U

C
L
A

C
o
n
vo

lu
ti
o
n
a
l
n
eu

ra
l
n
et

w
o
rk

ar
ch

it
ec

tu
re

s
(c

o
n
t.
)

W
it
h

th
is

in
m

in
d
,
th

e
fo

llo
w

in
g

d
es

cr
ib

es
a

fa
ir
ly

ty
p
ic

al
C
N

N
ar

ch
it
ec

tu
re

.

C
on

vo
lu

tio
na

l l
ay

er

re
lu

m

m
ax

po
ol

n

In
pu

t d
at

a

Fu
lly

 c
on

ne
ct

ed

re
lu

k

so
ftm

ax

41/67

Case studies

Convolutional neural network architectures

1. Beyond this, there are many architectural considerations (as measured by
ImageNet performance).

I LeNet-5 (LeCun et al. 1998)
I AlexNet (Krizhevsky, Sutskever, and Hinton 2012) and ZFNet (Zeiler and Fergus

2014)
I VGGNet and small filters (Simonyan and Zisserman 2015)
I GoogLeNet and inception layers (Szegedy et al. 2015)
I ResNet and residual layers (He et al. 2016)
I FractalNet and the importance of reducing effective depth (Larsson, Maire, and

Shakhnarovich 2017)

42/67

LeNet-5

I LeNet-5 is a convolutional network designed for

handwritten and machine-printed character

recognition (LeCun et al. 1998).

I It has 2 convolutional layers (with sigmoid activation

function) and 3 fully-connected layers (with sigmoid

activation function) (hence “5”).

I The average-pooling layer was used as a

sub-sampling layer.

I ReLUs and max-pooling work better.

I This architecture has about 60, 000 parameters.

I Demo : http://yann.lecun.com/exdb/lenet/

Image(28× 28)

5× 5 Conv (6), pad 2, stride 1

2× 2 AvgPool , stride 2

5× 5 Conv (16)

2× 2 AvgPool , stride 2

FC (120)

FC (84)

FC (10)

43/67

http://yann.lecun.com/exdb/lenet/

AlexNet

1. AlexNet has been proposed for image classification (Krizhevsky, Sutskever, and

Hinton 2012).

2. Dropout is used in the last few fully-connected layers to randomly ignore some

neurons during training to avoid overfitting.

3. First layer (CONV1): 96 11× 11 filters applied at stride 4

4. MaxPool (MaxPool1) 3× 3 filters applied at stride 2. Max pooling can avoid the

blurred result of average pooling.

5. Local response normalization is used.

6. Two GPUs are used to train AlexNet.
44/67

AlexNet

1. AlexNet architecture is [CONV1-MaxPOOL1-Norm1-CONV2-MaxPOOL2-Norm2-

CONV3- CONV4-CONV5-MaxPOOL3-FC6-FC7-FC8].

2. AlexNet has 8 layers — 5 convolutional and 3 fully-connected..

3. AlexNet has 60M parameters.

4. They were the first to implement Rectified Linear Units (ReLUs) as activation

functions.

45/67

AlexNet architecture

46/67

AlexNet

227x227x3 INPUT

55x55x96 CONV1: 96 11x11 filters at stride 4, pad 0

27x27x96 MAX POOL1: 3x3 filters at stride 2

27x27x96 NORM1: Normalization layer

27x27x256 CONV2: 256 5x5 filters at stride 1, pad 2

13x13x256 MAX POOL2: 3x3 filters at stride 2

13x13x256 NORM2: Normalization layer

13x13x384 CONV3: 384 3x3 filters at stride 1, pad 1

13x13x384 CONV4: 384 3x3 filters at stride 1, pad 1

13x13x256 CONV5: 256 3x3 filters at stride 1, pad 1

6x6x256 MAX POOL3: 3x3 filters at stride 2

4096 FC6: 4096 neurons

4096 FC7: 4096 neurons

1000 FC8: 1000 neurons (class scores)

47/67

AlexNet Results

48/67

ZFNet

1. ZFNet has the following architecture (Zeiler and Fergus 2014).

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201724

ZFNet [Zeiler and Fergus, 2013]

AlexNet but:
CONV1: change from (11x11 stride 4) to (7x7 stride 2)
CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

ImageNet top 5 error: 16.4% -> 11.7%

TODO: remake figure2. ZFNet is AlexNet with the following modifications

3. CONV1: change from (11x11 stride 4) to (7x7 stride 2)

4. CONV3,4,5: instead of 384, 384, 256 filters use 512, 1024, 512

49/67

VGGNet

1. VGGNets are a series of convolutional neural network algorithms proposed by the

Visual Geometry Group (VGG) of Oxford University, including VGG-11,

VGG-11-LRN, VGG-13, VGG-16, and VGG-19.

