
Deep learning

Representation Learning

Hamid Beigy

Sharif University of Technology

December 11, 2021

Table of contents

1. Introduction

2. Autoencoders

3. Word embedding

4. Graph embedding

5. Other 2vec embeddings

6. Reading

1/102

Introduction

Introduction

1. The basic stages in design of a classification system.

Patterns

Sensors

Feature generation

Feature selection/extraction

Classifier design

System evaluation

2/102

Introduction

1. Various information processing tasks, such as classification or clustering, can be

very easy or very difficult depending on how the information is represented.

2. Good features are essential for successful ML: 90% of effort.

3. Handcraft features vs feature learning. Which of them results in a good

representation?

4. Generally, a representation is said to be good if it makes the subsequent learning

tasks easier.

5. The choice of representation depends on what is the subsequent task we want to

do.

6. What are good features to represent images, texts, graphs, and etc.?

3/102

Introduction

1. How can we extract features from a 2D manifold in 3D?

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682

(1998).
37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-

tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257-297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/-yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.

Proc. Syst. 5, 50 (1993).
42. In order to evaluate the fits of PCA, MDS, and Isomap

on comparable grounds, we use the residual variance

35. R. N. Shepard, Psychon. Bull. Rev. 1, 2 (1994).
36. J. B. Tenenbaum, Adv. Neural Info. Proc. Syst. 10, 682

(1998).
37. T. Martinetz, K. Schulten, Neural Netw. 7, 507 (1994).
38. V. Kumar, A. Grama, A. Gupta, G. Karypis, Introduc-

tion to Parallel Computing: Design and Analysis of
Algorithms (Benjamin/Cummings, Redwood City, CA,
1994), pp. 257-297.

39. D. Beymer, T. Poggio, Science 272, 1905 (1996).
40. Available at www.research.att.com/-yann/ocr/mnist.
41. P. Y. Simard, Y. LeCun, J. Denker, Adv. Neural Info.

Proc. Syst. 5, 50 (1993).
42. In order to evaluate the fits of PCA, MDS, and Isomap

on comparable grounds, we use the residual variance

REPORTS

1 - RZ(DM, Dy). Dy is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D5 is each algorithm's best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix Dx (except
with the handwritten "2"s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of 5M and Dr

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

REPORTS

1 - RZ(DM, Dy). Dy is the matrix of Euclidean distanc-
es in the low-dimensional embedding recovered by
each algorithm. D5 is each algorithm's best estimate
of the intrinsic manifold distances: for Isomap, this is
the graph distance matrix DG; for PCA and MDS, it is
the Euclidean input-space distance matrix Dx (except
with the handwritten "2"s, where MDS uses the
tangent distance). R is the standard linear correlation
coefficient, taken over all entries of 5M and Dr

43. In each sequence shown, the three intermediate im-
ages are those closest to the points 1/4, 1/2, and 3/4
of the way between the given endpoints. We can also
synthesize an explicit mapping from input space X to
the low-dimensional embedding Y, or vice versa, us-

ing the coordinates of corresponding points {x,, y;} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

ing the coordinates of corresponding points {x,, y;} in
both spaces provided by Isomap together with stan-
dard supervised learning techniques (39).

44. Supported by the Mitsubishi Electric Research Labo-
ratories, the Schlumberger Foundation, the NSF
(DBS-9021648), and the DARPA Human ID program.
We thank Y. LeCun for making available the MNIST
database and S. Roweis and L. Saul for sharing related
unpublished work. For many helpful discussions, we
thank G. Carlsson, H. Farid, W. Freeman, T. Griffiths,
R. Lehrer, S. Mahajan, D. Reich, W. Richards, J. M.
Tenenbaum, Y. Weiss, and especially M. Bernstein.

10 August 2000; accepted 21 November 2000

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis' and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

Nonlinear Dimensionality
Reduction by

Locally Linear Embedding
Sam T. Roweis' and Lawrence K. Saul2

Many areas of science depend on exploratory data analysis and visualization.
The need to analyze large amounts of multivariate data raises the fundamental
problem of dimensionality reduction: how to discover compact representations
of high-dimensional data. Here, we introduce locally linear embedding (LLE), an
unsupervised learning algorithm that computes low-dimensional, neighbor-
hood-preserving embeddings of high-dimensional inputs. Unlike clustering
methods for local dimensionality reduction, LLE maps its inputs into a single
global coordinate system of lower dimensionality, and its optimizations do not
involve local minima. By exploiting the local symmetries of linear reconstruc-
tions, LLE is able to learn the global structure of nonlinear manifolds, such as
those generated by images of faces or documents of text.

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts-including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations-in
effect, to reason about the world-depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional "description" space with as many

'Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab-Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (LK.S.)

How do we judge similarity? Our mental
representations of the world are formed by
processing large numbers of sensory in-
puts-including, for example, the pixel in-
tensities of images, the power spectra of
sounds, and the joint angles of articulated
bodies. While complex stimuli of this form can
be represented by points in a high-dimensional
vector space, they typically have a much more
compact description. Coherent structure in the
world leads to strong correlations between in-
puts (such as between neighboring pixels in
images), generating observations that lie on or
close to a smooth low-dimensional manifold.
To compare and classify such observations-in
effect, to reason about the world-depends
crucially on modeling the nonlinear geometry
of these low-dimensional manifolds.

Scientists interested in exploratory analysis
or visualization of multivariate data (1) face a
similar problem in dimensionality reduction.
The problem, as illustrated in Fig. 1, involves
mapping high-dimensional inputs into a low-
dimensional "description" space with as many

'Gatsby Computational Neuroscience Unit, Universi-
ty College London, 17 Queen Square, London WC1N
3AR, UK. 2AT&T Lab-Research, 180 Park Avenue,
Florham Park, NJ 07932, USA.

E-mail: roweis@gatsby.ucl.ac.uk (S.T.R.); lsaul@research.
att.com (LK.S.)

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

coordinates as observed modes of variability.
Previous approaches to this problem, based on
multidimensional scaling (MDS) (2), have
computed embeddings that attempt to preserve
pairwise distances [or generalized disparities
(3)] between data points; these distances are
measured along straight lines or, in more so-
phisticated usages of MDS such as Isomap (4),

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

along shortest paths confined to the manifold of
observed inputs. Here, we take a different ap-
proach, called locally linear embedding (LLE),
that eliminates the need to estimate pairwise
distances between widely separated data points.
Unlike previous methods, LLE recovers global
nonlinear structure from locally linear fits.

The LLE algorithm, summarized in Fig.
2, is based on simple geometric intuitions.
Suppose the data consist of N real-valued
vectors Xi, each of dimensionality D, sam-
pled from some underlying manifold. Pro-
vided there is sufficient data (such that the
manifold is well-sampled), we expect each
data point and its neighbors to lie on or
close to a locally linear patch of the mani-
fold. We characterize the local geometry of
these patches by linear coefficients that
reconstruct each data point from its neigh-
bors. Reconstruction errors are measured
by the cost function

2

c(W) = . ,-i jij,,j
I

2

c(W) = . ,-i jij,,j
I

(1) (1)

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

which adds up the squared distances between
all the data points and their reconstructions. The
weights Wij summarize the contribution of the
jth data point to the ith reconstruction. To com-
pute the weights Wij, we minimize the cost

C C

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

Fig. 1. The problem of nonlinear dimensionality reduction, as illustrated (10) for three-dimensional
data (B) sampled from a two-dimensional manifold (A). An unsupervised learning algorithm must
discover the global internal coordinates of the manifold without signals that explicitly indicate how
the data should be embedded in two dimensions. The color coding illustrates the neighborhood-
preserving mapping discovered by LLE; black outlines in (B) and (C) show the neighborhood of a
single point. Unlike LLE, projections of the data by principal component analysis (PCA) (28) or
classical MDS (2) map faraway data points to nearby points in the plane, failing to identify the
underlying structure of the manifold. Note that mixture models for local dimensionality reduction
(29), which cluster the data and perform PCA within each cluster, do not address the problem
considered here: namely, how to map high-dimensional data into a single global coordinate system
of lower dimensionality.

www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 www.sciencemag.org SCIENCE VOL 290 22 DECEMBER 2000 2323 2323

?,-~
-1
?,-~
-1

2. If data are not on the line, then we have loss in the transformation
232 6. Linear Model Selection and Regularization

Population

A
d

S
pe

nd
in

g

20 30 40 50

5
10

15
20

25
30

−20 −10 0 10 20

−1
0

−5
0

5
10

1st Principal Component
2n

d
P

rin
ci

pa
l C

om
po

ne
nt

FIGURE 6.15. A subset of the advertising data. The mean pop and ad budgets
are indicated with a blue circle. Left: The first principal component direction is
shown in green. It is the dimension along which the data vary the most, and it also
defines the line that is closest to all n of the observations. The distances from each
observation to the principal component are represented using the black dashed line
segments. The blue dot represents (pop, ad). Right: The left-hand panel has been
rotated so that the first principal component direction coincides with the x-axis.

In the right-hand panel of Figure 6.15, the left-hand panel has been
rotated so that the first principal component direction coincides with the
x-axis. It is possible to show that the first principal component score for
the ith observation, given in (6.20), is the distance in the x-direction of the
ith cross from zero. So for example, the point in the bottom-left corner of
the left-hand panel of Figure 6.15 has a large negative principal component
score, zi1 = −26.1, while the point in the top-right corner has a large
positive score, zi1 = 18.7. These scores can be computed directly using
(6.20).

We can think of the values of the principal component Z1 as single-
number summaries of the joint pop and ad budgets for each location. In
this example, if zi1 = 0.839 × (popi − pop) + 0.544 × (adi − ad) < 0,
then this indicates a city with below-average population size and below-
average ad spending. A positive score suggests the opposite. How well can a
single number represent both pop and ad? In this case, Figure 6.14 indicates
that pop and ad have approximately a linear relationship, and so we might
expect that a single-number summary will work well. Figure 6.16 displays
zi1 versus both pop and ad. The plots show a strong relationship between
the first principal component and the two features. In other words, the first
principal component appears to capture most of the information contained
in the pop and ad predictors.

