Deep learning

Representation Learning

Hamid Beigy

Sharif University of Technology

December 11, 2021

1. Introduction

2. Autoencoders

3. Word embedding

4. Graph embedding

5. Other 2vec embeddings

6. Reading

1/102

Introduction

1. The basic stages in design of a classification system.

*

(Sensors)(—
Y

I Feature selection /extraction .(—

| Classifier design '(—
[System evaluation)—

2/102

Introduction

. Various information processing tasks, such as classification or clustering, can be

very easy or very difficult depending on how the information is represented.

. Good features are essential for successful ML: 90% of effort.

. Handcraft features vs feature learning. Which of them results in a good

representation?

. Generally, a representation is said to be good if it makes the subsequent learning

tasks easier.

. The choice of representation depends on what is the subsequent task we want to

do.

. What are good features to represent images, texts, graphs, and etc.?

3/102

Introduction

1. How can we extract features from a 2D manifold in 3D?

3. Can we learn how to find a good representation of data? o102

What is deep representation learning

1. Deep learning learns multiple levels of representation of increasing
complexity /abstraction.

2. What makes a representation good?

» Have distributed representations.

» Have multiple levels of representations.

» Different explanatory factors of the data tend to change independently of each other

in the input distribution.
» Have a representation, which is good for different tasks.
> Linear relationships in representation space.
> King — Queen =~ Man — Woman

» Paris — France + Italy ~ Rome

3. Deep networks are appropriate for the above properties.

5/102

Autoencoders

Autoencoders

1. An autoencoder is a feed-forward neural net whose job it is to take an input x and
predict x.
2. In another words, autoencoders are neural networks that are trained to copy their

inputs to their outputs.
3. It consists of
» Encoder h = f(x)
» Decoder r = g(h)

v

Usually constrained in particular ways to make this task more useful.

v

Structure is almost always organized into encoder network (f) and decoder network

(g) and model (g(f(x)))
Trained by gradient descent with reconstruction loss.

v

v

This loss measures differences between input and output e.g. MSE :

J(0) = [g(f(x)) — x|?

6/102

Autoencoders

1. Autoencoders consist of an encoder h = f(x) taking an input x to the hidden
representation h and a decoder X = g(x) mapping the hidden representation h to
the input X.

2. The goal is

7/102

Autoencoder architecture

1. An autoencoder is a data compression algorithm.

2. A hidden layer describes the code used to represent the input. It maps input to

output through a compressed representation code.

—>

Original
input

Encoder

— Decoder — 2
Reconstructed
input

Compressed

representation

8/102

Autoencoders

1. PCA can be described as

—> Encoder _>E_> Decoder _>

Original
input Beconstructed
input
Compressed
representation
min > " [|% — x|
w
WTw =1

2
i WTW«—H
TVEH‘ i — x

9/102

Autoencoders

1. Autoencoders can be thought of as a non linear PCA.

—> Encoder |— Decoder —>

Original
input

Reconstructed
input

Compressed
representation

. A 2
min> 1% = x|
T?Z lg(f(x)) — x|I>

10/102

Autoencoder vs PCA

1. Nonlinear autoencoders can learn more powerful codes for a given dimensionality,
compared with linear autoencoders (PCA)

“e:PC3
Ppe ';‘ 5]

PC2oN

o
[N7 W
s

D /&3 4 &3 8 qls
D /23 45 7 8 Qs

deep auto

6 /& 3 4 5 673 5 QE,

11/102

Autoencoder architecture

Encoding Decoding

12/102

1. Encoder 4+ Decoder Structure

input output
\ - =T
| I
/ - code | .-/ \ ’
I = -t Iy ! 1
') I
! s A ‘\
I} ! k \
Ny
"\!f y Ny \\J‘f .
X A { z A X
7 Iy 1 Ay
! y i
\ N ; I
\ \ ’ /
A \ I
\ i/ - e \ ! A
\ / - - \ I \
-~ "Il_._ \
') - - i - A
decoder
encoder

13/102

Autoencoder architecture

1. Autoencoders are data-specific
» They are able to compress data similar to what they have been trained on.
2. This is different from, say, MP3 or JPEG compression algorithm

» Which make general assumptions about "sound/images”, but not about specific
types of sounds/images

» Autoencoder for pictures of cats would do poorly in compressing pictures of trees.
Because features it would learn would be cat-specific.

3. Autoencoders are lossy

» This means that the decompressed outputs will be degraded compared to the
original inputs (similar to MP3 or JPEG compression).
» This differs from lossless arithmetic compression.

14/102

Stochastic Autoencoders

1. Part of neural network landscape for decades.
2. Traditionally used for dimensionality reduction and feature learning.

3. Modern autoencoders also generalized to stochastic mappings

pencoder(h‘x) = Pmodel(h|X)
Pdecoder (X| h) = Pmode/(X| h)

4. These distributions are called stochastic encoders and decoders, respectively.

5. Recent theoretical connection between autoencoders and latent variable models
have brought them into forefront of generative models.

15/102

Distribution view of Autoencoders

1. Consider stochastic decoder g(h) as a generative model and its relationship to the
joint distribution

pmodel(X7 h) = pmodel(h) X pmodel(X’h)
log pmodel(X7 h) = log Pmodel(h) + log pmodel(X|h) f 9

2. If his given from encoding network, then we want most likely x to output.
3. Finding MLE of x, h ~ maximizing pmodei(x, h).

4. Pmodel(h) is prior across latent space values. This term can be regularizing.

16/102

Meaning of Generative

1. By assuming a prior over latent space, can pick values from underlying probability

distribution!

generated distribution true data distribution
A

N p(x)

unit gaussian
generative
Q model .
2 || (neural net) +, [loss /
image space image space

17/102

Linear factor models

1. Many of the research frontiers in deep learning involve building a probabilistic
model of the input, pmoder(X)

2. Many probabilistic models have latent variables, h, with
Pmodel(X) = En [Pmoder(x|h)]-

3. Latent variables provide another means of representing the data.

4. The more advanced deep models will extend further latent variables: linear factor
models.

5. A linear factor model is defined by the use of a stochastic, linear decoder function
that generates x by adding noise to a linear transformation of h.

6. ldea: distributed representations based on latent variables can obtain all of the

advantages of learning which we have seen with deep networks

18/102

Autoencoder training using a loss function

1. Encoder f and decoder g.

f:Xw—h
g:h— X
: 2
argmin||x — (f o g)(x)||
f.g
2. One hidden layer
» Non-linear encoder
» Takes input x € R
» Maps into output h € RP
h= 0'1(WX + b)

£ =a(W'h+b)
» Trained to minimize reconstruction error such as
L(x,%) = [Ix — %|]?

