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Introduction



Common concept representation

1. Consider the task of transferring a concept from a source domain to different
target domains.
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2. For example, consider the following tasks

» A translation from Persian language to English language
> A translation from Persian language to German language
» A translation from Persian language to French language
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Sequence to sequence models

1. In seq2seq, the idea is to have two recurrent neural networks (RNNs) with an

encoder-decoder architecture:
» read the input words one by one to obtain a vector representation of a fixed

dimensionality (encoder), and
» conditioned on these inputs, extract the output words one by one using another

RNN (decoder).
2. Both the encoder and decoder are recurrent neural networks such as LSTM or

GRU units.

Encoder She = is >leating> a > green — apple

Context vector (length: 5)

( Y
( [01,-0.2,08,15,-0.3] )=

Y

Decoder W > FE O i = &% - ER

3. A critical disadvantage of this fixed-length context vector design is incapability of

remembering long sentences.
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Attention models

1. RNNs cannot remember longer sentences and sequences due to the

vanishing/exploding gradient problem.
2. The performance of the encoder-decoder network degrades rapidly as the length

of the input sentence increases.
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Sentence length

3. In psychology, attention is the cognitive process of selectively concentrating on

one or a few things while ignoring others.

Example (Counting the number of people in a photo)

Counting the number of heads and ignoring the rest.
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Attention models (examples)

1. Consider two different tasks : neural machine translation and image captioning.

neural machine translation (heatmap) Image captioning

a red double decker bus driving down a street.

Neural network model Neural network model

ENCODER DECODER

! moy Vision Language
Deep CNN Generating
RNN
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how are you ?

n n n ;L I n )

L
fime step 1 2 3 4 5 [] 7
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Attention models



Attention models

1. The attention mechanism was born to help memorize long source sentences in
neural machine translation (NMT) (Bahdanau, Cho, and Bengio 2015).

2. Instead of building a single context vector out of the encoder’s last hidden state,
the goal of attention is to create shortcuts between the context vector and the
entire source input.

3. The weights of these shortcut connections are customizable for each output
element.

4. The alignment between the source and target is learned and controlled by the
context vector.
5. Essentially the context vector consumes three pieces of information:

» Encoder hidden states
» Decoder hidden states
» Alignment between source and target
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Attention models

1. Assume that we have a source sequence x of length n and try to output a target
sequence y of length m

X = [x1,X2, ..., Xn]

Y=,y Yml

2. The encoder is: bidirectional RNN with a forward hidden state 7; and a
backward one h ;.

3. A simple concatenation of these two hidden states represents the encoder state.

4. The motivation is to include both the preceding and following words in the
annotation of one word.

7/69



Attention models

1. Model of attention
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Encoder: bidirectional RNN
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Attention models

1. The decoder network has hidden state s; = f(s¢—1,y:—1,C¢) at position
t=1,2,...,m.

2. The context vector c; is a sum of hidden states of the input sequence, weighted
by alignment scores:

n

Cr = Z atih; Context vector for output y;
i=1

ay,; = align(ye, x;) How well two words y; and x; are aligned.

exp (score(s;_1, h;
= ad (st-1, i) Softmax of predefined alignment score.

> iy exp (score(st—1, hj))

3. The alignment model assigns a score o ; to the pair of (yt, x;) based on how well
they match.

4. The set of {a;,;} are weights defining how much of each source hidden state
should be considered for each output.

9/69



Attention models

1. The alignment score « is parametrized by a feed-forward network with a single
hidden layer (Bahdanau, Cho, and Bengio 2015).

2. This network is jointly trained with other parts of the model.

3. The score function is in the following form.
score(s;, h;) = v tanh(W,[s;; h;])

where both V, and W, are weight matrices to be learned in the alignment model.
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Alignment scores

1. The matrix of alignment scores explicitly show the correlation between source and
target words.
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Alignment scores

1. The matrix of alignment scores explicitly show the correlation between source and

target words.
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hierarchical attention network (HAN)

1. Attention can be effectively used on various
levels (Yang et al. 2016).

2. HAN applicable to classification problem,
sentence
attention

not sequence generation.