So far we have concentrated on the first principal component. In gen-
eral, one can construct up to p distinct principal components. The second
principal component Z2 is a linear combination of the variables that is un-
correlated with Z1, and has largest variance subject to this constraint. The
second principal component direction is illustrated as a dashed blue line in
Figure 6.14. It turns out that the zero correlation condition of Z1 with Z2

3. Can we learn how to find a good representation of data?
4/102

What is deep representation learning

1. Deep learning learns multiple levels of representation of increasing

complexity/abstraction.

2. What makes a representation good?

I Have distributed representations.
I Have multiple levels of representations.
I Different explanatory factors of the data tend to change independently of each other

in the input distribution.
I Have a representation, which is good for different tasks.
I Linear relationships in representation space.

I King – Queen ≈ Man – Woman
I Paris – France + Italy ≈ Rome

3. Deep networks are appropriate for the above properties.

5/102

Autoencoders

Autoencoders

1. An autoencoder is a feed-forward neural net whose job it is to take an input x and

predict x .

2. In another words, autoencoders are neural networks that are trained to copy their

inputs to their outputs.
3. It consists of

I Encoder h = f (x)
I Decoder r = g(h)

h = f (x)
r = g(h)

I Usually constrained in particular ways to make this task more useful.
I Structure is almost always organized into encoder network (f) and decoder network

(g) and model (g(f (x)))
I Trained by gradient descent with reconstruction loss.
I This loss measures differences between input and output e.g. MSE :

J(θ) = |g(f (x))− x |2
6/102

Autoencoders

1. Autoencoders consist of an encoder h = f (x) taking an input x to the hidden

representation h and a decoder x̂ = g(x) mapping the hidden representation h to

the input x̂ .

Deep Learning Srihari What is an Autoencoder?
•  An autoencoder is a data compression algorithm

•  Typically an artificial neural network trained to copy its input to its output

•  A hidden layer describes the code used to represent the input
•  Maps input to output through a compressed representation code

3

2. The goal is

min
f ,g

∑
‖x̂ − x‖2

7/102

Autoencoder architecture

1. An autoencoder is a data compression algorithm.

Deep Learning Srihari What is an Autoencoder?
•  An autoencoder is a data compression algorithm

•  Typically an artificial neural network trained to copy its input to its output

•  A hidden layer describes the code used to represent the input
•  Maps input to output through a compressed representation code

3

2. A hidden layer describes the code used to represent the input. It maps input to

output through a compressed representation code.

Deep Learning Srihari What is an Autoencoder?
•  An autoencoder is a data compression algorithm

•  Typically an artificial neural network trained to copy its input to its output

•  A hidden layer describes the code used to represent the input
•  Maps input to output through a compressed representation code

3
8/102

Autoencoders

1. PCA can be described as

Deep Learning Srihari What is an Autoencoder?
•  An autoencoder is a data compression algorithm

•  Typically an artificial neural network trained to copy its input to its output

•  A hidden layer describes the code used to represent the input
•  Maps input to output through a compressed representation code

3 min
W

∑
‖x̂ − x‖2

W TW = I

min
W

∑∥∥∥W TWx − x
∥∥∥
2

9/102

Autoencoders

1. Autoencoders can be thought of as a non linear PCA.

Deep Learning Srihari What is an Autoencoder?
•  An autoencoder is a data compression algorithm

•  Typically an artificial neural network trained to copy its input to its output

•  A hidden layer describes the code used to represent the input
•  Maps input to output through a compressed representation code

3 min
h,g

∑
‖x̂ − x‖2

min
h,g

∑
‖g(f (x))− x‖2

10/102

Autoencoder vs PCA

1. Nonlinear autoencoders can learn more powerful codes for a given dimensionality,

compared with linear autoencoders (PCA)

Deep Autoencoders

Nonlinear autoencoders can learn more powerful codes for a given
dimensionality, compared with linear autoencoders (PCA)

Roger Grosse CSC321 Lecture 20: Autoencoders 11 / 16

11/102

Autoencoder architecture

Auto-Encoder?

2

Input

O
utput

Encoding Decoding

12/102

Autoencoder architecture

1. Encoder + Decoder Structure

Auto-Encoder?

3

Encoder + Decoder Structure

13/102

Autoencoder architecture

1. Autoencoders are data-specific

I They are able to compress data similar to what they have been trained on.

2. This is different from, say, MP3 or JPEG compression algorithm

I Which make general assumptions about ”sound/images”, but not about specific

types of sounds/images
I Autoencoder for pictures of cats would do poorly in compressing pictures of trees.

Because features it would learn would be cat-specific.

3. Autoencoders are lossy

I This means that the decompressed outputs will be degraded compared to the

original inputs (similar to MP3 or JPEG compression).
I This differs from lossless arithmetic compression.

14/102

Stochastic Autoencoders

1. Part of neural network landscape for decades.

2. Traditionally used for dimensionality reduction and feature learning.

3. Modern autoencoders also generalized to stochastic mappings

pencoder (h|x) = pmodel(h|x)

pdecoder (x |h) = pmodel(x |h)

h = f (x)
r = g(h)

4. These distributions are called stochastic encoders and decoders, respectively.

5. Recent theoretical connection between autoencoders and latent variable models

have brought them into forefront of generative models.

15/102

Distribution view of Autoencoders

1. Consider stochastic decoder g(h) as a generative model and its relationship to the

joint distribution

pmodel(x , h) = pmodel(h)× pmodel(x |h)

log pmodel(x , h) = log pmodel(h) + log pmodel(x |h)

h = f (x)
r = g(h)

2. If h is given from encoding network, then we want most likely x to output.

3. Finding MLE of x , h ∼ maximizing pmodel(x , h).

4. pmodel(h) is prior across latent space values. This term can be regularizing.

16/102

Meaning of Generative

1. By assuming a prior over latent space, can pick values from underlying probability

distribution!

Meaning of Generative

By assuming a prior over latent space, can pick values from

underlying probability distribution!

15
17/102

Linear factor models

1. Many of the research frontiers in deep learning involve building a probabilistic

model of the input, pmodel(x)

2. Many probabilistic models have latent variables, h, with

pmodel(x) = Eh [pmodel(x |h)].

3. Latent variables provide another means of representing the data.

4. The more advanced deep models will extend further latent variables: linear factor

models.

5. A linear factor model is defined by the use of a stochastic, linear decoder function

that generates x by adding noise to a linear transformation of h.

6. Idea: distributed representations based on latent variables can obtain all of the

advantages of learning which we have seen with deep networks

18/102

Autoencoder training using a loss function

1. Encoder f and decoder g .

f : X 7→ h

g : h 7→ X

argmin
f ,g
‖x− (f ◦ g)(x)‖2

2. One hidden layer

I Non-linear encoder
I Takes input x ∈ Rd

I Maps into output h ∈ Rp

h = σ1(W x + b)

x̂ = σ2(W ′h + b′)

I Trained to minimize reconstruction error such as

L(x, x̂) = ‖x− x̂‖2

I The hidden layer h provides a compressed representation of the input x

19/102

Training autoencoder

1. An autoencoder is a feed-forward non-recurrent neural network.

I With an input layer, an output layer and one or more hidden layers

It can be trained using the following technique

Compute gradients using back-propagation

Followed by mini-batch gradient descent

20/102

Autoencoders

Undercomplete Autoencoder

Undercomplete Autoencoder

1. An autoencoder whose code dimension is less than the input dimension is called

undercomplete.

2. Learning an undercomplete representation forces the autoencoder to capture the

most salient features of the training data.

3. The learning process is described simply as minimizing a loss function

L(x , g(f (x)))

where L is a loss function penalizing g(f (x)) for being dissimilar from x , such as

the mean squared error.

21/102

Undercomplete Autoencoder

1. Assume that the autoencoder has only one hidden layer.

2. What is difference between this network and PCA?

3. When the decoder g is linear and L is the means quared error, an undercomplete

autoencoder learns to span the same subspace as PCA.

4. In this case the autoencoder trained to perform the copying task has learned the

principal subspace of the training data as a side-effect.

5. If the encoder and decoder functions f and g are nonlinear, a more powerful

nonlinear generalization of PCA will be obtained.

22/102

Autoencoders

Regularized Autoencoders

Regularized Autoencoders

1. consider encoder f and decoder g .

X ∈ Rd

h ∈ Rk

2. When k > d , the autoencoder is called Overcomplete Autoencoders.

3. There are other ways we can constraint the reconstruction of an autoencoder than

to impose a hidden layer of smaller dimension than the input.

4. Regularized Autoencoders use a loss function that encourages the model to have
some properties besides reproducing inputs.

I Sparsity representation (Sparse Autoencoders)
I Smallness of derivative of representation (Contractive Autoencoders)
I Robustness to noise or to missing inputs (Denoising Autoencoders)

23/102

Sparse Autoencoders

1. Sparse Autoencoders try to minimize the following function.

L(x , g(f (x))) + Ω(h)

2. The first term is loss for copying inputs

3. The second term is sparsity penalty

4. In general neural network, we are trying to find the maximum likelihood: p(x |θ)

5. We often use the log log p(x |θ) for simplification, from which we can get the loss

function without regularization.

6. What about MAP (Maximum a posterior)?

p(θ|x) ∝ p(x |θ)× p(θ)

7. Maximizing the log of the above function yields to

maximize (log p(x |θ) + log p(θ))

8. The first term is loss function and the second term is regularization penalty

24/102

Autoencoders

Denoising Autoencoders

Denoising Autoencoders

1. The denoising autoencoder (DAE) is an autoencoder that receives a corrupted

data point as input and is trained to predict the original, uncorrupted data point

as its output.

2. Traditional autoencoders minimize L(x , g(f (x)))

I L is a loss function penalizing g(f (x)) for being dissimilar from x , such as L2 norm

of difference: mean squared error

3. A DAE minimizes L(x , g(f (x̃)))

I x̃ is a copy of x that is corrupted by some form of noise
I The autoencoder must undo this corruption rather than simply copying their input

25/102

Denoising Autoencoders

1. By having to remove noise, model must know difference between noise and actual

image.

Visualizing Denoising Autoencoders

By having to remove noise, model must know di↵erence between

noise and actual image.

21

26/102

Example of Noise in a DAE

1. An autoencoder with high capacity can end up learning an identity function (also

called null function) where input=output

2. A DAE can solve this problem by corrupting the data input

3. How much noise to add?

4. Corrup tinput nodes by setting 30− 50% of random input nodes to zero

Deep Learning Srihari

Example of Noise in a DAE

•  An autoencoder with high capacity can end up learning an
identity function (also called null function) where input=output

•  A DAE can solve this problem by corrupting the data input
•  How much noise to add?