» The hidden layer h provides a compressed representation of the input x
19/102

Training autoencoder

1. An autoencoder is a feed-forward non-recurrent neural network.
» With an input layer, an output layer and one or more hidden layers
It can be trained using the following technique
Compute gradients using back-propagation
Followed by mini-batch gradient descent

20/102

Autoencoders

Undercomplete Autoencoder

Undercomplete Autoencoder

1. An autoencoder whose code dimension is less than the input dimension is called
undercomplete.

2. Learning an undercomplete representation forces the autoencoder to capture the
most salient features of the training data.

3. The learning process is described simply as minimizing a loss function

L(x,g(f(x)))

where L is a loss function penalizing g(f(x)) for being dissimilar from x, such as
the mean squared error.

21/102

Undercomplete Autoencoder

1. Assume that the autoencoder has only one hidden layer.
2. What is difference between this network and PCA?

3. When the decoder g is linear and L is the means quared error, an undercomplete
autoencoder learns to span the same subspace as PCA.

4. In this case the autoencoder trained to perform the copying task has learned the
principal subspace of the training data as a side-effect.

5. If the encoder and decoder functions f and g are nonlinear, a more powerful
nonlinear generalization of PCA will be obtained.

22/102

Autoencoders

Regularized Autoencoders

Regularized Autoencoders

1. consider encoder f and decoder g.

X € R
h € R¥

2. When k > d, the autoencoder is called Overcomplete Autoencoders.

3. There are other ways we can constraint the reconstruction of an autoencoder than
to impose a hidden layer of smaller dimension than the input.

4. Regularized Autoencoders use a loss function that encourages the model to have
some properties besides reproducing inputs.

» Sparsity representation (Sparse Autoencoders)
» Smallness of derivative of representation (Contractive Autoencoders)
» Robustness to noise or to missing inputs (Denoising Autoencoders)

23/102

Sparse Autoencoders

1.

AR N

Sparse Autoencoders try to minimize the following function.

L(x, g(f(x))) + Q(h)

The first term is loss for copying inputs
The second term is sparsity penalty
In general neural network, we are trying to find the maximum likelihood: p(x|6)

We often use the log log p(x|6) for simplification, from which we can get the loss
function without regularization.

What about MAP (Maximum a posterior)?
p(0]x) o< p(x|0) > p(6)
Maximizing the log of the above function yields to
maximize (log p(x|0) + log p(#))

The first term is loss function and the second term is regularization penalty

24/102

Autoencoders

Denoising Autoencoders

Denoising Autoencoders

1. The denoising autoencoder (DAE) is an autoencoder that receives a corrupted
data point as input and is trained to predict the original, uncorrupted data point
as its output.

2. Traditional autoencoders minimize L(x, g(f(x)))

» L is a loss function penalizing g(f(x)) for being dissimilar from x, such as L, norm
of difference: mean squared error

3. A DAE minimizes L(x, g(f(X)))

» X is a copy of x that is corrupted by some form of noise
» The autoencoder must undo this corruption rather than simply copying their input

Encoder Decoder

Noise

Original Noisy Code Output
Image Input

25/102

Denoising Autoencoders

1. By having to remove noise, model must know difference between noise and actual
image.

26/102

Example of Noise in a DAE

1. An autoencoder with high capacity can end up learning an identity function (also
called null function) where input=output

2. A DAE can solve this problem by corrupting the data input
3. How much noise to add?

4. Corrup tinput nodes by setting 30 — 50% of random input nodes to zero

(0]

riginal input, corrupted data, reconstructed data

27/102

Training DAE

1. The DAE training procedure is

2. We introduce a corruption process C(X|x).

28/102

Training DAE

1. We introduce a corruption process C(X|x).
2. The autoencoder then learns a reconstruction distribution preconstruct (x|X)
estimated from training pairs (x, X) as follows:
» Sample a training example x; from the training data.
» Sample a corrupted version X; from C(X;|x = x;).
» Use (x,X) as a training example for estimating the autoencoder reconstruction
distribution preconstruct (X|X) = Pdecoder(X|h) with h the output of encoder f(X) and
Pdecoder typically defined by a decoder g(h).
» Typically we can simply perform gradient-based approximate minimization on the
negative log-likelihood — log pgecoder(X|h)-

7

Measure
Add noise to the . \ 1 5) reconstruction
input image f ’ g loss against

A 5 T original image

Feed
corrupted S {
input into N ¥

autoencoder Y . \)z

!) 20/102

3

/;;§
3

Results of DAE

Original Images

N

Noisy Input

Autoencoder Output

30/102

7

Autoencoders

Contractive Autoencoder

Contractive Autoencoder (CAE)

o o &~ w

Contractive autoencoders are explicitly encouraged to learn a manifold through
their loss function (Alain and Bengio 2014).

Desirable property: Points close to each other in input space maintain that

property in the latent space.

Method to avoid uninteresting solutions

Add an explicit term in the loss that penalizes that solution

We wish to extract features that only reflect variations observed in the training set

We would like to be invariant to other variations

AT %

4

X

/

X

31/102

Contractive Autoencoder (CAE)

1. Contractive autoencoder has an explicit regularizer on h = f(x), encouraging the
derivatives of f to be as small as possible.

2. This will be true if f(x) = h is continuous, has small derivatives.

r(x)

/__

>le
>e
X

-
=>-

»le
> ¢
X

1

3. We can use the Frobenius Norm of the Jacobian Matrix as a regularization term:

of (x) |2

Ox

4. These autoencoders called contractive because they contract neighborhood of
input space into smaller, localized group in latent space.

5. Exercise: What is the difference between DAE and CAE?

Q(f,x)_/\‘

F

32/102

Autoencoders

Stacked autoencoder

Stacked autoencoder

1. A stacked autoencoder is a neural network consist several layers of sparse
autoencoders where output of each hidden layer is connected to the input of the
successive hidden layer

Encoded
Layer2 Layer

Layerl Layer2 Decoded

Layerl
Input layer V! Output layer

2. Stacked autoencoder improving accuracy in deep learning with noisy autoencoders
embedded in the layers (Uma 2018).

33/102

Autoencoders

Applications

Word embedding (Mikolov, Sutskever, Chen, Greg S Corrado, et al. 2013)

10 T
ol
oven (Q microwave
(@) refrigerator
Qo
0.5 bulb
@bl
fan @ led charger
kitchen ® b.
o @ light @ battery
@) vanity 15 table
@sink @ 2V @ dewalt
00 @ bathroom i ()
) @ bathtub Chis kit @ ! @ bosch
@) faucet ~ shower o drill
@) []
Qvalve
@ finish @ deck
—05} @ color) Ogardenoh"se (© srinkler
. paint
@ concrete @ Urass
~1.0 . . . "
-0.8 -0.6 -0.4 -0.2 0.0 0.2 0.4 0.6

0.8

34/102

§ 025
< 02
015

01
005

183 7 15 31 63 127 255 5111023
Number of retrieved documents

European Community
Interbank markets monetary/economic

.