3. HAN has two encoders: word and sentence.

» Word encoder processes each word and : 3 ! |sentence
LE e e — 7. ! encoder

aligns them a sentence of interest. R g S e :
» Then, sentence encoder aligns each

sentence with final output.
word
attention

4. HAN enables hierarchical interpretation of

» which sentence is crucial in classifying

document, word
. . encoder
» which part of a sentence (which words) are

salient in that sentence.
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Self-Attention

1. Consider the following example

Example (Self-Attention)

» Consider the following sentence

The animal didn’t cross the street because it was too tired.
» What does it in this sentence refer to?

> Is it referring to the street or to the animal?

2. Self-attention (intra-attention) is an attention mechanism relating different
positions of a single sequence in order to compute a representation of the same
sequence (Cheng, Dong, and Lapata 2016).

3. It is very useful in

Machine reading (the automatic, unsupervised understanding of text)
Abstractive summarization

v

v

v

Image description generation
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Self Attention

1. The self-attention mechanism enables us to learn the correlation between the

current words and the previous part of the sentence.

The FBI is chasing a criminal on the run .

Mhe FBI is chasing a criminal on the run .

The BBI is chasing a criminal on the run .
The EBI # chasing a criminal on the run .
The FBI is chasing a criminal on the run.

The FBI is chasing a criminal on the run.

The FBI is chasing a criminal on the run.
The FBI # chasing a criminal em therun.
The BFBI is chasing @ criminal em the run.

The FBI is chasing a criminal on the mn .

2. The current word is in red and the size of the blue shade indicates the activation
level.
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Self Attention

1. Self-attention is applied to the image to generate descriptions (Xu et al. 2015).

~

14x14 Feature Map

1.Input 2. Convolutional 3. RNN with attention 4. Word by

Image Feature Extraction over the image word
generation)

\

2. Image is encoded by a CNN and a RNN with self-attention consumes the CNN
feature maps to generate the descriptive words one by one.

3. The visualization of the attention weights clearly demonstrates which regions of

the image, the model pays attention to output a certain word.
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Self Attention

A(0.98) woman(0.54)

throwing(0.33) frisbee(0.37)

a(0.18) park(0.35)
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Soft vs Hard Attention

1. The soft vs hard attention is another way to categorize how attention is defined
based on whether the attention has access to the entire image or only a patch.
» Soft Attention: the alignment weights are learned and placed “softly” over all
patches in the source image (same idea as in (Bahdanau, Cho, and Bengio 2015)).
> Soft attention, in its simplest variant, is no different for images than for vector-valued
features and is implemented exactly.
» Pro: the model is smooth and differentiable.
» Con: expensive when the source input is large.
» Hard Attention: only selects one patch of the image to attend to at a time.
> Hard attention for images has been known for a very long time: image cropping.
> Pro: less calculation at the inference time.
» Con: the model is non-differentiable and requires more complicated techniques such

as variance reduction or reinforcement learning to train.
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Global vs Local Attention

1. Global and local attention are proposed in (Luong, Pham, and Manning 2015).

2. The idea of a global attentional model is to consider all the hidden states of the
encoder when deriving the context vector.

Global attention Local attention

D7\ N
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Global vs Local Attention

1. The global attention has a drawback that it has to attend to all words on the
source side for each target word, which is expensive and can potentially render it
impractical to translate longer sequences,

2. The local attentional mechanism chooses to focus only on a small subset of the
source positions per target word.

3. Local one is an interesting blend between hard and soft, an improvement over the
hard attention to make it differentiable:

4. The model first predicts a single aligned position for the current target word and a
window centered around the source position is then used to compute a context
vector.

p; = n X sigmoid (v;)r tanh(tht)>

n is length of source sequence. Hence, p, € [0, n].
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Global vs Local Attention

1. To favor alignment points near p,, they placed a Gaussian distribution centered

around p,. Specifically, the alignment weights are defined as

. . s — pt)?
ast = align(ht, hs) exp <—(20'Zt)>

and

p: = n x sigmoid (v; tanh(tht)>

Context vector

Aligned position
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Generalized model of attention




Retrieving a record from a relational database

1. Consider the following table, called PERSONS, in a relational database.

ID Name Family
005123174812 Ali Ahmadi
015843268901 Mohammad Reza Ali Mohammadi
005123174823 Ashkan Mohammadi

2. Now consider the following queries.
» SELECT ID, Name, Family FROM PERSONS WHERE |D="015843268901"
» SELECT ID, Name, Family FROM PERSONS WHERE ID like '00512317%'

3. Here, concepts of query,key, and value become and the result is retrieved using

the following similarity function.