•  Corrupt input nodes by setting 30-50% of random input nodes to zero

33

Original input, corrupted data, reconstructed data

27/102

Training DAE

1. The DAE training procedure is

CHAPTER 14

x̃̃x LL

hh

f
g

xx

C(x̃ | x)

Figure 14.3: The computational graph of the cost function for a denoising autoencoder,
which is trained to reconstruct the clean data point x from its corrupted version x̃.
This is accomplished by minimizing the loss L = � log pdecoder(x | h = f(x̃)), where
x̃ is a corrupted version of the data example x, obtained through a given corruption
process C(x̃ | x). Typically the distribution pdecoder is a factorial distribution whose mean
parameters are emitted by a feedforward network g.

corrupted samples x̃, given a data sample x. The autoencoder then learns a
reconstruction distribution preconstruct(x | x̃) estimated from training pairs
(x, x̃) as follows:

1. Sample a training example x from the training data.

2. Sample a corrupted version x̃ from C(x̃ | x = x).

3. Use (x, x̃) as a training example for estimating the autoencoder reconstruction
distribution preconstruct(x | x̃) = pdecoder(x | h) with h the output of encoder
f(x̃) and pdecoder typically defined by a decoder g(h).

Typically we can simply perform gradient-based approximate minimization (such
as minibatch gradient descent) on the negative log-likelihood � log pdecoder(x | h).
As long as the encoder is deterministic, the denoising autoencoder is a feedforward
network and may be trained with exactly the same techniques as any other
feedforward network.

We can therefore view the DAE as performing stochastic gradient descent on
the following expectation:

� Ex⇠p̂data(x)Ex̃⇠C(x̃|x) log pdecoder(x | h = f(x̃)), (14.14)

where p̂data(x) is the training distribution.

502

2. We introduce a corruption process C (x̃ |x).

28/102

Training DAE

1. We introduce a corruption process C (x̃ |x).
2. The autoencoder then learns a reconstruction distribution preconstruct(x |x̃)

estimated from training pairs (x , x̃) as follows:
I Sample a training example xi from the training data.
I Sample a corrupted version x̃i from C (x̃i |x = xi).
I Use (x , x̃) as a training example for estimating the autoencoder reconstruction

distribution preconstruct(x |x̃) = pdecoder (x |h) with h the output of encoder f (x̃) and

pdecoder typically defined by a decoder g(h).
I Typically we can simply perform gradient-based approximate minimization on the

negative log-likelihood − log pdecoder (x |h).

29/102

Results of DAE

30/102

Autoencoders

Contractive Autoencoder

Contractive Autoencoder (CAE)

1. Contractive autoencoders are explicitly encouraged to learn a manifold through

their loss function (Alain and Bengio 2014).

2. Desirable property: Points close to each other in input space maintain that

property in the latent space.

3. Method to avoid uninteresting solutions

4. Add an explicit term in the loss that penalizes that solution

5. We wish to extract features that only reflect variations observed in the training set

6. We would like to be invariant to other variations
What Regularized Auto-Encoders Learn from the Data-Generating Distribution

Figure 1: Regularization forces the auto-encoder to become less sensitive to the input, but
minimizing reconstruction error forces it to remain sensitive to variations along
the manifold of high density. Hence the representation and reconstruction end
up capturing well variations on the manifold while mostly ignoring variations
orthogonal to it.

2. Contractive and Denoising Auto-Encoders

Regularized auto-encoders (see Bengio et al. 2012b for a review and a longer exposition)
capture the structure of the training distribution thanks to the productive opposition be-
tween reconstruction error and a regularizer. An auto-encoder maps inputs x to an internal
representation (or code) f(x) through the encoder function f , and then maps back f(x)
to the input space through a decoding function g. The composition of f and g is called
the reconstruction function r, with r(x) = g(f(x)), and a reconstruction loss function `
penalizes the error made, with r(x) viewed as a prediction of x. When the auto-encoder
is regularized, e.g., via a sparsity regularizer, a contractive regularizer (detailed below), or
a denoising form of regularization (that we find below to be very similar to a contractive
regularizer), the regularizer basically attempts to make r (or f) as simple as possible, i.e.,
as constant as possible, as unresponsive to x as possible. It means that f has to throw away
some information present in x, or at least represent it with less precision. On the other
hand, to make reconstruction error small on the training set, examples that are neighbors
on a high-density manifold must be represented with su�ciently di↵erent values of f(x) or
r(x). Otherwise, it would not be possible to distinguish and hence correctly reconstruct
these examples. It means that the derivatives of f(x) or r(x) in the x-directions along the
manifold must remain large, while the derivatives (of f or r) in the x-directions orthogonal
to the manifold can be made very small. This is illustrated in Figure 1. In the case of prin-
cipal components analysis, one constrains the derivative to be exactly 0 in the directions
orthogonal to the chosen projection directions, and around 1 in the chosen projection di-
rections. In regularized auto-encoders, f is non-linear, meaning that it is allowed to choose
di↵erent principal directions (those that are well represented, i.e., ideally the manifold tan-
gent directions) at di↵erent x’s, and this allows a regularized auto-encoder with non-linear
encoder to capture non-linear manifolds. Figure 2 illustrates the extreme case when the
regularization is very strong (r wants to be nearly constant where density is high) in the
special case where the distribution is highly concentrated at three points (three training ex-
amples). It shows the compromise between obtaining the identity function at the training
examples and having a flat r near the training examples, yielding a vector field r(x) � x
that points towards the high density points.

Here we show that the denoising auto-encoder (Vincent et al., 2008) with very small
Gaussian corruption and squared error loss is actually a particular kind of contractive auto-
encoder (Rifai et al., 2011b), contracting the whole auto-encoder reconstruction function

3745

31/102

Contractive Autoencoder (CAE)

1. Contractive autoencoder has an explicit regularizer on h = f (x), encouraging the

derivatives of f to be as small as possible.

2. This will be true if f (x) = h is continuous, has small derivatives.
Alain and Bengio

x"

r(x)"

x1" x2" x3"
Figure 2: The reconstruction function r(x) (in turquoise) which would be learned by a high-capacity

auto-encoder on a 1-dimensional input, i.e., minimizing reconstruction error at the train-
ing examples xi (with r(xi) in red) while trying to be as constant as possible otherwise.
The figure is used to exaggerate and illustrate the e↵ect of the regularizer (corresponding
to a large �2 in the loss function L later described by Equation 6. The dotted line is
the identity reconstruction (which might be obtained without the regularizer). The blue
arrows shows the vector field of r(x)�x pointing towards high density peaks as estimated
by the model, and estimating the score (log-density derivative), as shown in this paper.

rather than just the encoder, whose contraction penalty coe�cient is the magnitude of the
perturbation. This was first suggested in Rifai et al. (2011b).

The contractive auto-encoder, or CAE (Rifai et al., 2011b), is a particular form of reg-
ularized auto-encoder which is trained to minimize the following regularized reconstruction
error:

LCAE = E

"
`(x, r(x)) + �

����
@f(x)

@x

����
2

F

#
(1)

where r(x) = g(f(x)) and ||A||2F is the sum of the squares of the elements of A. Both the
squared loss `(x, r) = ||x�r||2 and the cross-entropy loss `(x, r) = �x log r�(1�x) log(1�r)
have been used, but here we focus our analysis on the squared loss because of the easier
mathematical treatment it allows. Note that success in minimizing the CAE criterion
strongly depends on the parameterization of f and g and in particular on the tied weights
constraint used, with f(x) = sigmoid(Wx + b) and g(h) = sigmoid(W T h + c). The above
regularizing term forces f (as well as g, because of the tied weights) to be contractive, i.e.,
to have singular values less than 1.1 Larger values of � yield more contraction (smaller
singular values) where it hurts reconstruction error the least, i.e., in the local directions
where there are only little or no variations in the data. These typically are the directions
orthogonal to the manifold of high density concentration, as illustrated in Figure 2.

1. Note that an auto-encoder without any regularization would tend to find many leading singular values
near 1 in order to minimize reconstruction error, i.e., preserve input norm in all the directions of variation
present in the data.

3746

3. We can use the Frobenius Norm of the Jacobian Matrix as a regularization term:

Ω(f , x) = λ

∣∣∣∣
∂f (x)

∂x

∣∣∣∣
2

F

4. These autoencoders called contractive because they contract neighborhood of

input space into smaller, localized group in latent space.

5. Exercise: What is the difference between DAE and CAE?
32/102

Autoencoders

Stacked autoencoder

Stacked autoencoder

1. A stacked autoencoder is a neural network consist several layers of sparse

autoencoders where output of each hidden layer is connected to the input of the

successive hidden layer

2. Stacked autoencoder improving accuracy in deep learning with noisy autoencoders

embedded in the layers (Uma 2018).

33/102

Autoencoders

Applications

Word embedding (Mikolov, Sutskever, Chen, Greg S Corrado, et al. 2013)

34/102

Document clustering(Hinton and Salakhutdinov 2006)

35/102

Word embedding

Introduction

1. How do you represent a word?

I Represent words as atomic symbols such as talk, university, building.
I Represent a word as a one-hot vector such as

university = (0
egg
, 0
student

, 0
talk
, 1
university

, 0
building

, . . . , 0
buy

)

2. Issues with on-hot representation

I How large is this vector? dimensionality is large; vector is sparse
I Representing new words (any idea?).
I How measure word similarity?

36/102

Distributional representation

1. Linguistic items with similar distributions have similar meanings (words occur in

the same contexts probably have similar meaning).

university = (0.2
egg
, 0.1
student

, 0.12
talk

, 0.38
university

, 0.2
building

, . . . , 0.12
buy

)

2. Word meanings are vector of basic concept.

3. What are basic concepts?

4. How to assign weights?

5. How to define the similarity/distance?

37/102

How to use word vectors?

1. Distance/similarity

Cosine similarity Word vector are normalized by length

cos(u, v) =
〈u, v〉
‖u‖‖v‖

Euclidean distance

d(u, v) = ‖u− v‖2

Inner product This is same as cosine similarity if vectors are normalized

d(u, v) = 〈u, v〉

2. Choosing the right similarity metric is important.

3. Word analogy

vman − vwoman + vuncle ≈ vaunt

Word analogy

v "-(2 − "?@-(2 + "52B/6	 ∼ "(52D	

6501 Natural Language Processing 22

38/102

How to learn word vectors?