2. VGGNets secured the first place in the localization track of ImageNet Challenge

2014.

3. The LRN (Local Response Normalization) layer was removed since the author of

VGGNets found the effect of LRN in deep CNNs was not obvious.

4. VGGNets use 3× 3 convolution kernels.

5. VGGNet uses small filters, deeper networks

6. VGGNet has the following architecture (Simonyan and Zisserman 2015).

I Only 3× 3 CONV with stride 1,
I Pad 1
I 2× 2 MAX POOL with stride 2

50/67

VGGNet

Fei-Fei Li &
 Justin Johnson &

 S
erena Y

eung
Lecture 9 -

M
ay 2, 2017

Fei-Fei Li &
 Justin Johnson &

 S
erena Y

eung
Lecture 9 -

M
ay 2, 2017

C
ase S

tudy: V
G

G
N

et

26 3x3 conv, 128

P
ool

3x3 conv, 64

3x3 conv, 64

Input

3x3 conv, 128

P
ool

3x3 conv, 256

3x3 conv, 256

P
ool

3x3 conv, 512

3x3 conv, 512

P
ool

3x3 conv, 512

3x3 conv, 512

P
ool

FC
 4096

FC
 1000

S
oftm

ax

FC
 4096

3x3 conv, 512

3x3 conv, 512

3x3 conv, 384

P
ool

5x5 conv, 256

11x11 conv, 96

Input

P
ool

3x3 conv, 384

3x3 conv, 256

P
ool

FC
 4096

FC
 4096

S
oftm

ax

FC
 1000

P
ool

Input

P
ool

P
ool

P
ool

P
ool

S
oftm

ax

3x3 conv, 512

3x3 conv, 512

3x3 conv, 256

3x3 conv, 256

3x3 conv, 128

3x3 conv, 128

3x3 conv, 64

3x3 conv, 64

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

3x3 conv, 512

FC
 4096

FC
 1000

FC
 4096

[S
im

onyan and Zisserm
an, 2014]

S
m

all filters, D
eeper netw

orks
 8 layers (A

lexN
et)

-> 16 - 19 layers (V
G

G
16N

et)

O
nly 3x3 C

O
N

V
 stride 1, pad 1

and 2x2 M
A

X
 P

O
O

L stride 2

11.7%
 top 5 error in ILS

V
R

C
’13

(ZFN
et)

-> 7.3%
 top 5 error in ILS

V
R

C
’14

A
lexN

et
V

G
G

16
V

G
G

19

51/67

VGG-Net-16

1. The VGG-16 which has 13 convolutional and 3 fully-connected layers with ReLU

activation function.

2. This network stacks more layers onto AlexNet.

3. It uses smaller size filters (2× 2 and 3× 3). It consists of 138M parameters.

4. The contribution from this paper is the designing of deeper networks (roughly

twice as deep as AlexNet).

52/67

GoogLeNet

1. GoogLeNet is the winner of the ILSVRC 2014 image classification

algorithms (Szegedy et al. 2015).

2. It is the first large-scale CNN formed by stacking with Inception modules.

3. GoogLeNet didn’t use fully connected layers and global average pooling is used at

the end of the network and eliminating a large amount of parameters that do not

seem to matter much.

4. This layer takes a feature map of 7× 7 and averages it to 1× 1.

5. This 22-layer architecture with 5M parameters is called the Inception-v1.

6. Its main contribution was the development of an Inception Module that

dramatically reduced the number of parameters in the network (4M, compared to

AlexNet with 60M).

7. It achieved a top-5 error rate of 6.67%!

53/67

Inception Modules

1. Objects in images have different distances to cameras and then have large

variation in size.

2. An object with a large (small) proportion of an image usually prefers a large

(small) convolution kernel or a few small (many large) ones.

3. Hence, choosing the right kernel size becomes a challenging problem.

4. A larger/smaller kernel is useful for globally/locally distributed information.

5. Very deep networks may overfit and stacking large convolution layers is

computationally expensive.

6. GoogleNet use filters with multiple sizes operating on the same level. Hence the

network becomes wider.