Similarity(q, k,v) = Z Similarity(q, k;) X v;

]
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Retrieving a value from neural Turing machine memory

1. Consider the following memory in the neural Turing machine.

Key  Value

key 1 Valuel
key 2 Value 2
key 3 Value 3

2. When reading from the memory at time t, an attention vector of size p, w;
controls how much attention to assign to different memory locations.

3. The read vector r; is a sum weighted by attention intensity:

p
re=> we()Me(/)
i=1
1%
we(i) =1,Vi: 0 < we(i) <1
=1

]
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Generalized model of attention

1. Consider the following sentence.

high attention

| 1l

She is eating a apple.

2. For calculating the attention of a target word with respect to the input word,

» we first use the query of the target word and the key of the input word,

> next calculate a matching score, and

» finally calculate the weighted sum of value vectors using the matching scores.

The
The
The
The

The
The
The
The
The

The FBI is chasing a criminal on the run .

FBI is chasing a criminal on the run .

BBI is chasing a criminal on the run .

FBI
FBI

FBI
FBI
FBI
FBI
FBI

is
is
is
is
is

is

chasing a criminal on the run .
chasing a criminal on the run .
chasing a criminal on the run .
chasing a criminal on therun.

chasing a criminal @m the run.

chasing @ criminal em the run.

chasing

&

criminal on the man .
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Generalized model of attention

1. Each word is key, query and value.
2. Each word w is represented by a vector x € RY by using an embedding method.
3. Calculate query (q € RP) for x € R?, which is projection of x to a new space.

q= qux.

4. Calculate key (k € RP) for x € R?, which is projection of x to a new space.

k=w, x.

5. Calculate value (w € RP) for x € RY, which is projection of x to a new space.

V=W, X

6. A single word x has three different representations. Sometimes, we look at this
word as query, sometimes as key, and sometimes as value.

7. The self-attention means that looking a word as query and compute the similarity
of the query with all of the words seen as key.

8. Then use the softmax for computing the weights and compute the weighted
average all of the words seen as value.

9. This computes the attention vector.
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Generalized model of attention

1. Consider the following sentence.

high attention

| —l

She is eating a apple.

2. Calculating the attention for word apple.
3. Taking the inner product of the query vector of apple to the key vector of the

previous words.

a = softmax (q;—pple kShev qup/ekisa q;rpplekeatinga q;rpplekaa q;rpple kgreen)
4. Suppose that we obtain a = (0.1,0.1,0.5,0.1,0.2). Then we obtain

Vapple = 0.1vspe + 0.1vjs + 0.5Veating + 0.1v; + 0.2vgeen
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1. Self-attention uses the following neural network architecture.

Attention

Similarity Softmax
value= Y ajv;

e e e

- o ®
o o °®
e S D G

q
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Generalized model of attention

1. By defining three different vectors corresponding to each word.
» Key k € RP and k = W/ x, where W, € R?*P and x € R?.
> Query g € R? and q = W/ x, where W, € R?*” and x € R?.
» Valuev e RP and v = WVTx, where W, € R?*P and x € RY.
2. By defining the following matrices
> X = [x1,X2,...,X,], where X € RY*".
> K = [ki,ka, ..., ky], where K € RPX,
» Q=1[q1,92,-..,qs], where Q € RP*",
» V =[vi,va,...,V,], where V € RPX",

3. Then, the new value Z € RP*" equals to Z = V Softmax (%)
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Alignment scores

Name

Alignment score function

Paper ( https://lilianweng.github.io/

1il-1log/2018/06/24/attention-attention.html)