1. What are basic concept?

I We want that the number of basic concepts to be small and
I Basis concepts be orthogonal

2. How to assign weights?

3. How to define the similarity/distance such as cosine similarity?

39/102

Distributional representation (example)

Capture the structure of words

vExample from GloVe

6501 Natural Language Processing 16

40/102

Term-document incidence matrix

Example

Anthony and Julius The Hamlet Othello Macbeth . . .

Cleopatra Caesar Tempest

Anthony 1 1 0 0 0 1

Brutus 1 1 0 1 0 0

Caesar 1 1 0 1 1 1

Calpurnia 0 1 0 0 0 0

Cleopatra 1 0 0 0 0 0

mercy 1 0 1 1 1 1

worser 1 0 1 1 1 0

. . .

Entry is 1 if term occurs. Example: Calpurnia occurs in Julius Caesar.

Entry is 0 if term doesn’t occur. Example: Calpurnia doesn’t occur in Tempest.

Each term is represented as a vector of bits.

41/102

Term weighting

1. Evaluation of how important a term is with respect to a document.

2. First idea: the more important a term is, the more often it appears: term

frequency

tft,d =
∑

x∈d
ft(x)

where

ft(x) =

{
1 if x = t

0 otherwise

3. The order of terms within a doc is ignored

42/102

Inverse document frequency

1. Inverse document frequency of a term t:

idft = log
N

dft
with N is the collection size

2. Rare terms have high idf , contrary to frequent terms

3. Example (Reuters collection):

Term t dft idft

car 18165 1.65

auto 6723 2.08

insurance 19241 1.62

best 25235 1.5

4. In tf-idf weighting, the weight of a term is computed using both tf and idf :

w(t, d) = tft,d × idft called tf − idft,d

43/102

Dimensionality reduction

1. we don’t need all of the dimensions that represent a word, only the most

important ones.

2. There are several techniques such as

I Principle Component Analysis (PCA): The most important dimensions contain the

most variance
I Latent Semantic Analysis (LSA): Project terms and documents into a topic space

using SVD on term-document (co-occurrence) matrix.
I Low-rank Approximation

3. Can we learn the dimensionality reduction from texts?

44/102

Latent Dirichlet allocation

1. Assumes generative probabilistic model of a corpus (Blei, Ng, and Jordan 2003).

2. Documents are represented as distribution over latent topics, where each topic is

characterized by a distribution over words.

Classical Methods - Topic Modeling

Latent Dirichilet Allocation [Blei et. al ’2003]

I Assumes generative probabilistic model of a corpus.

I Documents are represented as distribution over latent topics,
where each topic is characterized by a distribution over words.

Figure 1: Plate notation representing the LDA model. Source: Wikipedia

9

45/102

Word embedding

Neural probabilistic language model

Language modeling

1. An language model is a model for how humans generate language.

2. The quality of language models is measured based on their ability to learn a

probability distribution over words in vocabulary V .

3. Language models generally try to compute the probability of a word wt given its

n − 1 previous words, i.e. p(wt |wt−1, · · ·wt−n+1).

4. Applying the chain rule and Markov assumption, we can approximate the

probability of a whole sentence or document by the product of the probabilities of

each word given its n previous words:

p(w1, · · · ,wT) =
∏

i

p(wi |wi−1, · · · ,wi−n+1)

5. In n-gram based language models, we can calculate a word’s probability based on

the frequencies of its constituent n-grams:

p(wt |wt−1, · · · ,wt−n+1) =
count(wt−n+1, · · · ,wt−1,wt)

count(wt−n+1, · · · ,wt−1)

46/102

Neural probabilistic language model

1. In NNs, we achieve the same objective using the softmax layer (Bengio et al.

2003).

Language Model

Neural Probabilistic Language Model

p(wt |wt�1, . . . , wt�n+1) =
exp(hT vwt)P

wi2V exp(hT vwi)
) Softmax Layer

Here h is the hidden representation of input, vwi is the output word
embedding of word i and V is the vocabulary.

Bengio et. al. JMLR’03
12

p(wt |wt−1, · · · ,wt−n+1) =
exp(h>v ′wt

)∑
wi∈V exp(h>v ′wi

)

2. Words are mapped into a |V | ×m matrix C, where |V | is the size of vocabulary

and m is dimension of embedding.
47/102

Neural probabilistic language model

1. In this model, a sequence of words is given to the input of the network and the

output is the p(w |h), where h is hidden layer.

Language Model

Neural Probabilistic Language Model

p(wt |wt�1, . . . , wt�n+1) =
exp(hT vwt)P

wi2V exp(hT vwi)
) Softmax Layer

Here h is the hidden representation of input, vwi is the output word
embedding of word i and V is the vocabulary.

Bengio et. al. JMLR’03
12

2. The inner product h>v ′wt
computes the (unnormalized) log-probability of word wt ,

which we normalize by the sum of the log-probabilities of all words in V .

3. h is the output vector of the penultimate network layer, while v ′w is the output

embedding of word w , i.e. its representation in the weight matrix of the softmax

layer.

4. The network is trained by maximizing the following objective function

Jθ =
1

T

T∑

t=1

log p(wt ,wt−1, · · · ,wt−n+1)
48/102

Neural probabilistic language model

1. In NNs, we achieve the same objective using the softmax layer (Bengio et al.

2003).

Neural Probabilistic Language Model

I Associate each word in vocabulary a distributed feature vector.

I Learn both the embedding and parameters for probability function
jointly.

Bengio et. al. JMLR’03
13

2. A mapping C from any element i of V to a real vector C(i) ∈ Rm. It represents

the distributed feature vectors associated with each word in the vocabulary.

3. Learn both the embedding and parameters for probability function jointly.

4. The dotted green line causes the training time to be cut in half (10 epochs to

converge instead of 20).
49/102

Word embedding

Word2vec algorithm

Word2vec algorithm

1. Proposed by Mikolov et. al. and widely used for many NLP applications (Mikolov,

Chen, et al. 2013; Mikolov, Sutskever, Chen, Gregory S. Corrado, et al. 2013).

2. Key features

I Uses neural networks to train word / context classifiers (feed-forward neural net)
I Uses local context windows (environment around any word in a corpus) as inputs to

the NN
I Removed hidden layer.
I Use of additional context for training LM’s.
I Introduced newer training strategies using huge database of words efficiently.

3. In (Mikolov, Chen, et al. 2013), they proposed two architectures for learning word

embeddings that are computationally less expensive than previous models.

4. In (Mikolov, Sutskever, Chen, Gregory S. Corrado, et al. 2013), they improved

upon these models by employing additional strategies to enhance training speed

and accuracy.

50/102

Continuous Bag-of-Words

1. Mikolov et al. thus used both the n words

before and after the target word wt to

predict it.

2. They called this continuous bag-of-words

(CBOW), as it uses continuous

representations whose order is of no

importance.

3. The objective function of CBOW in turn is

CBOW

Input layer

Hidden layer Output layer

WV×N

WV×N

WV×N

W'N×V yjhix2k

x1k

xCk

C×V-dim

N-dim
V-dim

source: ”word2vec parameter learning explained.” ([4])

l(θ)=
∑

t∈Text
log P(wt |wt−n, · · · ,wt−1,wt+1, · · · ,wt+n)

51/102

Continuous Bag-of-Words

1. Let vocabulary size be V and hidden layer size be N (Rong 2016).

2. The input is a one-hot encoded vector x = (x1, . . . , xV).
Input layer Hidden layer Output layer
x1
x2
x3

xk

xV

y1
y2
y3

yj

yV

h1
h2
hi

hN
WV×N={wki} W'N×V={w'ij}

Figure 1: A simple CBOW model with only one word in the context

layers are fully connected. The input is a one-hot encoded vector, which means for a given
input context word, only one out of V units, {x1, · · · , xV }, will be 1, and all other units
are 0.

The weights between the input layer and the output layer can be represented by a
V ⇥ N matrix W. Each row of W is the N -dimension vector representation vw of the
associated word of the input layer. Formally, row i of W is vT

w. Given a context (a word),
assuming xk = 1 and xk0 = 0 for k0 6= k, we have

h = WTx = WT
(k,·) := vT

wI
, (1)

which is essentially copying the k-th row of W to h. vwI is the vector representation of the
input word wI . This implies that the link (activation) function of the hidden layer units is
simply linear (i.e., directly passing its weighted sum of inputs to the next layer).

From the hidden layer to the output layer, there is a di↵erent weight matrix W0 = {w0
ij},

which is an N ⇥ V matrix. Using these weights, we can compute a score uj for each word
in the vocabulary,

uj = v0
wj

T
h, (2)

where v0
wj

is the j-th column of the matrix W0. Then we can use softmax, a log-linear
classification model, to obtain the posterior distribution of words, which is a multinomial
distribution.

p(wj |wI) = yj =
exp(uj)PV

j0=1 exp(uj0)
, (3)

where yj is the output of the j-the unit in the output layer. Substituting (1) and (2) into

2

3. Weights between input layer and hidden layer is represented by V × N matrix W.

4. Each row of W is the N-dimension vector representation vwI
of the input word.

5. Let xk = 1 and xj = 0 for j 6= k , then

h= W>x = v>wI

6. This implies that activation function of the hidden layer units is simply linear.

7. Weights between hidden layer and output layer is represented by N×V matrix W′.
52/102

Continuous Bag-of-Words

1. Using these weights, we can compute a score uj for each word in the vocabulary.

uj= v′>wj
h

where v′wj
is the j-th column of the matrix W′

2. Then, softmax is used to obtain the posterior distribution of words.

p(wj |wI) = yj =
exp(uj)∑V

k=1 exp(uk)

where yj is the output of the j-the unit in the output layer.

3. By replacing the above two equations, we obtain

p(wj |wI) =
exp(v

′>
wj

vwI
)

∑V
k=1 exp(v′>wk

vwI
)

4. Note that vw and v′w are two representations of the word w .

5. They are called input vector, and output vector of the word w .
53/102

Continuous Bag-of-Words (weight update equation)

1. The training objective (for one training sample) is to maximize the following

function

p(wj |wI) =
exp(v

′>
wj

vwI
)

∑V
k=1 exp(v′>wk

vwI
)

given the input context word wI with regard to the weights.

max p(wo |wI) = max yj∗

= max log yj∗

= uj∗ − log
V∑

k=1

exp(uk) = −E

2. E = − log p(wo |wI) is the loss function and j∗ is the index of the actual output

word in the output layer.