7. Inception modules are used to implement filters with multiple sizes operating on

the same level.

8. Inception modules have four versions, namely Inception v1, Inception v2, Inception

v3, and Inception v4.

54/67

GoogLeNet

1. GoogLeNet has the following architecture.

55/67

Inception V1

1. Inception V1 module has the following architecture.

2. Inception V1 performs convolution on an input, with 3 different sizes of filters:

1× 1, 3× 3, and 5× 5.

3. It also performs max pooling.

4. The outputs of these filters are concatenated and sent to the next inception

module.

56/67

Inception V1 with dimensionality reduction

1. To reduce computational cost, inception module uses 1× 1 convolution kernel to

reduce the number of channels.

2. Consider a 28× 28× 190 input and use 48 5× 5 kernels resulting 28× 28× 48

feature map.

3. Number of parameters: (5× 5× 190)× (28× 28× 48) = 178, 752, 000.
4. Now first use 16 1× 1 kernels and then use 48 5× 5 resulting 28× 28× 48.

I Number of parameters in first layer: (5× 5× 190)× (28× 28× 16) = 118, 750.
I Number of parameters in second layer: (5× 5× 16)× (28× 28× 48) = 15, 052, 800.
I The total number of parameters: 118, 750 + 15, 052, 800 = 15, 171, 550.

57/67

Inception V2

1. Inception V2 uses batch normalization layer.

2. Inception V1 5× 5 filter aggressively decreases the feature

map.

3. Inception V2 replaces 5× 5 filter by two 3× 3 filters.

1. Inception V2 also uses asymmetric convolution.

2. Each 3× 3 filter factorized by 1× 3 and 3× 1 filters.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

13, VGG-16, and VGG-19. VGGNets secured the first place in
the localization track of ImageNet Challenge 2014. The authors
of VGGNets prove that increasing the depth of neural networks
can improve the final performance of the network to some
extent. Compared with AlexNet, VGGNets have the following
improvements:

1) The LRN layer was removed since the author of VGGNets
found the effect of LRN in deep CNNs was not obvious.

2) VGGNets use 3 × 3 convolution kernels rather than 5 × 5
or 5 × 5 ones, since several small kernels have the same
receptive field and more nonlinear variations compared with
larger ones. For instance, the receptive field of 3 × 3 kernels is
the same as one 5 × 5 kernel. Nevertheless, the number of
parameters reduces by about 45%, and three kernels have three
nonlinear variations.

D. GoogLeNet
GoogLeNet [33] is the winner of the ILSVRC 2014 image

classification algorithms. It is the first large-scale CNN formed
by stacking with Inception modules. Inception networks have
four versions, namely Inception v1 [33], Inception v2 [34], [35],
Inception v3 [35], and Inception v4 [36].
1) Inception v1

Due to objects in images have different distances to cameras,
an object with a large proportion of an image usually prefers a
large convolution kernel or a few small ones. However, a small
object in an image is the opposite. Based on the past experience,
large kernels have many parameters to train, and deep networks
are hard to train. As a result, Inception v1 [33] deploys 1 × 1, 3
× 3, 5 × 5 convolution kernels to construct a “wide” network,
which can be seen in Fig. 7, Convolution kernels with different
sizes can extract the feature maps of different scales of the
image. Then, those feature maps are stacked to obtain a more
representative one. Besides, 1 × 1 convolution kernel is used to
reduce the number of channels, i.e., reduce computational cost.

2) Inception v2

Inception v2 [35] utilizes batch normalization to handle
internal covariate shift problem [34]. The output of every layer
is normalized to normal distribution, which can increase the
robustness of the model and train the model with a relatively
large learning rate.

Furthermore, Inception v2 shows that a single 5 × 5
convolutional layers can be replaced by two 3 × 3 ones, shown
in Fig. 8 (a). One n x n convolutional layer can be replaced by
one 1 x n and one n x 1 convolutional layer shown in Fig. 8 (b).
However, the original paper points out the use of factorization
is not effective in the early layers. It is better to use it on
medium-sized feature maps. And filter banks should be
expanded (wider but not deeper) to improve high dimensional
representations. Hence, only the last 3 × 3 convolution of each

branch is factorized, shown in Fig. 8 (c).