Content-base attention

Additive

Location-Base

General

Dot-Product

Scaled Dot-Product

score(s¢, h;) = cosine[st, hj]

score(st, h;) = v tanh(W,[s¢; h;])

o j = softmax(W,s;)

score(st, hj) = s/ W,h;
score(st, h;) = s/ h;
stThi

score(s¢, h;) = v

A. Graves, et al. "Neural Turing ma-
chines”, arXiv, 2014.

D. Bahdanau, et al.”Neural machine
translation by jointly learning to align
and translate”, ICLR 2015.

T. Luong, , et al " Effective Ap-
proaches to Attention-based Neural Ma-
chine Translation”, EMNLP 2015.

Same as the above

Same as the above

A. Vaswani, et al. "Attention is all you
need”, NIPS 2017.
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Image captioning

1. The natural image caption generator was proposed in (Xu et al. 2015).

<start>  Giraffes standing <end>
Pretrained CNN I Softmax l I Softmax I I Softmax I Softmax
using ImageNet dataset T T T T
5 >3 —~ = =
>| | 2 Sl=>l5l=l5]|— - =25
= | =t | =1
Feature vector
Input Image at fc layer
(224x224x3) (1x1x2048)

E

=
E
55
E
3

<start>  Giraffes other

2. This network is a combination of CNN and LSTM networks.
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Image captioning

1. The outputs of lower layers of CNN are used as representation of values.

[TWITRITE  CETN T
0.2

02 01

\/

r

LSTM
LSTM
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Image captioning results

1. Examples of attendlng to the correct object

A stop sign is on a road with a
mountain in the background.

1

A little girl sitting on a bed with A group of people sitting on a boat A giraffe standing in a forest with
in the water. trees in the background.

a teddy bear.

2. Examples of mlstakes

A man wearing a hat and

A Iarge white bird standing in a forest.
a hat on a skateboard.

A person is standing on a beach A woman is sitting at a table A man is talking on his cell phone
with a surfboard. with a large pizza. while another man watches.
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Image captioning results

1. There is also a method given in (Vinyals et al. 2015).

A person riding a Two dogs play in the grass. A skateboarder does a trick A dog is jumping to catch a
frisbee.

motorcycle on a dirt road.

A refrigerator filled with lots of

Two hockey players are
food and drinks.

fighting over the puck.

A group of young people
playing a game of frisbee.

A herd of elephants walking

A close up of a cat laying
across a dry grass

A red motorcycle parked on the A yellow school bus parked
on a couch.

of the road.Z ~=====in a parking lot.|
e £

3

Somewhat related to the image
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Transformers model

1. The soft attention and make it possible to do sequence to sequence modeling
without recurrent network units (Vaswani et al. 2017).

2. The transformer model is entirely built on the self-attention mechanisms without

using sequence-aligned recurrent architecture.

am a studen
4
e
ENCODERS — DECODERS ENCODER
ENCODER
1
e sui

ENCODER
ENCODER

I am a student
4
~
DECODER
DECODER
DECODER
DECODER

Figure: Jay Alammar
3. The encoding component is a stack of six encoders.

4. The decoding component is a stack of decoders of the same number.
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Transformers training

1. The Transformers works slightly differently during training and inference.

2. Input sequence: You are welcome in English, target sequence: De nada in Spanish

De Néda ‘ ‘ e
SN
P

Transformer

)

e Enc-1 Out

o\

. [}
Dec-2 Out

L}

A
; Dec-1 Out o
1

Decoder-1 J

wbedding J [ o "c’(;“;;’,:'g
i

J [Z‘m.,e:m; ) [ W

14
WordIDs
i

You are welcome

POV PO
. Word IDs
‘ (5]

: De Nada

Figure:Ketan Doshi
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Transformers inference

1. During Inference, we have only the input sequence and don't have the target
sequence to pass as input to the Decoder.

2. The goal is to produce the target sequence from the input sequence alone
De T
Word Pfobab/lmes \ h N
Transformer \

Dec-. 2 Out

1
|
|
G l\
f g |
e Enc-1 Out Dec-1 Out ° ‘\
\I
1
]
]
]
I
I
]
]
I
]

= ]
Position /
/
o
c Word IDs Word IDs
L)

/

i o <START> De
You are welcome <START> “

Figure:Ketan Doshi
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Transformers encoder

BN =

Each encoder has two sub-layers and each decoder has three sub-layers

Each sublayer has residual connection.