54/102

Continuous Bag-of-Words (weight update equation)

1. To derive the update equation of the weights between hidden and output layers,

take the derivative of E with regard to j-th unit’s net input uj , we obtain

∂E

∂uj
= yj − tj = ej

where tj = I [j = j∗].
2. Next we take the derivative on w ′ij to obtain the gradient on weight w ′ij .

∂E

∂w ′ij
=
∂E

∂uj
.
∂uj
∂w ′ij

= ej .hi

3. By using stochastic gradient descent, we obtain

w ′ij(t + 1)= w ′ij(t)− ηej .hi

55/102

Continuous Bag-of-Words (weight update equation)

1. To derive the update equation of the weights between input and hidden layers,

take derivative of E with respect to hi , we obtain

∂E

∂hi
=

V∑

k=1

∂E

∂uj
.
∂uj
∂hi

=
V∑

k=1

ejw
′
ij = EHi

where

hi =
V∑

k=1

xkwki

2. Now we can take the derivative of E with regard to each element of W, obtaining

∂E

∂wki
=
∂E

∂hi
.
∂hi
∂wki

= EHixk .

3. By using stochastic gradient descent, we obtain

wki (t + 1)= wki (t)− βEHixk 56/102

Continuous Bag-of-Words (multi-word context)

1. Consider CBOW model with a multi-word context setting.CBOW

Input layer

Hidden layer Output layer

WV×N

WV×N

WV×N

W'N×V yjhix2k

x1k

xCk

C×V-dim

N-dim
V-dim

source: ”word2vec parameter learning explained.” ([4])

2. When computing the hidden layer output, the CBOW model takes the average of

vectors of input context words

h=
1

C
W> (x1 + x2 + . . .+ xC)

=
1

C
(vw1 + vw2 + . . .+ vwC

)

where C is the number of words in the context.
57/102

Continuous Bag-of-Words (multi-word context)

1. The loss function is

E= − log p(wo |wI ,1, . . . ,wI ,C)

= −uj∗ + log
V∑

k=1

exp(uk)

= −v>wo
h + log

V∑

k=1

exp(vwk
h)

which is the same as the objective of the one-word-context model, except that h

is different.

2. The update equation for the hidden-output weights stay the same as that for the

one-word-context model

v′wj
(t + 1)= v′wj

(t)− ηej .h for j = 1, 2, . . . ,V

3. The update equation for input-hidden weights is

vwI ,c
(t + 1)= vwI ,c

(t)− 1

C
ηEH> for c = 1, 2, . . . ,C

58/102

Skip-gram

1. Instead of using the surrounding words

to predict the center word as with

CBOW, skip-gram uses the center

word to predict the surrounding words.

2. The skip-gram objective thus sums the

log probabilities of the surrounding n

words to the left and to the right of

the target word wt to produce the

following objective function.

l(θ) =
∑

t∈Text

∑

−n≤j≤n, j 6=0

log P(wt+j |wt)

Skip Gram: Think of it as a Neural Network

Learn W and W’ in order to maximize previous objective

Input layer
Hidden layer

Output layer

WV×N!

W'N×V!

C×V-dim!

N-dim!
V-dim!

xk! hi! W'N×V!

W'N×V!

y2,j!

y1,j!

yC,j!

source: ”word2vec parameter learning explained.” ([4])59/102

Skip-gram (calculating the output)

1. Let vocabulary size be V and hidden layer size be N.

2. The input is a one-hot encoded vector x = (x1, . . . , xV).

3. Weights between input layer and hidden layer is represented by V × N matrix W.

4. Each row of W is the N-dimension vector representation vwI
of the input word.

h= W>x = v>wI

5. On the output layer, instead of outputting one multinomial distribution,

C -multinomial distributions are output.

6. Each output is computed using the same hidden-output weight matrix

p(wc,j = wo,c |wI)= yc,j =
exp(uc,j)∑V
k=1 exp(uk)

where wc,j is the j-th word on the c-th panel of output layer and wo,c is the

actual c-th word in the output context words.

60/102

Skip-gram (objective function)

1. The output layer panels share the same weights, thus

uc,j= uj = v
′>
wj
.h for c = 1, . . . ,C .

where v
′
wj

is the output vector of the j-th word in the vocabulary,

2. The derivation of parameter update equations is

E= − log p(wo,1,wo,2, . . . ,wo,C |wI)

= − log
C∏

c=1

exp(uc,j∗c)
∑V

k=1 exp(uc,kc)

= −
C∑

c=1

uc,j∗c + C . log
V∑

k=1

exp(uc,kc)

where j∗c is the index of the actual c-th output context word in the vocabulary.

61/102

Skip-gram (weight update equation)

1. To derive update equation of weights between hidden and output layers, take

derivative of E with respect to every unit on every panel of output layer, uc,j

∂E

∂uc,j
= yc,j − tc,j = ec,j

where tc,j = I [j = j∗] and EIj =
∑C

c=1 ec,j .

2. Then, take the derivative of E with respect to matrix W′,

∂E

∂w ′ij
=

C∑

c=1

∂E

∂uc,j
.
∂uc,j
∂w ′ij

= EIj .hi

3. By using stochastic gradient descent, we obtain

w ′ij(t + 1)= w ′ij(t)− ηEIj .hi
4. For input weight matrix, we have

vwI
(t + 1)= vwI

(t)− ηEH>

where EH is an N-dimensional vector, each component of which is defined as

EHi=
V∑

j=1

EHjw
′
ij .

62/102

Optimizing computational efficiency

1. For CBOW and skip-gram, we have two representations of the word w denoted by

vw and v′w .

2. They are called input vector, and output vector of the word w .

3. Learning the input vectors is cheap; but learning the output vectors is very

expensive, because using the following weight update equation,

w ′ij(t + 1)= w ′ij(t)− ηej .hi

for each training example, we iterate through every word wj in vocabulary,
compute their

I net input uj ,
I probability prediction yj (or yc,j for skip-gram),
I their prediction error ej (or EIj for skip-gram), and
I use their prediction error to update their output vector vj .

4. Such computations for all words for every training example is very expensive, and

is not scalable.

63/102

Optimizing computational efficiency

1. To solve the mentioned problem, we can

I limit the number of output vectors that must be updated per training instance,
I use hierarchical softmax,
I use negative sampling.

2. These tricks optimize only the computation of the updates for output vectors.

3. We must compute the following values

E new objective function
∂
∂v′w

new update equation for the output vectors
∂
∂h weighted sum of errors to be backpropagated for updating input

vectors

64/102

Hierarchical Softmax

1. Hierarchical softmax is an efficient way of computing softmax (Morin and Bengio

2005).

2. Hierarchical softmax uses a binary tree to represent all words in the vocabulary.

3. Each leaf of the tree is a word, and there is a unique path from root to leaf.

4. This path is used to estimate the probability of the word represented by leaf.

5. In hierarchical softmax, there is no output representation for words.

6. Each node of the graph (except root and leaves) is associated to a vector that

model is going to learn.

prediction yj (or yc,j for skip-gram), their prediction error ej (or EIj for skip-gram), and
finally use their prediction error to update their output vector v0

j .
Doing such computations for all words for every training instance is very expensive,

making it impractical to scale up to large vocabularies or large training corpora. To solve
this problem, an intuition is to limit the number of output vectors that must be updated per
training instance. One elegant approach to achieving this is hierarchical softmax; another
approach is through sampling, which will be discussed in the next section.

Both tricks optimize only the computation of the updates for output vectors. In our
derivations, we care about three values: (1) E, the new objective function; (2) @E

@v0
w
, the

new update equation for the output vectors; and (3) @E
@h , the weighted sum of predictions

errors to be backpropagated for updating input vectors.

3.1 Hierarchical Softmax

Hierarchical softmax is an e�cient way of computing softmax (Morin and Bengio, 2005;
Mnih and Hinton, 2009). The model uses a binary tree to represent all words in the
vocabulary. The V words must be leaf units of the tree. It can be proved that there are
V � 1 inner units. For each leaf unit, there exists a unique path from the root to the unit;
and this path is used to estimate the probability of the word represented by the leaf unit.
See Figure 4 for an example tree.

w1 w2 w3 w4 wV-1 wV

n(w2,1)

n(w2,2)

n(w2,3)

Figure 4: An example binary tree for the hierarchical softmax model. The white units are
words in the vocabulary, and the dark units are inner units. An example path from root to
w2 is highlighted. In the example shown, the length of the path L(w2) = 4. n(w, j) means
the j-th unit on the path from root to the word w.

In the hierarchical softmax model, there is no output vector representation for words.
Instead, each of the V � 1 inner units has an output vector v0

n(w,j). And the probability of
a word being the output word is defined as

p(w = wO) =

L(w)�1Y

j=1

�
⇣
Jn(w, j + 1) = ch(n(w, j))K · v0

n(w,j)
T
h
⌘

(37)

10

7. n(w , j) means the j-th unit on the path from root to the word w .

8. L(w) is the length of path from the root to the leaf representing node w

(including the number of nodes in the path including the root and the leaf)
65/102

Hierarchical Softmax

1. In hierarchical softmax, probability of a word being the output word is defined as

p(w = wo) =

L(w)−1∏

j=1

σ
(
I [n(w , j + 1) = ch(n(w , j))] · v′n(w ,j)

>
h
)

where
I ch(n) is the left child of unit n
I v′n(w ,j) is the vector representation (output vector) of the inner unit n(w , j),
I h is the output value of the hidden layer,
I I [x] is a special function defined as

I [x] =

{
+1 if x is true

−1 if x is false

2. The probability of going left at an inner unit n equals

p(n, left)= σ
(

v
′>
n .h

)

3. The probability of going right at an inner unit n equals

p(n, right)= 1− σ
(

v
′>
n .h

)
= σ

(
−v
′>
n .h

)

66/102

Hierarchical Softmax

1. Considering the following tree

prediction yj (or yc,j for skip-gram), their prediction error ej (or EIj for skip-gram), and
finally use their prediction error to update their output vector v0

j .
Doing such computations for all words for every training instance is very expensive,

making it impractical to scale up to large vocabularies or large training corpora. To solve
this problem, an intuition is to limit the number of output vectors that must be updated per
training instance. One elegant approach to achieving this is hierarchical softmax; another
approach is through sampling, which will be discussed in the next section.