Disasters and
accidents

Leading economk_:'.

indicators .
. * N
:, l . -;‘.7%; Government
. L
Accounts/ . %o borrowings

35/102

Word embedding

Introduction

1. How do you represent a word?

> Represent words as atomic symbols such as talk, university, building.
> Represent a word as a one-hot vector such as

university = (0, 0 , 0 1 0 ,...,0)

egg’ student’ talk’ universii.‘y7 building7 v buy

2. lIssues with on-hot representation

» How large is this vector? dimensionality is large; vector is sparse
» Representing new words (any idea?).
» How measure word similarity?

36/102

Distributional representation

AR

. Linguistic items with similar distributions have similar meanings (words occur in

the same contexts probably have similar meaning).

university = (0.2, 0.1 ,0.12, 0.38 , 0.2 ,...,0.12)

egg student talk university building buy
Word meanings are vector of basic concept.
What are basic concepts?
How to assign weights?

How to define the similarity /distance?

37/102

How to use word vectors?

1. Distance/similarity
Cosine similarity Word vector are normalized by length
(u,v)
cos(u,v) = ———
’ [[ulflvi]

Euclidean distance
d _ o 2
(u,v) = flu—v]
Inner product This is same as cosine similarity if vectors are normalized

d(u,v) = (u,v)

2. Choosing the right similarity metric is important.
3. Word analogy

Vman — Ywoman 1 Vuncle = Vaunt

WOMAN
AUNT

UNCLE
QUEEN

KING

38/102

How to learn word vectors?

1. What are basic concept?

» We want that the number of basic concepts to be small and
» Basis concepts be orthogonal

2. How to assign weights?

3. How to define the similarity/distance such as cosine similarity?

39/102

Distributional representation (example)

T T T T T T T T T T
0.5 1 heiress 1
I
0.4f " B
[l I + countess
03+ +aunt | /" »duchess-
) /
T%Istel: | / /
/
0.2l oy / , | empress
- /
/ /
oak I | / * madam / 'y .
| | | y) / / I//
| nepH elr / ly
oF | - nepriow / ;b -
’ ! + woman ! ro
| I / s
- - [} .
0.1 ; uncle , ; . que%?‘?lf
! prother ! / ! /I duke
-0.2F / / | -
! / | / /
/ emperor
-03f !) L eme .
/ I
/ / |
-041 / / I B
/ {sir I
_05F {man lking -
1 1 1 1 Il 1 1 1 1 1 1
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

40/102

Term-document incidence matrix

Example
Anthony and Julius The Hamlet Othello Macbeth
Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1
Brutus 1 1 0 1 0 0
Caesar 1 1 0 1 1 1
Calpurnia 0 1 0 0 0 0
Cleopatra 1 0 0 0 0 0
mercy 1 0 1 1 1 1
worser 1 0 1 1 1 0

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.
Entry is O if term doesn’t occur. Example: Calpurnia doesn’t occur in Tempest.

Each term is represented as a vector of bits.

41/102

Term weighting

1. Evaluation of how important a term is with respect to a document.

2. First idea: the more important a term is, the more often it appears: term
frequency

tha = Y fi(x)

xed
where

F00) = { 1 ifx=t

0 otherwise

3. The order of terms within a doc is ignored

42/102

Inverse document frequency

1. Inverse document frequency of a term t:

N
idfy = /ogﬁ with Nis the collection size
t

2. Rare terms have high idf, contrary to frequent terms

3. Example (Reuters collection):

Term t dfy idfy
car 18165 | 1.65
auto 6723 | 2.08
insurance | 19241 | 1.62
best 25235 | 1.5

4. In tf-idf weighting, the weight of a term is computed using both tf and idf:

w(t,d) = tfq x idfy called tf — idf; 4

43/102

Dimensionality reduction

1. we don't need all of the dimensions that represent a word, only the most
important ones.
2. There are several techniques such as

» Principle Component Analysis (PCA): The most important dimensions contain the
most variance

» Latent Semantic Analysis (LSA): Project terms and documents into a topic space
using SVD on term-document (co-occurrence) matrix.

» Low-rank Approximation

3. Can we learn the dimensionality reduction from texts?

44/102

Latent Dirichlet allocation

1. Assumes generative probabilistic model of a corpus (Blei, Ng, and Jordan 2003).

2. Documents are represented as distribution over latent topics, where each topic is
characterized by a distribution over words.

08
ofofo—e

45/102

Word embedding

Neural probabilistic language model

Language modeling

1. An language model is a model for how humans generate language.

2. The quality of language models is measured based on their ability to learn a
probability distribution over words in vocabulary V.

3. Language models generally try to compute the probability of a word w; given its
n — 1 previous words, i.e. p(we|wi_1, Wr_pyi1).

4. Applying the chain rule and Markov assumption, we can approximate the
probability of a whole sentence or document by the product of the probabilities of
each word given its n previous words:

P(W17 cee WT) = Hp(W,'|W,',1, Ty, Wifn+1)
i

5. In n-gram based language models, we can calculate a word's probability based on
the frequencies of its constituent n-grams:

count(We—nt1,- -, We—1, Wt)

p(welwe—, -+, We—ny1) = count(We—py1,- - , We—1)

46/102

Neural probabilistic language model

1. In NNs, we achieve the same objective using the softmax layer (Bengio et al.
2003).

output
layer

@ P, = 1]hy)

Wy—n+1 @
projection hidden
layer

B P(w, = ilh,)

shared

Bl P (w; = nlh;)
projection J

exp(hT V;Vt)

w;E |74 eXp(hT V\CV,')

. 7Wt—n+1) = Z

2. Words are mapped into a |V/| x m matrix C, where |V/| is the size of vocabulary
and m is dimension of embedding.

47/102

Neural probabilistic language model

1. In this model, a sequence of words is given to the input of the network and the
output is the p(w|h), where h is hidden layer.

Ingut output

layer
@ P, = 1]h;)

B P (w, = ilh,)

projection N

2. The inner product h' v, computes the (unnormalized) log-probability of word w,
which we normalize by the sum of the log-probabilities of all words in V.

3. his the output vector of the penultimate network layer, while v/, is the output
embedding of word w, i.e. its representation in the weight matrix of the softmax
layer.