All encoders receive a list of vectors each of the size 512.

The size of this list is hyper-parameter we can set (it would be the length of the

longest sentence in our training dataset).

Feed Forward

—

SelfAtentior

J}_(

ENCODER
i

— 4 4
——— ) C,( Add & Normalize )\
“"“;‘ ] i ( Feed F:rward ) ( Feed Forward )
4 4

-/
ENCODER #1

ry
T i T ' . i
2 2 2 [ H (
t t 1 ' y
H Y
[ ] S innan
T T T PENCODING <§
. - x» I x: CEEE
Je suis étudiant Thinking

Machines

Figure: Jay Alammar
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Transformers

1. A transformer of two stacked encoders and decoders

- ( Softmax )
('( Add & Normalize ) L

N : ( Linear )
E E‘ ( Feed Forward ) ( Feed Forward ) * DECOSER 2
8| Lt 4 A
% :.'F( . Add & Normalize . ) . :’( PPPPrr— )
E ( Self-Attention ) i z :
k‘ ________ S — ry / é | ( Feed Forward ) ( Feed Forward )
| ] - B R e I I

K«»( I Add & Normalize I ) E ,"( Add & Normalize
- ) : ) L}
z E ( Feed Forward ) ( Feed Forward ) E’( Encoder-Decoder Attention )
Al e T ‘aemneooos [ IITTTTTTTTITTTTTTTT T
2 ,«»( Add & Normalize ) ,-»( Add & Normalize )
= [y 3 : [ [}

( Self-Attention ) E ( Self-Attention )

:
:
T ~) ey S
"Excopie @& @ (L é
x [ 1 I B

Thinking Machines

Figure: Jay Alammar
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Transformers embedding and position encoding

1. Transformers needs two things for a word: its meaning and its position in
sequence.
2. The Transformers has two Embedding layers.
» Input sequence is fed to the first embedding layer (Input Embedding).
» Target sequence is fed to the second embedding layer after shifting the targets right
by one position and inserting a Start token in the first position.

Embedding & Position Encoding Embedding & Position Encoding
(Input) (Output)
t t
You are wwelcome | PAD START @ De nada | PAD
Input Sequence Target Sequence
Embedding & Position Encoding ‘
- @D =
Embeddingsj ) : Posi 2 37 i
{ Embedding } [ Position Encoding }
4
I
74 62 17 1
Word IDs 1
You are welcome: PAD

Input Sequence

Figure:Ketan Doshi 39/69



Transformers position encoding

1. There are two position encoding layers for: input sequence and output sequence.
2. Let d be size of embedding for each word and L be length of input sequence.
3. Transformers considers an array of d x L to encode positions of the input

sequence.

Encoder Input
Samples x Seq Len x Embedding size)

Embedding & Position Encoding

|
. @ -

Embeddings Position Encodings

Embed size = 3 Encode size = 3

(5x4x3) (5x4x3)
Embedding ‘ Position Encoding

Word IDs
(samples x seq len)

Batch of Input Sequences
(5 samples x 4 seq length)

Figure:Ketan Doshi
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Transformers position encoding

1. Let pos be the position of word in sequence and i be the index value in positional
encoding. Then, PE is computed using
sin (obra) i i = 2

PE(pos, i) =
( ) COS(LS-> ifi=2k+1

10000//d

2. For word w at position pos € [0, L — 1] in the input sequence w = (wp, ..., w;_1),

with 4-dimensional embeddinge,,, and d = d;0qe) = 4, the operation would be

el = e+ [sin (55558) o (100000 5" (150357 <2 (3]

e+ i) o) (22 con (22

Encoding in hidden dimension 1 Encoding in hidden dimension 2

2
£ 1 o
H P 2
g 9
5 o ®
20 S I
s o o
2 °
3 -1 © oo
&

12345678 910111213141516 12345678 910111213141516

Position in sequence Position in sequence
Encoding in hidden dimension 3 . Encoding in hidden dimension 4

51
g
§
S0
3 -1
g

12345678 0910111213141516 12345678 910111213141516

Position in sequence Position in sequence
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Transformers position encoding

1. Position encoding interleaves a sine curve and a cos curve, with sine values for all
even indexes and cos values for all odd indexes.