Both tricks optimize only the computation of the updates for output vectors. In our
derivations, we care about three values: (1) E, the new objective function; (2) @E

@v0
w
, the

new update equation for the output vectors; and (3) @E
@h , the weighted sum of predictions

errors to be backpropagated for updating input vectors.

3.1 Hierarchical Softmax

Hierarchical softmax is an e�cient way of computing softmax (Morin and Bengio, 2005;
Mnih and Hinton, 2009). The model uses a binary tree to represent all words in the
vocabulary. The V words must be leaf units of the tree. It can be proved that there are
V � 1 inner units. For each leaf unit, there exists a unique path from the root to the unit;
and this path is used to estimate the probability of the word represented by the leaf unit.
See Figure 4 for an example tree.

w1 w2 w3 w4 wV-1 wV

n(w2,1)

n(w2,2)

n(w2,3)

Figure 4: An example binary tree for the hierarchical softmax model. The white units are
words in the vocabulary, and the dark units are inner units. An example path from root to
w2 is highlighted. In the example shown, the length of the path L(w2) = 4. n(w, j) means
the j-th unit on the path from root to the word w.

In the hierarchical softmax model, there is no output vector representation for words.
Instead, each of the V � 1 inner units has an output vector v0

n(w,j). And the probability of
a word being the output word is defined as

p(w = wO) =

L(w)�1Y

j=1

�
⇣
Jn(w, j + 1) = ch(n(w, j))K · v0

n(w,j)
T
h
⌘

(37)

10

2. We have

p(w2 = wo) = p(n(w2, 1), left) · p(n(w2, 2), left) · p(n(w2, 3), right)

= σ
(

v
′>
n(w2,1)

.h
)
σ
(

v
′>
n(w2,2)

.h
)
σ
(
−v
′>
n(w2,3)

.h
)

67/102

Hierarchical Softmax

1. For updating rule of v′ of inner units, consider one-word context model and define

I [·] = I [n(w , j + 1) = ch(n(w , j))]

v′nj = v′n(w ,j)

2. For a training instance, the error function is defined as

E = − log p(w = wo |wI) = −
L(w)−1∑

j=1

log σ
(
I [·] v

′>
j .h

)

3. Taking the derivative of E with regard to v
′>
j · h, obtaining

∂E

∂v
′>
j · h

= σ
(

v
′>
j · h

)
− tj

where tj = 1 if I [·] = 1 and tj = 0 otherwise.

4. Taking derivative of E with respect to vector representation of inner node n(w , j),

∂E

∂v′j
=
(
σ
(

v
′>
j · h− tj

))
· h

5. Weight update rule becomes

v′j(t + 1) = v′j(t)− η
(
σ
(

v
′>
j · h− tj

))
· h

68/102

Hierarchical Softmax

1. This update equation can be used for both CBOW and the skip-gram model.

2. When used for the skip-gram model, we must repeat this update for all C words

in the output context.

3. To backpropagate the error to learn input-hidden weights, we have

∂E

∂h
=

L(w)−1∑

j=1

∂E

∂v
′>
j · h

·
∂v
′>
j · h
∂h

=

L(w)−1∑

j=1

(
σ
(

v
′>
j · h

)
− tj

)

= EH

4. This can be directly substituted in update rule of CBOW.

5. For updating rule, the computational complexity per training instance per context

word is reduced from O(V) to O(log(V)).

69/102

Negative Sampling

1. The idea of negative sampling is more straightforward than hierarchical softmax.

2. To deal with difficulty of updating too many output vectors per iteration, only

update a sample of them.

3. Let the pair of words (apple, juice), the following datasets are built

D+ Set {(apple, juice)}. This set contains all pairs (wI ,wo) that are in the text.

D− Set {(apple, word 1), . . .}. This set contains all pairs (wI ,wo) that are not in

the text.

4. We can assign a label z = 1 to all pairs (w ,wo) ∈ D+ a label z = 0 to all pairs

(wI ,wo) ∈ D−. Hence,

z =





1 if (wI ,wo) ∈ D+

0 if (wI ,wo) ∈ D−

5. Hence, the problem becomes as a classification by predicting the label z .

70/102

Negative Sampling

1. Hence, the problem becomes as a classification by predicting the label z .
I p(z = 1|(wI ,wo)) is the probability that (wI ,wo) ∈ D+.
I p(z = 0|(wI ,wo)) is the probability that (wI ,wo) ∈ D−.

2. There are several approaches to solve this, one is to use the logistic regression

algorithm.

3. In logistic regression , we have

p(z = 1|(wI ,wo)) =
1

1 + exp
(
v>wI

v′wo

)

p(z = 0|(wI ,wo)) =
exp

(
v>wI

vwo

)

1 + exp
(
v>wI

v′wo

)

=
exp

(
v>wI

v′wo

)

1 + exp
(
v>wI

v′wo

) × exp
(
−v>wI

v′wo

)

exp
(
−v>wI

v′wo

)

=
1

1 + exp
(
−v>wI

v′wo

) .

4. Let θ = {vwI
, v′wo
} be the parameters to be learned.

71/102

Negative Sampling

1. Hence, the logistic regression becomes

p(z |(wI ,wo)) =

(
1

1 + exp
(
v>wI

v′wo

)
)z (

1

1 + exp
(
−v>wI

v′wo

)
)1−z

2. We use the maximum likelihood as the objective function. Hence, the likelihood is

L(θ) =
∏

(wI ,wo)∈(D+∪D−)

(
1

1 + exp
(
v>wI

v′wo

)
)z (

1

1 + exp
(
−v>wI

v′wo

)
)1−z

.

3. and the log likelihood as

`(θ) =
∑

(wI ,wo)∈(D+∪D−)
log

(
1

1 + exp
(
v>wI

v′wo

)
)z

+ log

(
1

1 + exp
(
−v>wI

v′wo

)
)1−z

72/102

Negative Sampling

1. The log likelihood as

`(θ) =
∑

(wI ,wo)∈(D+∪D−)
log

(
1

1 + exp
(
v>wI

v′wo

)
)z

+ log

(
1

1 + exp
(
−v>wI

v′wo

)
)1−z

2. By separating two cases for z = 1 and z = 0, we have

`(θ) =
∑

(wI ,wo)∈D+

log

(
1

1 + exp
(
v>wI

v′wo

)
)

+
∑

(wI ,wo)∈D−
log

(
1

1 + exp
(
−v>wI

v′wo

)
)

=
∑

(wI ,wo)∈D+

log
(
σ(v>wI

v′wo
)
)

+
∑

(wI ,wo)∈D−
log
(
σ(−v>wI

v′wo
)
)

3. If we use only one pair (wI ,wo) instead of all pairs (wI ,wo) ∈ (D+ ∪ D−), we have

`(θ) = log
(
σ(v>wI

v′wo
)
)

+ log
(
σ(−v>wI

v′wo
)
)

73/102

Negative Sampling

1. The dataset D+ ∪D− is highly unbalanced, hence K pairs (wI ,wo) ∈ D− are used.

`(θ) = log
(
σ(v>wI

v′wo
)
)

+
K∑

k=1

log
(
σ(−v>wI

v′wok
)
)

2. We sample K words word 1, . . . , word K using uni-gram language model

distribution Pn(w).

3. The objective function becomes,

E = −`(θ) = − log σ
(

v
′>
wo

v′wo

)
−
∑

wj∈D−
E

w ′o∼Pn(w)

[
log σ

(
−v
′>
wj

v′w ′o

)]

where

I where wo is the output word (i.e., the positive sample),
I and v

′

wo
is its output vector.

74/102

Negative Sampling

1. To obtain update equations, first take derivative of E with respect to net input of

output unit wj .

∂E

∂v′>wj
· h = σ

(
v
′>
wj
· h
)
− tj

where tj is label of word wj . tj = 1 if wj ∈ D+ and tj = 0 if wj ∈ D− .

2. Taking derivative of E with respect to output vector of the word wj ,

∂E

∂v′wj

=
(
σ
(

v
′>
wj
· h− tj

))
· h

3. This results in the following update equation for its output vector:

v′wj
(t + 1) = v′wj

(t)− η
(
σ
(

v′>wj
· h− tj

))
· h

4. To backpropagate the error to hidden layer

∂E

∂h
=

∑

wj∈(D+∪D−)

[
σ
(

v
′>
wj
· h
)
− tj

]
· v′wj

= EH

5. This can be plugged into update equation of CBOW.

6. For skip-gram, we must calculate EH for each word in the skip-gram context and

then plug into update equation.
75/102

Word embedding

Global vectors for word representation

Global vectors for word representation

1. Skip-gram doesn’t utilize the statistics of corpus since they train on separate local

context windows instead of on global co-occurrence counts.

2. The statistics of word occurrences in a corpus is the primary source of information

available to all unsupervised methods for learning word representations.

3. Glove model aims to combine the count-based matrix factorization and the

context-based skip-gram model together (Pennington, Socher, and Manning

2014).

4. Let Xij be the number of times word j occurs in the context of word i .

5. Let Xi =
∑

k Xik be the number of times any word appears in context of word i .

6. Let Pij = P(j |i) =
Xij

Xi
be the probability that word j appear in context of word i .

76/102

Global vectors for word representation

1. Co-occurrence probabilities for target words ice and steam with selected context

words from a 6 billion token corpus.

Table 1: Co-occurrence probabilities for target words ice and steam with selected context words from a 6
billion token corpus. Only in the ratio does noise from non-discriminative words like water and fashion
cancel out, so that large values (much greater than 1) correlate well with properties specific to ice, and
small values (much less than 1) correlate well with properties specific of steam.