4. The network is trained by maximizing the following objective function

-
1
Jo = 7 ; log P(Wt, Wi—1,""", Wt—n+1)

48/102

Neural probabilistic language model

1. In NNs, we achieve the same objective using the softmax layer (Bengio et al.

2003).

i-th output = P(w; = i | context)

softmax

mostf computation here .

Cowr2) Clowr 1)

index for wp_py1

e o ee o
v Matrix C E
shared parameters
across words

index for wr2

index for w;_;

2. A mapping C from any element / of V to a real vector C(i) € R™. It represents
the distributed feature vectors associated with each word in the vocabulary.

3. Learn both the embedding and parameters for probability function jointly.

4. The dotted green line causes the training time to be cut in half (10 epochs to

converge instead of 20).

49/102

Word embedding

Word2vec algorithm

Word2vec algorithm

1. Proposed by Mikolov et. al. and widely used for many NLP applications (Mikolov,
Chen, et al. 2013; Mikolov, Sutskever, Chen, Gregory S. Corrado, et al. 2013).
2. Key features

» Uses neural networks to train word / context classifiers (feed-forward neural net)

» Uses local context windows (environment around any word in a corpus) as inputs to
the NN

Removed hidden layer.

Use of additional context for training LM’s.

v

v

v

Introduced newer training strategies using huge database of words efficiently.
3. In (Mikolov, Chen, et al. 2013), they proposed two architectures for learning word

embeddings that are computationally less expensive than previous models.

4. In (Mikolov, Sutskever, Chen, Gregory S. Corrado, et al. 2013), they improved
upon these models by employing additional strategies to enhance training speed
and accuracy.

50/102

Continuous Bag-of-Words

[eXeXe]|

X1k

[ECNET)

1. Mikolov et al. thus used both the n words
before and after the target word w; to

[

predict it.

[TeXeXe]|

2. They called this continuous bag-of-words
(CBOW), as it uses continuous
representations whose order is of no

Ke)

importance.

[eXeXe)|

3. The objective function of CBOW in turn is

T O =n

Ke)

1(0)= Z log P(We|We—pn, , We—1, Wet1, " s Wegn)

te Text

51/102

Continuous Bag-of-Words

1. Let vocabulary size be V' and hidden layer size be N (Rong 2016).

2. The input is a one-hot encoded vector x = (x1,...,xy).
Input layer Hidden layer Output layer
X [0] 6)/,
X |0 Ol)
X3 |0 h,6 (.JJ’j
> R >
X o] e oy,

,
i

ilO
Wya={wa} i O Wi={w

Xy 1O o|yy

3. Weights between input layer and hidden layer is represented by V x N matrix W.
4. Each row of W is the N-dimension vector representation v,,, of the input word.
5. Let x, = 1 and x; = 0 for j # k, then

Wy — T
h=W x=v,,

6. This implies that activation function of the hidden layer units is simply linear.

7. Weights between hidden layer and output layer is represented by N x V matrix W'.
52/102

Continuous Bag-of-Words

1. Using these weights, we can compute a score u; for each word in the vocabulary.

T
uj= ijh

where v{,vj is the j-th column of the matrix W’
2. Then, softmax is used to obtain the posterior distribution of words.

o o)
PN =25 = S eoue)

where y; is the output of the j-the unit in the output layer.
3. By replacing the above two equations, we obtain

exp(v:,vjvw,)

v
> k=1 P (Vi V)

p(wjw) =

4. Note that v,, and v/, are two representations of the word w.

5. They are called input vector, and output vector of the word w. 53/102

Continuous Bag-of-Words (weight update equation)

1. The training objective (for one training sample) is to maximize the following
function

exp(v;;;vw,)

S K1 exp(Vig V)

p(wjw) =

given the input context word w; with regard to the weights.

max p(Wo|wy) = max yjs

= max log yj«

v
= iy — IogZexp(uk) = —/g
k=1

2. E = —log p(wo|wy) is the loss function and jx* is the index of the actual output
word in the output layer.

54/102

Continuous Bag-of-Words (weight update equation)

1. To derive the update equation of the weights between hidden and output layers,
take the derivative of E with regard to j-th unit’s net input u;, we obtain

OE
(Tjj:yj—tjzej

where t; = I[j = j*].

2. Next we take the derivative on W,-’j to obtain the gradient on weight W,j

E E ;
OE 0 auj—ej.h;

/T ot /T
6W,-J- Ou; 8W,-J-

3. By using stochastic gradient descent, we obtain

W,{J-(t +1)= W,{J-(t') — nej.h;

55/102

Continuous Bag-of-Words (weight update equation)

1. To derive the update equation of the weights between input and hidden layers,
take derivative of E with respect to h;, we obtain

8E OE Ou;
"~ 9u;" Oh; Z &w; = EH,

where

v
hi =) XWii
k=1

2. Now we can take the derivative of E with regard to each element of W, obtaining

OE _ OE Oh;
8Wk,'_ 8/7,"8Wk,' N

3. By using stochastic gradient descent, we obtain

wii(t + 1)= wy(t) — BEH;xk 56/102

Continuous Bag-of-Words (multi-word context)

1. Consider CBOW model with a multi-word context setting.

2. When computing the hidden layer output, the CBOW model takes the average of
vectors of input context words

WT(X1+X2+...—|—Xc)

(Vg + Vi + ... + Vi)

where C is the number of words in the context.
57/102

Continuous Bag-of-Words (multi-word context)

1. The loss function is

E= —log p(wo|wi 1, ..., wic)
%
= —uj, + log Z exp(uk)
k=1
Vv
= —v, h+ Iogz exp(vy, h)
k=1

which is the same as the objective of the one-word-context model, except that h
is different.

2. The update equation for the hidden-output weights stay the same as that for the
one-word-context model

vf,vj(t—kl): vf,vj(t)—nej.h for j=1,2,...,V

3. The update equation for input-hidden weights is

1
Vi, (t + 1)= v, (t) — EHEHT for c=1,2,...,C

58/102

Skip-gram

1. Instead of using the surrounding words

] g Output layer
to predict the center word as with °
CBOW, skip-gram uses the center O Vi,
word to predict the surrounding words.
0|
2. The skip-gram objective thus sums the Input layer
log probabilities of the surrounding n §
words to the left and to the right of 0 vy
J
the target word w; to produce the :
following objective function. o
.
o
00)y= > > log P(werjlwe) i
te Text —n<j<n, j#0 e,
©
CxV-dim

59/102

Skip-gram (calculating the output)

A W o=

Let vocabulary size be V' and hidden layer size be N.
The input is a one-hot encoded vector x = (xi, ..., xy).
Weights between input layer and hidden layer is represented by V' x N matrix W.