3) Inception v3

Inception v3 [35] integrates major innovations mentioned in
Inception v2. And factorizing 5 × 5 and 3 × 3 convolution
kernels into two one-dimensional ones (one by seven and seven
by one, one by three and three by one, respectively). This
operation accelerates the training and further increases the
depth of networks and the non-linearity of networks. Besides,
the input size of the network changed from 224 by 224 to 299
by 299. And Inception v3 utilizes RMSProp as the optimizer.
4) Inception v4 and Inception-ResNet

Inception v4 modules [36] are based upon that of Inception
v3. The architecture of Inception v4 is more concise and utilizes
more Inception modules. Experimental evaluation proved that
Inception v4 is better than its predecessors.

In addition, ResNet structure [37] is harnessed to extend the
depth of Inception networks, namely Inception-ResNet-v1 and
Inception-ResNet-v2. Experiments proved that they could
improve the training speed and performance.

E. ResNet
Theoretically, Deep Neural Networks (DNN) outperform

shallow ones as the former can extract more complicated and
sufficient features of images. However, with the increase of
layers, DNNs are prone to cause gradient vanishing, gradient
exploding problems, etc. He et al. [37] proposed a 34-layer
Residual Network in 2016, which is the winner of the ILSVRC
2015 image classification and object detection algorithm. The
performance of ResNet exceeds the GoogLeNet Inception v3.

One of the significant contributions of ResNet is the two-
layer residual block constructed by the shortcut connection, as
shown in Fig. 9 (a) below.

50-layer ResNet, 101-layer ResNet, and 152-layer ResNet

utilize three-layer residual blocks, as shown in the Fig. 9 (b)
above, instead of two-layer one. Three-layer residual block is
also called the bottleneck module because the two ends of the

Input

1×1

3×3

1×1 1×1Pool

5×51×1

Concat

Fig. 7. Inception v1 module with dimension reductions

Input

1×1

3×3

1×1 1×1Pool

3×31×1

Concat

3×3

Input

1×1

1×n

1×1 1×1Pool

1×n1×1

Concat

n×1n×1

1×n

n×1

Input

1×11×1 1×1Pool

3×31×1

Concat

3×11×3

3×11×3

Fig. 8. Inception v2 module. (a) Each 5 x 5 convolution is replaced by two 3
x 3 convolutions. (b) n x n convolution is replaced by a 1 x n convolution and
a n x 1 convolution. (c) Inception modules with the last convolutional layer is
factorized.

3×3, 64

3×3, 64

+

ReLU

ReLU

64-d

1×1, 64

3×3, 64

+

ReLU

ReLU

256-d

1×1, 256

ReLU

(a) (b)

Fig. 9. Structure of ResNet blocks. (a) The structure of two-layer residual
block. (b) The structure of three-layer residual block

1. The use of factorization is not effective in the early layers.

2. It is better to use it on medium-sized feature maps.

3. Filter banks should be expanded (wider but not deeper) to

improve high dimensional representations.

> REPLACE THIS LINE WITH YOUR PAPER IDENTIFICATION NUMBER (DOUBLE-CLICK HERE TO EDIT) <

4

13, VGG-16, and VGG-19. VGGNets secured the first place in
the localization track of ImageNet Challenge 2014. The authors
of VGGNets prove that increasing the depth of neural networks
can improve the final performance of the network to some
extent. Compared with AlexNet, VGGNets have the following
improvements:

1) The LRN layer was removed since the author of VGGNets
found the effect of LRN in deep CNNs was not obvious.

2) VGGNets use 3 × 3 convolution kernels rather than 5 × 5
or 5 × 5 ones, since several small kernels have the same
receptive field and more nonlinear variations compared with
larger ones. For instance, the receptive field of 3 × 3 kernels is
the same as one 5 × 5 kernel. Nevertheless, the number of
parameters reduces by about 45%, and three kernels have three
nonlinear variations.

D. GoogLeNet
GoogLeNet [33] is the winner of the ILSVRC 2014 image

classification algorithms. It is the first large-scale CNN formed
by stacking with Inception modules. Inception networks have
four versions, namely Inception v1 [33], Inception v2 [34], [35],
Inception v3 [35], and Inception v4 [36].
1) Inception v1

Due to objects in images have different distances to cameras,
an object with a large proportion of an image usually prefers a
large convolution kernel or a few small ones. However, a small
object in an image is the opposite. Based on the past experience,
large kernels have many parameters to train, and deep networks
are hard to train. As a result, Inception v1 [33] deploys 1 × 1, 3
× 3, 5 × 5 convolution kernels to construct a “wide” network,
which can be seen in Fig. 7, Convolution kernels with different
sizes can extract the feature maps of different scales of the
image. Then, those feature maps are stacked to obtain a more
representative one. Besides, 1 × 1 convolution kernel is used to
reduce the number of channels, i.e., reduce computational cost.