Probability and Ratio k = solid k = gas k = water k = fashion

P(k |ice) 1.9 ⇥ 10�4 6.6 ⇥ 10�5 3.0 ⇥ 10�3 1.7 ⇥ 10�5

P(k |steam) 2.2 ⇥ 10�5 7.8 ⇥ 10�4 2.2 ⇥ 10�3 1.8 ⇥ 10�5

P(k |ice)/P(k |steam) 8.9 8.5 ⇥ 10�2 1.36 0.96

context of word i.
We begin with a simple example that showcases

how certain aspects of meaning can be extracted
directly from co-occurrence probabilities. Con-
sider two words i and j that exhibit a particular as-
pect of interest; for concreteness, suppose we are
interested in the concept of thermodynamic phase,
for which we might take i = ice and j = steam.
The relationship of these words can be examined
by studying the ratio of their co-occurrence prob-
abilities with various probe words, k. For words
k related to ice but not steam, say k = solid, we
expect the ratio Pik/Pjk will be large. Similarly,
for words k related to steam but not ice, say k =
gas, the ratio should be small. For words k like
water or fashion, that are either related to both ice
and steam, or to neither, the ratio should be close
to one. Table 1 shows these probabilities and their
ratios for a large corpus, and the numbers confirm
these expectations. Compared to the raw probabil-
ities, the ratio is better able to distinguish relevant
words (solid and gas) from irrelevant words (water
and fashion) and it is also better able to discrimi-
nate between the two relevant words.

The above argument suggests that the appropri-
ate starting point for word vector learning should
be with ratios of co-occurrence probabilities rather
than the probabilities themselves. Noting that the
ratio Pik/Pjk depends on three words i, j, and k,
the most general model takes the form,

F (wi ,w j , w̃k) =
Pik

Pjk
, (1)

where w 2 Rd are word vectors and w̃ 2 Rd
are separate context word vectors whose role will
be discussed in Section 4.2. In this equation, the
right-hand side is extracted from the corpus, and
F may depend on some as-of-yet unspecified pa-
rameters. The number of possibilities for F is vast,
but by enforcing a few desiderata we can select a
unique choice. First, we would like F to encode

the information present the ratio Pik/Pjk in the
word vector space. Since vector spaces are inher-
ently linear structures, the most natural way to do
this is with vector differences. With this aim, we
can restrict our consideration to those functions F
that depend only on the difference of the two target
words, modifying Eqn. (1) to,

F (wi � w j , w̃k) =
Pik

Pjk
. (2)

Next, we note that the arguments of F in Eqn. (2)
are vectors while the right-hand side is a scalar.
While F could be taken to be a complicated func-
tion parameterized by, e.g., a neural network, do-
ing so would obfuscate the linear structure we are
trying to capture. To avoid this issue, we can first
take the dot product of the arguments,

F
⇣
(wi � w j)T w̃k

⌘
=

Pik

Pjk
, (3)

which prevents F from mixing the vector dimen-
sions in undesirable ways. Next, note that for
word-word co-occurrence matrices, the distinction
between a word and a context word is arbitrary and
that we are free to exchange the two roles. To do so
consistently, we must not only exchange w $ w̃

but also X $ XT . Our final model should be in-
variant under this relabeling, but Eqn. (3) is not.
However, the symmetry can be restored in two
steps. First, we require that F be a homomorphism
between the groups (R,+) and (R>0,⇥), i.e.,

F
⇣
(wi � w j)T w̃k

⌘
=

F (wT
i w̃k)

F (wT
j w̃k)

, (4)

which, by Eqn. (3), is solved by,

F (wT
i w̃k) = Pik =

Xik

Xi
. (5)

The solution to Eqn. (4) is F = exp, or,

wT
i w̃k = log(Pik) = log(Xik) � log(Xi) . (6)

2. Considering two words i = ice and j = steam and study their relationship using

various probe words, k .

3. For words k related to ice but not steam, say k = solid , we expect the ratio Pik
Pjk

will be large.

4. For words k related to steam but not ice, say k = gas, we expect the ratio Pik
Pjk

will

be small.

5. For words k like water or fashion, that are either related to both ice and steam, or

to neither, the ratio should be close to one.

77/102

Global vectors for word representation

1. This argument suggests that the appropriate starting point for word vector

learning should be with ratios of co-occurrence probabilities rather than the

probabilities themselves.

2. Noting that the ratio Pik
Pjk

depends on three words i , j , k, the most general model

takes the form of

F (wi ,wj , w̃k) =
Pik

Pjk

where w ∈ Rd are word vectors and w̃ ∈ Rd is separate context word vector.

3. We would like F to encode Pik
Pjk

in the word vector space.

4. Since vector spaces are inherently linear structures, the most natural way to do

this is with vector differences. Hence

F (wi − wj , w̃k) =
Pik

Pjk

78/102

Global vectors for word representation

1. Parameters of F are vectors while the right-hand side is a scaler.

2. F can be a complicated function such as a neural network, but a simplified

function can be used also.

F ((wi − wj)
>w̃k) =

Pik

Pjk

3. For word-word co-occurrence matrices, the distinction between a word and a

context word is arbitrary. Hence, we are free to exchange the two roles, i.e.

w ↔ w̃ and X ↔ X>.

4. Hence, model should be invariant under this relabeling. Thus

F ((wi − wj)
>w̃k) =

Pik

Pjk
=

F (w>i w̃k)

F (w>j w̃k)
=

Xik

Xi

5. F = exp is the solution of the above equation. Hence,

w>i w̃k = logPik = logXik − logXi

79/102

Global vectors for word representation

1. We have,

wT
i w̃k = logPik = logXik − logXi

2. The above equation would exhibit the exchange symmetry if not for logXi on the

right-hand side.

3. Term logXi is independent of k so it can be absorbed into a bias bi for wi .

4. Adding an additional bias b̃k for w̃k restores the symmetry. Hence

wT
i w̃k + bi + b̃k = logXik

80/102

Glove cost function

1. In an ideal setting, where you have perfect word vectors, the following expression

will be zero.

wT
i w̃k + bi + b̃k − logXik = 0

2. Hence, we can define the objective function as

J(wi , w̃k) =
(
wT
i w̃k + bi + b̃k − logXik

)2

3. Now, the final cost function is

J(wi , w̃k) =

|V |∑

i ,k=1

f (Xik)
(
wT
i w̃k + bi + b̃k − logXik

)2

where f is a weighting function, which is defined manually.

81/102

Glove Results

1. GloVe becomes a global model for unsupervised learning of word representations

that outperforms other models on word analogy, word similarity, and named entity

recognition tasks.

2. Advantages

I Fast training
I Scalable to huge corpora
I Good performance even with small corpus, and small vectors
I Early stopping. We can stop training when improvements become small.

3. Drawbacks

I Uses a lot of memory: the fastest way to construct a term-co-occurrence matrix is to

keep it in RAM as a hash map and perform co-occurrence increments in a global

manner
I Sometimes quite sensitive to initial learning rate

82/102

Word embedding

Character-level embedding

FastText

1. One drawback of Word2vec and Glove is the fact that they don’t handle

out-of-vocabulary.

2. The other drawback of word2vec is morphology. For example, for words with

same radicals such as eat and eaten, Word2Vec doesn’t do any parameter sharing.

3. FastText introduced the concept of subword-level embeddings, based on the

skip-gram model, but where each word is represented as a bag of

character-grams (Bojanowski et al. 2017).

4. A vector representation is associated to each character-gram, and words are

represented as the sum of these representations.

5. This allows the model to compute word representations for words that did not

appear in the training data.

83/102

FastText

1. The modification to the skip-gram/CBOW model are

2. Sub-word generation

I Adding angular brackets to denote the beginning and end of a word. For example,

where 7→ 〈where〉.
I Taking a list of character n-grams a word. For example, for n = 3, we have 〈 wh,

whe, her, ere, re〉.
I Applying hashing to bound the memory requirements. This paper used FNV-1a

variant of the Fowler-Noll-Vo hashing.

3. Using Skip-gram/CBOW with negative sampling

I The input to Fasttex are 〈 wh, whe, her, ere, re〉 and 〈where〉.
I The embedding for the center word is calculated by taking a sum of vectors for the

character n-grams and the whole word itself.

4. In practice, they extracted all the n-grams for n greater or equal to 3 and smaller

or equal to 6.

84/102

Character-level Convolutional Networks (Zhang, Zhao, and LeCun 2015)

1. A list of character are defined 70 characters including 26 English letters, 10 digits,

33 special characters and new line character.

2. The network architectures are: 9 layers deep with 6 convolutional layers and 3

fully-connected layers.

2.3 Model Design

We designed 2 ConvNets – one large and one small. They are both 9 layers deep with 6 convolutional
layers and 3 fully-connected layers. Figure 1 gives an illustration.

Some Text

Convolutions Max-pooling

Length

F
e
a

tu
re

Q
u
a
n
ti
z
a
ti
o
n

...

Conv. and Pool. layers Fully-connected

Figure 1: Illustration of our model

The input have number of features equal to 70 due to our character quantization method, and the
input feature length is 1014. It seems that 1014 characters could already capture most of the texts of
interest. We also insert 2 dropout [10] modules in between the 3 fully-connected layers to regularize.
They have dropout probability of 0.5. Table 1 lists the configurations for convolutional layers, and
table 2 lists the configurations for fully-connected (linear) layers.

Table 1: Convolutional layers used in our experiments. The convolutional layers have stride 1 and
pooling layers are all non-overlapping ones, so we omit the description of their strides.

Layer Large Feature Small Feature Kernel Pool
1 1024 256 7 3
2 1024 256 7 3
3 1024 256 3 N/A
4 1024 256 3 N/A
5 1024 256 3 N/A
6 1024 256 3 3

We initialize the weights using a Gaussian distribution. The mean and standard deviation used for
initializing the large model is (0, 0.02) and small model (0, 0.05).

Table 2: Fully-connected layers used in our experiments. The number of output units for the last
layer is determined by the problem. For example, for a 10-class classification problem it will be 10.

Layer Output Units Large Output Units Small
7 2048 1024
8 2048 1024
9 Depends on the problem

For different problems the input lengths may be different (for example in our case l0 = 1014), and
so are the frame lengths. From our model design, it is easy to know that given input length l0, the
output frame length after the last convolutional layer (but before any of the fully-connected layers)
is l6 = (l0 � 96)/27. This number multiplied with the frame size at layer 6 will give the input
dimension the first fully-connected layer accepts.