Each row of W is the N-dimension vector representation v,,, of the input word.

h=W'x=v/

wi

On the output layer, instead of outputting one multinomial distribution,

C-multinomial distributions are output.

. Each output is computed using the same hidden-output weight matrix

exp(uc,j)
> (—q exp(ux)

where w, ; is the j-th word on the c-th panel of output layer and w, . is the

p(Wc,j = Wo,c|WI): Yej =

actual c-th word in the output context words.

60/102

Skip-gram (objective function)

1. The output layer panels share the same weights, thus
Ucj= uj:v:,vj.h forc=1,...,C.

where V:,Vj is the output vector of the j-th word in the vocabulary,

2. The derivation of parameter update equations is
E=— Iogp(wo 1, Wo2, ..., Wo clw)

= IogH exp tede)
D 1e><P(uc k)

=— Z ucjx + C.log Z exp(Uc k.)
c=1 k=1

where j! is the index of the actual c-th output context word in the vocabulary.

61/102

Skip-gram (weight update equation)

1. To derive update equation of weights between hidden and output layers, take
derivative of E with respect to every unit on every panel of output layer, v ;
0E
ﬁuw

where t.; =1[j = j*] and El; = 35, e..
2. Then, take the derivative of E with respect to matrix W/,

OE Ouc
— El;.h;
Z < duc; Owj !

=VYej —tej = €y

3. By using stochastic gradlent descent, we obtain

wi(t + 1)= wj(t) — nEl;.h;
4. For input weight matrix, we have

Vo, (t +1)= v, (t) —nEHT

where EH is an N-dimensional vector, each component of which is defined as
v
EHi="> " EHjw}.

—
J 62/102

Optimizing computational efficiency

1. For CBOW and skip-gram, we have two representations of the word w denoted by
vy, and v,,.
2. They are called input vector, and output vector of the word w.

3. Learning the input vectors is cheap; but learning the output vectors is very
expensive, because using the following weight update equation,

wi(t + 1)= wj(t) — nej.h;

for each training example, we iterate through every word w; in vocabulary,
compute their

» net input uj,

v

probability prediction y; (or yc; for skip-gram),
> their prediction error e; (or El; for skip-gram), and
> use their prediction error to update their output vector v;.

4. Such computations for all words for every training example is very expensive, and
is not scalable.

63/102

Optimizing computational efficiency

1. To solve the mentioned problem, we can
» limit the number of output vectors that must be updated per training instance,
» use hierarchical softmax,

> use negative sampling.

2. These tricks optimize only the computation of the updates for output vectors.

3. We must compute the following values

E new objective function

0% new update equation for the output vectors

w

5—),] weighted sum of errors to be backpropagated for updating input

vectors

64/102

Hierarchical Softmax

ok~ wnN

Hierarchical softmax is an efficient way of computing softmax (Morin and Bengio
2005).

Hierarchical softmax uses a binary tree to represent all words in the vocabulary.
Each leaf of the tree is a word, and there is a unique path from root to leaf.
This path is used to estimate the probability of the word represented by leaf.

In hierarchical softmax, there is no output representation for words.

Each node of the graph (except root and leaves) is associated to a vector that
model is going to learn.

n(wy,1)

w; w,) Wy Wy Wy

7. n(w,j) means the j-th unit on the path from root to the word w.

L(w) is the length of path from the root to the leaf representing node w

(including the number of nodes in the path including the root and the leaf)
65/102

Hierarchical Softmax

1. In hierarchical softmax, probability of a word being the output word is defined as
L(w)—1
. . T
pw=wo) =] o (1ln(w,j+1)= chn(w,j))] vy, h)
j=1

where
ch(n) is the left child of unit n
v;(w,j) is the vector representation (output vector) of the inner unit n(w, j),

v

v

v

h is the output value of the hidden layer,

v

I[x] is a special function defined as

+1 if x is true
I[x]= .
-1 if x is false

2. The probability of going left at an inner unit n equals
p(n, left)= o (v:,T.h>
3. The probability of going right at an inner unit n equals

p(n, right)=1—o <v:7T.h> =0 (—viﬁh)

66/102

Hierarchical Softmax

1. Considering the following tree

”(Wz,l)

n(wy,2)

w; w, Wy Wy Wy, Wy
2. We have

p(wa = w,) = p(n(wa, 1), left) - p(n(wa, 2), left) - p(n(wa, 3), right)

=0 (V;Im,l)‘h) o (v;{WZQ)’h) o (_Vlr;{wz,a)-h>

67/102

Hierarchical Softmax

1. For updating rule of v/ of inner units, consider one-word context model and define

I[]=1ln(w,j +1) = ch(n(w,)))]

/A
Vinj = Vi(wj)

2. For a training instance, the error function is defined as
L(w)—1
E=—logp(w=w,|lw)=— Z log o (]I [] V}T.h)
j=1
3. Taking the derivative of E with regard to vjl-T - h, obtaining
OE T
ATl VDR
J
where tj = 1 if [[] =1 and t; = 0 otherwise.
4. Taking derivative of E with respect to vector representation of inner node n(w,),

g‘IE}:<a(vJ/-T-h—tj)>-h

5. Weight update rule becomes
Vi(E+1) = Vi(t) — 7 (o’ (VJ.T h— tj)) “h

68/102

Hierarchical Softmax

1. This update equation can be used for both CBOW and the skip-gram model.

2. When used for the skip-gram model, we must repeat this update for all C words
in the output context.

3. To backpropagate the error to learn input-hidden weights, we have
(N g LI
oh ¢ T -h oh

j=1 J
L(w)—1
T

SRCCROR

j=1

=EH

4. This can be directly substituted in update rule of CBOW.

5. For updating rule, the computational complexity per training instance per context
word is reduced from O(V) to O(log(V)).

69/102

Negative Sampling

1. The idea of negative sampling is more straightforward than hierarchical softmax.

2. To deal with difficulty of updating too many output vectors per iteration, only
update a sample of them.

3. Let the pair of words (apple, juice), the following datasets are built

D, Set {(apple, juice)}. This set contains all pairs (w;, w,) that are in the text.
D_ Set {(apple, word 1), ...}. This set contains all pairs (w;, w,) that are not in
the text.

4. We can assign a label z =1 to all pairs (w, w,) € D5 a label z =0 to all pairs
(wy, wo) € D_. Hence,

1 if (w,w) € Dy

0 if (w,w,) € D_

5. Hence, the problem becomes as a classification by predicting the label z.

70/102

Negative Sampling

1. Hence, the problem becomes as a classification by predicting the label z.
» p(z =1|(w, w,)) is the probability that (w;, w,) € D
» p(z = 0|(ws, w,)) is the probability that (w;, w,) € D_.
2. There are several approaches to solve this, one is to use the logistic regression
algorithm.