2. This results the following position encoding and the corresponding curves.

Figure: Ketan Doshi

Figure: Amirhossein Kazemnejad
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Transformers encoder

1. The Encoder passes its input into a Multi-head Self-attention layer.

2. The Self-attention output is passed into a Feed-forward layer, which then sends its

output upwards to the next Encoder.

Emb

ﬁcoder-z

([ LayerNom ]

ﬁcoder-z

Ke

>

y Qury/

Enc-1 Out

{ Encoder-1

Figure: Ketan Doshi
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Transformers decoder

1. The Decoder passes its input into a Multi-head Self-attention layer.

2. This operates in a slightly different way than the one in the Encoder.

3. It is only allowed to attend to earlier positions in the sequence. This is done by
masking future positions.

Output
A

s I\
—_s i
Transformer omax

Decoder

Emb

Encoder

Encoder

- |

Enc-6 Out

Embedding fijcokics ((Embedding | | Fositon
From Output - L) f
Embedding [ [
Input Target

Figure: Ketan Doshi
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Transformers multi-head attention

1. The Transformers calls each Attention processor an Attention Head and repeats it
several times in parallel.

2. This is known as Multi-head attention.

3. It gives its Attention greater power of discrimination, by combining several similar
Attention calculations.

Attention Score

‘ Softmax
L S—
1

Attention Score l'

N heads

Figure: Ketan Doshi

45/69



1. There are three separate Linear layers for the Query, Key, and Value.

2. Each Linear layer has its own weights.

3. The input is passed through these Linear layers to produce the Q, K, and V
matrices.

Figure: Ketan Doshi
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Transformers multi-head attention

1. The data are split across the multiple Attention heads so that each can process it
independently.

2. This is a logical split only. The Query, Key, and Value are not physically split into
separate matrices, one for each Attention head.

3. A single data matrix is used for the Query, Key, and Value, respectively, with

logically separate sections of the matrix for each Attention head.

2 Heads

- Q'for

- Q -
Emb Sz one head one head Query Sz Query Sz

Logical Q matrix
per head
(Visualization only)

Heads
Pl

oV
p—ae

Seq

Pa—
Q Query Sz

Swap

Figure: Ketan Doshi

Reshape

welcome.
PAD
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Transformers multi-head attention

1. We now have separate Attention Scores for

each head.

2. They need to be combined together into a

single score. Reshape
3. This Merge operation is essentially the
reverse of the Split operation. .
wap

4. It is done by simply reshaping the result
matrix to eliminate the Head dimension.

> Reshape the Attention Score matrix by Query Sz Query sz
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swapping the Head and Sequence
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» Collapse the Head dimension by reshaping . Figure: Ketan Doshi
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1. The end-to-end flow of the Multi-head Attention is
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Transformers multi-head attention

1. The different attention heads are focusing on different words as we encode the

word it.
Layer: '5 % Attention: | Input - Input ~ §| Layer:| 5 3| Attention:| Input - Input s
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Figure: Jay Alammar
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Transformers decoder attention layers

1. The attention layers of Transformers decoder are
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Transformers decoder self-attention and masking

1. The Decoder Self-Attention works just like the Encoder Self-Attention, except
that it operates on each word of the target sequence.
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Transformers decoder encoder-decoder attention and masking

1. The Encoder-Decoder Attention takes its input from two sources.

2. The Encoder-Decoder Attention computes the interaction between each target
word with each input word.

3. The Masking masks out the Padding words in the target sequence.
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Simple Neural Attention Meta-Learner (SNAIL)

1. The SNAIL was developed partially to resolve the problem with positioning in the
transformer model by combining the self-attention mechanism in transformer with
convolutions (Mishra et al. 2018).

2. It has been demonstrated to be good at both supervised learning and
reinforcement learning tasks.
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BERT model

1. BERT (Pre-training of Deep Bidirectional Transformers for Language
Understanding) is basically a trained Transformers Encoder stack (Devlin et al.

2019).

2. Each position outputs a vector. For the sentence classification, we focus on the

output of only the first position ([CLS]).

3. That vector can now be used as the input for a classifier. The paper achieves
great results by just using a single-layer neural network as the classifier.