2) Inception v2

Inception v2 [35] utilizes batch normalization to handle
internal covariate shift problem [34]. The output of every layer
is normalized to normal distribution, which can increase the
robustness of the model and train the model with a relatively
large learning rate.

Furthermore, Inception v2 shows that a single 5 × 5
convolutional layers can be replaced by two 3 × 3 ones, shown
in Fig. 8 (a). One n x n convolutional layer can be replaced by
one 1 x n and one n x 1 convolutional layer shown in Fig. 8 (b).
However, the original paper points out the use of factorization
is not effective in the early layers. It is better to use it on
medium-sized feature maps. And filter banks should be
expanded (wider but not deeper) to improve high dimensional
representations. Hence, only the last 3 × 3 convolution of each

branch is factorized, shown in Fig. 8 (c).

3) Inception v3

Inception v3 [35] integrates major innovations mentioned in
Inception v2. And factorizing 5 × 5 and 3 × 3 convolution
kernels into two one-dimensional ones (one by seven and seven
by one, one by three and three by one, respectively). This
operation accelerates the training and further increases the
depth of networks and the non-linearity of networks. Besides,
the input size of the network changed from 224 by 224 to 299
by 299. And Inception v3 utilizes RMSProp as the optimizer.
4) Inception v4 and Inception-ResNet

Inception v4 modules [36] are based upon that of Inception
v3. The architecture of Inception v4 is more concise and utilizes
more Inception modules. Experimental evaluation proved that
Inception v4 is better than its predecessors.

In addition, ResNet structure [37] is harnessed to extend the
depth of Inception networks, namely Inception-ResNet-v1 and
Inception-ResNet-v2. Experiments proved that they could
improve the training speed and performance.

E. ResNet
Theoretically, Deep Neural Networks (DNN) outperform

shallow ones as the former can extract more complicated and
sufficient features of images. However, with the increase of
layers, DNNs are prone to cause gradient vanishing, gradient
exploding problems, etc. He et al. [37] proposed a 34-layer
Residual Network in 2016, which is the winner of the ILSVRC
2015 image classification and object detection algorithm. The
performance of ResNet exceeds the GoogLeNet Inception v3.

One of the significant contributions of ResNet is the two-
layer residual block constructed by the shortcut connection, as
shown in Fig. 9 (a) below.

50-layer ResNet, 101-layer ResNet, and 152-layer ResNet

utilize three-layer residual blocks, as shown in the Fig. 9 (b)
above, instead of two-layer one. Three-layer residual block is
also called the bottleneck module because the two ends of the

Input

1×1

3×3

1×1 1×1Pool

5×51×1

Concat

Fig. 7. Inception v1 module with dimension reductions

Input

1×1

3×3

1×1 1×1Pool

3×31×1

Concat

3×3

Input

1×1

1×n

1×1 1×1Pool

1×n1×1

Concat

n×1n×1

1×n

n×1

Input

1×11×1 1×1Pool

3×31×1

Concat

3×11×3

3×11×3

Fig. 8. Inception v2 module. (a) Each 5 x 5 convolution is replaced by two 3
x 3 convolutions. (b) n x n convolution is replaced by a 1 x n convolution and
a n x 1 convolution. (c) Inception modules with the last convolutional layer is
factorized.

3×3, 64

3×3, 64

+

ReLU

ReLU

64-d

1×1, 64

3×3, 64

+

ReLU

ReLU

256-d

1×1, 256

ReLU

(a) (b)

Fig. 9. Structure of ResNet blocks. (a) The structure of two-layer residual
block. (b) The structure of three-layer residual block

58/67

Microsoft ResNet

1. ResNet is a new 152 layer network architecture (He et al. 2016).

2. ResNet has the following architecture.

59/67

Microsoft ResNet

1. ResNet has stacked residual blocks.

2. Every residual block has two 3x3 conv layers

Fei-Fei Li &
 Justin Johnson &

 S
erena Y

eung
Lecture 9 -

M
ay 2, 2017

Fei-Fei Li &
 Justin Johnson &

 S
erena Y

eung
Lecture 9 -

M
ay 2, 2017

Input

S
oftm

ax

3x3 conv, 64

7x7 conv, 64, / 2

FC
 1000

P
ool

3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 64
3x3 conv, 64

3x3 conv, 128
3x3 conv, 128, / 2

3x3 conv, 128
3x3 conv, 128

3x3 conv, 128
3x3 conv, 128

...