3. In logistic regression , we have

1
1+ exp (VL v,,.)

p(z = 1|(w, wo)) =

exp (VII vwo)
1+ exp (VIIV(NO)
eXp (VII v(/Vo) X eXp (_V—VEIV;VD)
T o () o0 (W)
1
1+ exp (—VLV{%) '

p(z = 0(wi, wo)) =

4. Let 6 = {vy,, v, } be the parameters to be learned.
71/102

Negative Sampling

1. Hence, the logistic regression becomes

1 z 1 1-z
p(z’(Wla WO)) = <1 + exp (V;FVIV:NO)> (1 + exp (_vw,vcvo)>

2. We use the maximum likelihood as the objective function. Hence, the likelihood is

z 1-z
[L 1
L(6) = <) (> |
(wrwo)(Drup) \ 1+ P (Vi Vi) 1+ exp (—vy,viy,)

3. and the log likelihood as

z 1-z
1 1
(0) = E I I
() og <1 + exp (vwlv(/Vo)> + og <1 + exp (_VIIVCVO))

(wy,wo)€(D4UD_)

72/102

Negative Sampling

1. The log likelihood as

z 1-z
1 1
o) = Z log <1 + exp (vl}v{%)) +log (1 + exp (—VLV/WO)>

(WhWO)G(D‘FUD*)

2. By separating two cases for z =1 and z = 0, we have

1 1
6(0) - Z |0g <1 T exp (V;I—VIV{N)> + Z |Og (1 Texp (_VI,V{,V))

(wy,wo)€Dy (wi,wo)eD_

= Y o (a(va’Wo)>+ > log (0(—VVTV,"'WO)>

(wy,wo)€D (wi,wo)eD—

3. If we use only one pair (wy, w,) instead of all pairs (wy, w,) € (D+ U D_), we have

‘ 1(6) = log (o (v, Vi)) + log (r(~v,,vi,)) l

73/102

Negative Sampling

1. The dataset D, U D_ is highly unbalanced, hence K pairs (w;, w,) € D_ are used.

£(0) = log (a(vl}vf,vo)) + ZK: log (U(—v:,;,vf%k)>
k=1

2. We sample K words word 1, ..., word K using uni-gram language model
distribution P,(w).

3. The objective function becomes,

E=—00)=—logo (v:NTOv(NO) — Z E [Ioga (—vgv;,éﬂ

W‘,'EDf W[)NP"(W)

where

» where w, is the output word (i.e., the positive sample),
» and v;vo is its output vector.

74/102

Negative Sampling

1. To obtain update equations, first take derivative of E with respect to net input of
output unit w;.
aE (T
— =0 (v, -h) —t;
av@ -h Y /
where t; is label of word w;. t; =1if wj € Dy and t; =0 if w; € D_ .
2. Taking derivative of E with respect to output vector of the word w;,

OE T
g~ (o (v h=g))
Wj
3. This results in the following update equation for its output vector:
v, (t+1) =, () —n (a (vg h— g)) “h
4. To backpropagate the error to hidden layer

RGO EL R

V\/jE(D-{.UD,)

5. This can be plugged into update equation of CBOW.
6. For skip-gram, we must calculate EH for each word in the skip-gram context and

then plug into update equation.
75/102

Word embedding

Global vectors for word representation

Global vectors for word representation

1. Skip-gram doesn't utilize the statistics of corpus since they train on separate local
context windows instead of on global co-occurrence counts.

2. The statistics of word occurrences in a corpus is the primary source of information
available to all unsupervised methods for learning word representations.

3. Glove model aims to combine the count-based matrix factorization and the
context-based skip-gram model together (Pennington, Socher, and Manning
2014).

4. Let Xj; be the number of times word j occurs in the context of word i.
5. Let Xj = >, Xijx be the number of times any word appears in context of word i.

6. Let P;j = P(j|i) = ﬁ be the probability that word j appear in context of word i.

76/102

Global vectors for word representation

1. Co-occurrence probabilities for target words ice and steam with selected context
words from a 6 billion token corpus.

Probability and Ratio | k& = solid k = gas k = water k = fashion

P(klice) 19% 107% 6.6x 1075 3.0x1073 1.7x 1073
P(k|steam) 22x107° 78x 1074 22x 1073 1.8x 107
P(klice)/P(k|steam) 8.9 8.5 x 1072 1.36 0.96

2. Considering two words / = ice and j = steam and study their relationship using
various probe words, k.

P,

3. For words k related to ice but not steam, say k = solid, we expect the ratio P—ft
J

will be large.

4. For words k related to steam but not ice, say kK = gas, we expect the ratio g—{: will
Ji
be small.

5. For words k like water or fashion, that are either related to both ice and steam, or
to neither, the ratio should be close to one.

77/102

Global vectors for word representation

1. This argument suggests that the appropriate starting point for word vector
learning should be with ratios of co-occurrence probabilities rather than the
probabilities themselves.

2. Noting that the ratio % depends on three words i, j, k, the most general model
Ji

takes the form of p
F(Wiv Wi, VT/k) = Pilk
J
where w € R? are word vectors and w € RY is separate context word vector.
3. We would like F to encode % in the word vector space.
4. Since vector spaces are inherently linear structures, the most natural way to do

this is with vector differences. Hence
Pi

F(Wi—M,Wk):?
J

78/102

Global vectors for word representation

1. Parameters of F are vectors while the right-hand side is a scaler.

2. F can be a complicated function such as a neural network, but a simplified
function can be used also.

3. For word-word co-occurrence matrices, the distinction between a word and a
context word is arbitrary. Hence, we are free to exchange the two roles, i.e.
w < wand X & X,

4. Hence, model should be invariant under this relabeling. Thus

. Py F(w W) X
F((wi — wj) ") = ==~ = T =
o Pi F(wlwe) X
5. F = exp is the solution of the above equation. Hence,

W,-Tv"vk = log Py = log Xjx — log X;

79/102

Global vectors for word representation

1. We have,

W,-TWk = /ogP,'k = Iog X,'k — Iog X,'

2. The above equation would exhibit the exchange symmetry if not for log X; on the
right-hand side.

3. Term log X; is independent of k so it can be absorbed into a bias b; for w;.

4. Adding an additional bias by for Vi restores the symmetry. Hence

w, Wi + b + by = log Xix

80/102

Glove cost function

1. In an ideal setting, where you have perfect word vectors, the following expression
will be zero.
WiTWk + b + b — log Xy =0

2. Hence, we can define the objective function as
~ T ~ N 2
J(W;, Wk) = (W,- Wy + b; + bk — |OgX,'k>

3. Now, the final cost function is

V| 5
J(W,', VT/k) = Z f(X,') (W;TWk + b; + by — |OgX,'k>
i,k=1

)

where f is a weighting function, which is defined manually.