[

12 ( ENCODER ]
2 ( ENCODER ]
1 ( ENCODER

1 2 3 4 512

[cLs)

4. BERT makes use of a novel technique called Masked LM (MLM): it randomly

masks words in the sentence and then it tries to predict them.
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BERT model

1. BERT needs the input to be massaged and decorated with some extra meta data:

Token embeddings A [CLS] token is added to the input word tokens at the
beginning of the first sentence and a [SEP] token is inserted at the end of each
sentence.

Segment embeddings A marker indicating Sentence A or Sentence B is added
to each token. This allows the encoder to distinguish between sentences.

Positional embeddings A positional embedding is added to each token to
indicate its position in the sentence.
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Training BERT using masked language model

1. Randomly mask out 15% of the words in the input (replacing them with a
[MASK] token) .

2. Then run the entire sequence through the BERT attention based encoder and
predict only the masked words, based on the context provided by the other

non-masked words in the sequence.

3. The problem here is : the model only tries to predict when the [MASK] token is
present in the input, while we want the model to try to predict the correct tokens
regardless of what token is present in the input.

4. To deal with this issue, out of the 15% of the tokens selected for masking:

» 80% of the tokens are actually replaced with the token [MASK].
» 10% of the time tokens are replaced with a random token.
» 10% of the time tokens are left unchanged.
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Training BERT using next Sentence prediction model

1. To understand relationship between two sentences, BERT training process also
uses next sentence prediction.

2. A pre-trained model with this kind of understanding is relevant for tasks like
question answering.

3. During training the model gets as input pairs of sentences and it learns to predict
if the second sentence is the next sentence in the original text as well.

4. BERT separates sentences with a special [SEP] token.

5. During training the model is fed with two input sentences at a time such that

» 50% of the time the second sentence comes after the first one.
» 50% of the time it is a a random sentence from the full corpus.

6. BERT is then required to predict whether the second sentence is random or not.

7. To predict if the second sentence is connected to the first one or not, the output
of the [CLS] token is given to a classifier.
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BERT pre-trained architecture

1. There are two types of pre-trained versions of BERT depending on the scale of
the model architecture

BERT-Base 12-layer, 768-hidden-nodes, 12-attention-heads, 110M parameters.
BERT-Large 24-layer, 1024-hidden-nodes, 16-attention-heads, 340M
parameters.
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GPT-2 model

1. The GPT-2 is built using transformer decoder blocks (Radford et al. 2019).

2. BERT uses transformer encoder blocks.
3. A key difference between the two is that GPT2 outputs one token at a time.

Decoder #12, Position #1

_“ output vector

(( )
[ DECODER j
Decoder #2, Position #1
1111 output vector e
[ DECODER ]
DECODER I
( Feed Forward Neural Network )
( Masked Self-Attention )
g J
<s$>
1 2 1024
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GPT-2
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Embeddings from Language Model (ELMo)

1. ELMo learns contextualized word representation by pre-training a language model
in an unsupervised way (Peters et al. 2018).
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Embeddings from Language Model (ELMo)

1. The bidirectional Language Model (biLM) is the foundation for ELMo.

2. While the input is a sequence of n tokens, (xi,...,x,), the language model learns
to predict the probability of next token given the history.

3. In the forward pass, the history contains words before the target token,
n
p(Xl, . ,X,,) = Hp(X,' | X1yeo- ,X,',l)
i=1
4. In the backward pass, the history contains words after the target token,
n
p(x1,...,xn) = Hp(x,- | Xit1,--yXn)
i=1

5. The predictions in both directions are modeled by multi-layer LSTMs with hidden
states.
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Embeddings from Language Model (ELMo)

1. The model is trained to minimize the negative log likelihood (= maximize the log

likelihood for true words) in both directions:

n

%
L=-)" (|0gP(Xi | X1, ..o, Xi—1; Oe; OLsTM, Os)+
i—1

%
|0g P(Xi ‘ Xi+1y s Xns ee’ eLSTM7 @5)>

2. ELMo word representations are functions of the entire input sentence.

3. A linear combination of the vectors stacked above each input word is learned as
the representation of each token.
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Embeddings from Language Model (ELMo)
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word vectors
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