3x3 conv, 512
3x3 conv, 512, /2

3x3 conv, 512
3x3 conv, 512

3x3 conv, 512
3x3 conv, 512

P
ool

C
ase S

tudy: R
esN

et
[H

e et al., 2015]

relu

R
esidual block

3x3 conv

3x3 conv

X
identity

F(x) + x

F(x)

relu

X

Full R
esN

et architecture:
-

S
tack residual blocks

-
E

very residual block has
tw

o 3x3 conv layers

73

3. The authors believe that “it is easier to optimize the residual mapping than to

optimize the original, unreferenced mapping”.

4. The ResidualNet creators proved empirically that it’s easier to train a 34-layer

residual compared to a 34-layer cascaded (Like VGG).

60/67

MobileNet

1. Google proposed MobileNet V1 to reduce the model size and

complexity(Howard et al. 2017).

2. Depthwise Separable Convolution is used.

3. It is useful for mobile and embedded vision applications

In a standard convolution, we would di-

rectly convolve in depth dimension.

In depthwise convolution, each filter

channel only used at one input channel.

61/67

MobileNet

Depthwise separable convolution uses 1× 1 convolution after Depthwise convolution2.

2Figure taken from Atul Pandey page
62/67

Comparing different CNN architectures on ImageNet

ImageNet is an image database organized according to the WordNet hierarchy.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 2017Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 9 - May 2, 201783

ImageNet Large Scale Visual Recognition Challenge (ILSVRC) winners

63/67

Some other CNN networks

1. Inception-v3 (2015)

2. Xception (2016)

3. Inception-v4 (2016)

4. Inception-ResNet-V2 (2016)

5. ResNeXt-50 (2017)

6. DenseNet (CVPR 2017)

7. MobileNets (2017 & 2018)

8. For more networks, please study the networks given in

https://paperswithcode.com/sota/image-classification-on-imagenet

64/67

https://paperswithcode.com/sota/image-classification-on-imagenet

Reading

Readings

1. Chapter 9 of Deep Learning Book3

3Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
65/67

References i

Dai, Jifeng et al. (2017). “Deformable Convolutional Networks”. In: IEEE International

Conference on Computer Vision, pp. 764–773.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT

Press.

He, K. et al. (2016). “Deep Residual Learning for Image Recognition”. In: Proc. of the

IEEE Conference on Computer Vision and Pattern Recognition (CVPR),

pp. 770–778.

Howard, Andrew G. et al. (2017). MobileNets: Efficient Convolutional Neural Networks

for Mobile Vision Applications. eprint: 1704.04861.

Krizhevsky, Alex, Ilya Sutskever, and Geoffrey E. Hinton (2012). “Imagenet

classification with deep convolutional neural networks”. In: Advances in neural

information processing systems, pp. 1097–1105.

Larsson, Gustav, Michael Maire, and Gregory Shakhnarovich (2017). “FractalNet:

Ultra-Deep Neural Networks without Residuals”. In: International Conference on

Learning Representations.

66/67

1704.04861

References ii

LeCun, Yann et al. (1998). “Gradient-Based Learning Applied to Document

Recognition”. In: Proceedings of the IEEE. Vol. 86. 11, pp. 2278–2324.

Li, Zewen et al. (2020). “A Survey of Convolutional Neural Networks: Analysis,

Applications, and Prospects”. In: CoRR abs/2004.02806.

Simonyan, Karen and Andrew Zisserman (2015). “Very Deep Convolutional Networks

for Large-Scale Image Recognition.”. In: International Conference on Learning

Representations.

Szegedy, Christian et al. (2015). “Going Deeper with Convolutions”. In: Computer

Vision and Pattern Recognition (CVPR).

Zeiler, Matthew D. and Rob Fergus (2014). “Visualizing and Understanding

Convolutional Networks”. In: Proc. of European Conference on Computer Vision,

pp. 818–833.

67/67

Questions?

cba

67/67

	Introduction
	Example
	Training the network with shared parameter
	Convolution
	Convolutional Neural networks
	Convolutional neural network architectures
	Case studies
	Reading