81/102

Glove Results

1. GloVe becomes a global model for unsupervised learning of word representations
that outperforms other models on word analogy, word similarity, and named entity
recognition tasks.

2. Advantages

» Fast training

v

Scalable to huge corpora

v

Good performance even with small corpus, and small vectors

v

Early stopping. We can stop training when improvements become small.

3. Drawbacks
» Uses a lot of memory: the fastest way to construct a term-co-occurrence matrix is to
keep it in RAM as a hash map and perform co-occurrence increments in a global
manner
» Sometimes quite sensitive to initial learning rate

82/102

Word embedding

Character-level embedding

FastText

1. One drawback of Word2vec and Glove is the fact that they don't handle
out-of-vocabulary.

2. The other drawback of word2vec is morphology. For example, for words with
same radicals such as eat and eaten, Word2Vec doesn’t do any parameter sharing.

3. FastText introduced the concept of subword-level embeddings, based on the
skip-gram model, but where each word is represented as a bag of
character-grams (Bojanowski et al. 2017).

4. A vector representation is associated to each character-gram, and words are
represented as the sum of these representations.

5. This allows the model to compute word representations for words that did not
appear in the training data.

83/102

FastText

1. The modification to the skip-gram/CBOW model are
2. Sub-word generation
» Adding angular brackets to denote the beginning and end of a word. For example,
where — (where).
» Taking a list of character n-grams a word. For example, for n = 3, we have (wh,
whe, her, ere, re).
> Applying hashing to bound the memory requirements. This paper used FNV-1a
variant of the Fowler-Noll-Vo hashing.
3. Using Skip-gram/CBOW with negative sampling
» The input to Fasttex are (wh, whe, her, ere, re) and (where).
» The embedding for the center word is calculated by taking a sum of vectors for the
character n-grams and the whole word itself.
4. In practice, they extracted all the n-grams for n greater or equal to 3 and smaller
or equal to 6.

84/102

Character-level Convolutional Networks (Zhang, Zhao, and LeCun 2015)

1. A list of character are defined 70 characters including 26 English letters, 10 digits,
33 special characters and new line character.

2. The network architectures are: 9 layers deep with 6 convolutional layers and 3
fully-connected layers.

Quantization I

'
AV

Convolutions Max-pooling Conv. and Pool. layers Fully-connected

3. Please also read the paper (Jézefowicz et al. 2016).

85/102

Graph embedding

Introduction

1. Networks are a general language for describing and modeling complex systems.
2. Many data are networks such as

Social networks Economic networks Biological networks
-

i
Gensiocricqy /|| Bnkiiow

P —
Frankiin Ros. Mor Lynch

Internet

86/102

Introduction!

1. Why networks?

» Networks are a uniform language for describing complex data.

> Networks are used as a common language in many different fields such as computer,
biology, social sciences.

» There are too many data sets are available in the form of networks.

2. Machine learning tasks in networks
Node classification Predict a type of a given node.
Link prediction Predict whether two nodes are linked.
Community detection Identify densely linked clusters of nodes.
Network similarity How similar are two (sub)networks

!Most slides of graph embedding are taken from Leskovec et al. sides
87/102

Introduction

1. Some examples of machine learning tasks in networks

Node classification

? ?
L NG, ®
o, g See
9
Machine

' /' Learing
' ¢

Link prediction

o™ e .\/o/.
2 ¢
Machine
P Learmning

88/102

Feature learning in graphs

1. A graph G = (V,E) is represented as a set of nodes V and a set of edges E
represented as a binary matrix A.

2. The goal is to learn task-independent features from graphs.

3. For example, node embedding is to learn function f : V — RY, where similar
nodes in the graph have embeddings that are close together.

Input graph Learned features
e®
-0.6 PY .‘
~08 :. ® ow ¥
-1.0 [] []
—12... &

4. This is a hard task, because of
» Complex topographical structure and there is no spatial locality like grids
» No fixed node ordering or reference point (i.e., the isomorphism problem)
» Often dynamic and have multi-modal features.

89/102

Node embedding

1. Goal is to encode nodes so that similarity in the embedding space (e.g., dot
product) approximates similarity in the original network.

2. Let z,, be the embedding of node u.

3. Goal is to find the encoder function f such that similarity(u,v) ~ z, z, .
4. Learning node embedding

> Define an encoder

» Define a node similarity function

» Optimize the parameters of the encoder so that similarity(u,v) ~ z, z,.
5. Two key components

» Encoder function f(u) = z,,.
> Similarity measure similarity(u, v) ~ z, z,.

90/102

Graph embedding

Similarity measures

Adjacency-based Similarity

1. Similarity function is the weight of edge (u, v) in the original network.
2. The intuition is dot products zIzv approximate edge existence.

3. The loss function can be defined as

= ¥

(u,v)eVxV

2
-
‘ 72 Ty = AN

4. Find embedding matrix Z € R?*IVI such that minimizes /.

5. We can use the highly scalable and general method stochastic gradient descent or
matrix decomposition solvers such as SVD, which works in limited cases.

91/102

Multi-hop similarity

1. Consider k-hop node neighbors.

The red node is the target node.

o The green nodes are the 1-hop neighbors (A).
’ .< — / 7 ; 2
: \ Ve The blue nodes are the 2-hop neighbors (A%).

The purple nodes are the 3-hop neighbors (A3).

v

N
v

2. The idea is to find embeddings to predict k-hop neighbors.

3. The loss function can be defined as

- ¥

(u,v)eVxV

2
T k
z,z, — A},

4. Another option is to measure the overlap between node neighborhoods using
overlap functions such as Jaccard similarity.

92/102

Graph embedding

Random-walk approaches

Random-walk embeddings

1. The idea is to consider zjzv as probability that nodes v and v co-occur on a
random walk over the network.
2. In random-walk embeddings, we
» Estimate probability of visiting node v on a random walk starting from node v using
some random walk strategy R.
» Optimize embeddings to encode these random walk statistics.
3. Random walk is good because
> It is flexible to define different node similarity and
> It doesn't need to consider all node pairs in training.
4. In random-walk optimization, we
» Run short random-walks starting from all nodes u € V using R, denoted by Ng(v).
» Find embedding maximizing likelihood of random-walk co-occurrences of each node

(==>">" logP(v|zy)

ueV veNg(u)

exp(z, z/)
o nev exp(z]2n)

P(vizs) =

5. Use negative sampling to improve the efficiency of optimization algorithm
93/102

DeepWalk embeddings

1. The idea of DeepWalk is to use random walks to produce embeddings (Perozzi,
Al-Rfou, and Skiena 2014).

2. The random walk starts in a selected node then we move to the random neighbor
from a current node for a defined number of steps.

3. The method basically consists of three steps:

Sampling A graph is sampled with random walks. It is sufficient to perform
from 32 to 64 random walks with length of about 40 steps from
each node.

Training skip-gram Random walks are comparable to sentences in word2vec
approach. The skip-gram network accepts a node from the random
walk as a one-hot vector as an input and maximizes the probability
for predicting neighbor nodes. It is typically trained to predict
around 20 neighbor nodes (10 nodes left and 10 nodes right).

Computing embeddings Embedding is the output of a hidden layer of the
network. The DeepWalk computes embedding for each node in the
graph.

94/102

DeepWalk embeddings

1. The DeepWalk process can be visualized as®

)

‘\ / \ ', oo °

g Samplmg OO ~
\ random) "\J)(
walks /)ﬁ\}/

2
e
Training
skip-gram
model

3
_
Computing
embeddings

2. The model can take a target node to predict it's context, which in the case of a

graph, means it's connectivity, structural role, and node features.

3. DeepWalk method performs random walks randomly what means that

embeddings do not preserve the local neighborhood of the node well.

2Credit: Primo# Godec

95/102

Node2vec embeddings

1. Node2vec is a modification of DeepWalk with a small difference in random walks.

2. The idea of node2vec is to use flexible, biased random walks that can trade off
between local and global views of the network (Grover and Leskovec 2016).

3. Node2vec has two parameters p and gq.

» Parameter g defines how probable is that the random walk would discover the
undiscovered part of the graph. This parameter prioritizes a breadth-first-search
(BFS) procedure.

» Parameter p defines how probable is that the random walk would return to the
previous node. This parameter prioritizes a depth-first-search (DFS) procedure.

1

4. The decision of where to walk next is therefore influenced by probabilities % or .

96/102

Node2vec embeddings

1. BFS is ideal for learning local neighbors, while DFS is better for learning global
variables.

2. Node2vec can switch to and from the two priorities depending on the task.

3. This means that given a single graph, Node2vec can return different results
depending on the values of the parameters.

DFS-based BFS-based
g O:g.: ”...:.o:
S . © o0 ° & S
w0500 00’ B S5 ,.--..:o
o ase o e 0a® ot00 % Dy
s % ° 0:.3..

4. Experiments demonstrated that BFS is better at classifying according to
structural roles (hubs, bridges, outliers, etc.) while DFS returns a more

community driven classification scheme.

97/102

Other 2vec embeddings

2vec embeddings

item2vec The embedding of items used in the collaborative filtering.
tweet2vec Finds vector-space representations of whole tweets.
entity2vec Learning embeddings of entities from text that describes them.

author2vec Learning author representations by combining content and link
information.

emoji2vec Learning Emoji representations from their description.

image2vec Vector representation of images.

Speech2Vec Learning fixed-length vector representations of audio segments.

Time2Vec Learning a vector representation of time.

Wikipedia2Vec It is a tool used for obtaining embeddings of words and entities from
Wikipedia.

Gene2vec Distributed representation of genes based on co-expression.

Skill2vec Learning the relevant skills from job description.

98/102

Reading

1. Chapter 14 of Deep Learning Book3

3lan Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
99/102

References i

T T N N 1 A

Alain, Guillaume and Yoshua Bengio (2014). “What Regularized Auto-Encoders Learn
from the Data-Generating Distribution”. In: Journal of Machine Learning Research
15.110, pp. 3743-3773. URL: http://jmlr.org/papers/vi5/alainida.html.

Bengio, Yoshua et al. (2003). “A Neural Probabilistic Language Model". In: Journal of
Machine Learning Research 3, pp. 1137-1155.

Blei, David M., Andrew Y. Ng, and Michael |. Jordan (2003). “Latent Dirichlet
Allocation”. In: Journal of Machine Learning Research 3, pp. 993-1022.

Bojanowski, Piotr et al. (2017). “Enriching Word Vectors with Subword Information”.
In: Trans. Assoc. Comput. Linguistics 5, pp. 135-146.

Goodfellow, lan, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT
Press.

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable Feature Learning for
Networks”. In: Proceedings of the 22nd ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 8565—864.

Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the Dimensionality of Data
with Neural Networks”. In: SCIENCE 313, pp. 504-507.

100/102

http://jmlr.org/papers/v15/alain14a.html

References ii

[Jézefowicz, Rafal et al. (2016). “Exploring the Limits of Language Modeling”. In:
CoRR abs/1602.02410.

[l Mikolov, Tomas, Kai Chen, et al. (2013). “Efficient Estimation of Word
Representations in Vector Space”. |n: International Conference on Learning
Representations.

@ Mikolov, Tomas, llya Sutskever, Kai Chen, Greg S Corrado, et al. (2013). “Distributed
Representations of Words and Phrases and their Compositionality”. In: Advances in
Neural Information Processing Systems 26, pp. 3111-3119.

@ Mikolov, Tomas, llya Sutskever, Kai Chen, Gregory S. Corrado, et al. (2013).
“Distributed Representations of Words and Phrases and their Compositionality”. In:
Proc. of Advances in Neural Information Processing Systems, pp. 3111-3119.

[Morin, Frederic and Yoshua Bengio (2005). “Hierarchical Probabilistic Neural Network
Language Model”. In: Proceedings of the Tenth International Workshop on Artificial
Intelligence and Statistics (AISTATS).

@ Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “Glove:
Global Vectors for Word Representation”. |n: Proc. of Advances in Neural
Information Processing Systems, pp. 1532-1543.

101/102

References ii

@ Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (2014). “DeepWalk: online learning
of social representations”. In: The 20th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 701-710.

[4 Rong, Xin (2016). “word2vec Parameter Learning Explained”. n: CoRR
abs/1411.2738.

E Uma, K. V. (2018). “Improving the Classification accuracy of Noisy Dataset by
Effective Data Preprocessing”. |n: International Journal of Computer Applications
180.36, pp. 37-46.

@ Zhang, Xiang, Junbo Zhao, and Yann LeCun (2015). “Character-level Convolutional
Networks for Text Classification”. In: N/PS.

102/102

Questions?

©@OO

	Introduction
	Autoencoders
	Undercomplete Autoencoder
	Regularized Autoencoders
	Denoising Autoencoders
	Contractive Autoencoder
	Stacked autoencoder
	Applications

	Word embedding
	Neural probabilistic language model
	Word2vec algorithm
	Global vectors for word representation
	Character-level embedding

	Graph embedding
	Similarity measures
	Random-walk approaches

	Other 2vec embeddings
	Reading