2.4 Data Augmentation using Thesaurus

Many researchers have found that appropriate data augmentation techniques are useful for control-
ling generalization error for deep learning models. These techniques usually work well when we
could find appropriate invariance properties that the model should possess. In terms of texts, it is not
reasonable to augment the data using signal transformations as done in image or speech recognition,
because the exact order of characters may form rigorous syntactic and semantic meaning. Therefore,

3

3. Please also read the paper (Józefowicz et al. 2016).

85/102

Graph embedding

Introduction

1. Networks are a general language for describing and modeling complex systems.

2. Many data are networks such as

Social networks Economic networks Biological networks

Citation networks Internet Networks of neurons

86/102

Introduction1

1. Why networks?

I Networks are a uniform language for describing complex data.
I Networks are used as a common language in many different fields such as computer,

biology, social sciences.
I There are too many data sets are available in the form of networks.

2. Machine learning tasks in networks

Node classification Predict a type of a given node.

Link prediction Predict whether two nodes are linked.

Community detection Identify densely linked clusters of nodes.

Network similarity How similar are two (sub)networks

1Most slides of graph embedding are taken from Leskovec et al. sides
87/102

Introduction

1. Some examples of machine learning tasks in networks

Node classification

Example: Node Classification

? ?

?
?

?
Machine
Learning

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 8

Link prediction

Example: Link Prediction

Machine
Learning

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 10

?

?

?

x

88/102

Feature learning in graphs

1. A graph G = (V ,E) is represented as a set of nodes V and a set of edges E

represented as a binary matrix A.

2. The goal is to learn task-independent features from graphs.

3. For example, node embedding is to learn function f : V 7→ Rd , where similar

nodes in the graph have embeddings that are close together.

Input graph
A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.

OutputInput

Learned features
A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.

OutputInput4. This is a hard task, because of

I Complex topographical structure and there is no spatial locality like grids
I No fixed node ordering or reference point (i.e., the isomorphism problem)
I Often dynamic and have multi-modal features.

89/102

Node embedding

1. Goal is to encode nodes so that similarity in the embedding space (e.g., dot

product) approximates similarity in the original network.

2. Let zu be the embedding of node u.

3. Goal is to find the encoder function f such that similarity(u, v) ≈ z>u zv .

4. Learning node embedding

I Define an encoder
I Define a node similarity function
I Optimize the parameters of the encoder so that similarity(u, v) ≈ z>u zv .

5. Two key components

I Encoder function f (u) = zu.
I Similarity measure similarity(u, v) ≈ z>u zv .

90/102

Graph embedding

Similarity measures

Adjacency-based Similarity

1. Similarity function is the weight of edge (u, v) in the original network.

2. The intuition is dot products z>u zv approximate edge existence.

3. The loss function can be defined as

` =
∑

(u,v)∈V×V

∥∥∥z>u zv − Auv

∥∥∥
2

4. Find embedding matrix Z ∈ Rd×|V | such that minimizes `.

5. We can use the highly scalable and general method stochastic gradient descent or

matrix decomposition solvers such as SVD, which works in limited cases.

91/102

Multi-hop similarity

1. Consider k-hop node neighbors.

Multi-hop Similarity

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 20

§ Idea: Consider k-hop node neighbors.
§ E.g., two or three-hop neighbors.

• Red: Target node
• Green: 1-hop neighbors

• A	(i.e., adjacency matrix)
• Blue: 2-hop neighbors

• A2
• Purple: 3-hop neighbors

• A3

I The red node is the target node.

I The green nodes are the 1-hop neighbors (A).

I The blue nodes are the 2-hop neighbors (A2).

I The purple nodes are the 3-hop neighbors (A3).

2. The idea is to find embeddings to predict k-hop neighbors.

3. The loss function can be defined as

` =
∑

(u,v)∈V×V

∥∥∥z>u zv − Ak
uv

∥∥∥
2

4. Another option is to measure the overlap between node neighborhoods using

overlap functions such as Jaccard similarity.

92/102

Graph embedding

Random-walk approaches

Random-walk embeddings

1. The idea is to consider z>u zv as probability that nodes u and v co-occur on a

random walk over the network.

2. In random-walk embeddings, we
I Estimate probability of visiting node v on a random walk starting from node u using

some random walk strategy R.
I Optimize embeddings to encode these random walk statistics.

3. Random walk is good because
I It is flexible to define different node similarity and
I It doesn’t need to consider all node pairs in training.

4. In random-walk optimization, we
I Run short random-walks starting from all nodes u ∈ V using R, denoted by NR(v).
I Find embedding maximizing likelihood of random-walk co-occurrences of each node

` = −
∑

u∈V

∑

v∈NR(u)

logP(v |zu)

P(v |zu) =
exp(z>u zv)∑
n∈V exp(z>u zn)

5. Use negative sampling to improve the efficiency of optimization algorithm
93/102

DeepWalk embeddings

1. The idea of DeepWalk is to use random walks to produce embeddings (Perozzi,

Al-Rfou, and Skiena 2014).

2. The random walk starts in a selected node then we move to the random neighbor

from a current node for a defined number of steps.

3. The method basically consists of three steps:

Sampling A graph is sampled with random walks. It is sufficient to perform

from 32 to 64 random walks with length of about 40 steps from

each node.

Training skip-gram Random walks are comparable to sentences in word2vec

approach. The skip-gram network accepts a node from the random

walk as a one-hot vector as an input and maximizes the probability

for predicting neighbor nodes. It is typically trained to predict

around 20 neighbor nodes (10 nodes left and 10 nodes right).

Computing embeddings Embedding is the output of a hidden layer of the

network. The DeepWalk computes embedding for each node in the

graph.

94/102

DeepWalk embeddings

1. The DeepWalk process can be visualized as2

2. The model can take a target node to predict it’s context, which in the case of a

graph, means it’s connectivity, structural role, and node features.

3. DeepWalk method performs random walks randomly what means that

embeddings do not preserve the local neighborhood of the node well.

2Credit: Primož Godec
95/102

Node2vec embeddings

1. Node2vec is a modification of DeepWalk with a small difference in random walks.

2. The idea of node2vec is to use flexible, biased random walks that can trade off

between local and global views of the network (Grover and Leskovec 2016).

3. Node2vec has two parameters p and q.

I Parameter q defines how probable is that the random walk would discover the

undiscovered part of the graph. This parameter prioritizes a breadth-first-search

(BFS) procedure.
I Parameter p defines how probable is that the random walk would return to the

previous node. This parameter prioritizes a depth-first-search (DFS) procedure.

4. The decision of where to walk next is therefore influenced by probabilities 1
p or 1

q .

96/102

Node2vec embeddings

1. BFS is ideal for learning local neighbors, while DFS is better for learning global

variables.

2. Node2vec can switch to and from the two priorities depending on the task.

3. This means that given a single graph, Node2vec can return different results

depending on the values of the parameters.

DFS-based BFS-based

4. Experiments demonstrated that BFS is better at classifying according to

structural roles (hubs, bridges, outliers, etc.) while DFS returns a more

community driven classification scheme.

97/102

Other 2vec embeddings

2vec embeddings

item2vec The embedding of items used in the collaborative filtering.

tweet2vec Finds vector-space representations of whole tweets.

entity2vec Learning embeddings of entities from text that describes them.

author2vec Learning author representations by combining content and link

information.

emoji2vec Learning Emoji representations from their description.

image2vec Vector representation of images.

Speech2Vec Learning fixed-length vector representations of audio segments.

Time2Vec Learning a vector representation of time.

Wikipedia2Vec It is a tool used for obtaining embeddings of words and entities from

Wikipedia.

Gene2vec Distributed representation of genes based on co-expression.

Skill2vec Learning the relevant skills from job description.

98/102

Reading

Readings

1. Chapter 14 of Deep Learning Book3

3Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
99/102

References i

Alain, Guillaume and Yoshua Bengio (2014). “What Regularized Auto-Encoders Learn

from the Data-Generating Distribution”. In: Journal of Machine Learning Research

15.110, pp. 3743–3773. url: http://jmlr.org/papers/v15/alain14a.html.

Bengio, Yoshua et al. (2003). “A Neural Probabilistic Language Model”. In: Journal of

Machine Learning Research 3, pp. 1137–1155.

Blei, David M., Andrew Y. Ng, and Michael I. Jordan (2003). “Latent Dirichlet

Allocation”. In: Journal of Machine Learning Research 3, pp. 993–1022.

Bojanowski, Piotr et al. (2017). “Enriching Word Vectors with Subword Information”.

In: Trans. Assoc. Comput. Linguistics 5, pp. 135–146.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT

Press.

Grover, Aditya and Jure Leskovec (2016). “node2vec: Scalable Feature Learning for

Networks”. In: Proceedings of the 22nd ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 855–864.

Hinton, G. E. and R. R. Salakhutdinov (2006). “Reducing the Dimensionality of Data

with Neural Networks”. In: SCIENCE 313, pp. 504–507.

100/102

http://jmlr.org/papers/v15/alain14a.html

References ii

Józefowicz, Rafal et al. (2016). “Exploring the Limits of Language Modeling”. In:

CoRR abs/1602.02410.

Mikolov, Tomas, Kai Chen, et al. (2013). “Efficient Estimation of Word

Representations in Vector Space”. In: International Conference on Learning

Representations.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Greg S Corrado, et al. (2013). “Distributed

Representations of Words and Phrases and their Compositionality”. In: Advances in

Neural Information Processing Systems 26, pp. 3111–3119.

Mikolov, Tomas, Ilya Sutskever, Kai Chen, Gregory S. Corrado, et al. (2013).

“Distributed Representations of Words and Phrases and their Compositionality”. In:

Proc. of Advances in Neural Information Processing Systems, pp. 3111–3119.

Morin, Frederic and Yoshua Bengio (2005). “Hierarchical Probabilistic Neural Network

Language Model”. In: Proceedings of the Tenth International Workshop on Artificial

Intelligence and Statistics (AISTATS).

Pennington, Jeffrey, Richard Socher, and Christopher D. Manning (2014). “Glove:

Global Vectors for Word Representation”. In: Proc. of Advances in Neural

Information Processing Systems, pp. 1532–1543.

101/102

References iii

Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena (2014). “DeepWalk: online learning

of social representations”. In: The 20th ACM SIGKDD International Conference on

Knowledge Discovery and Data Mining, pp. 701–710.

Rong, Xin (2016). “word2vec Parameter Learning Explained”. In: CoRR

abs/1411.2738.

Uma, K. V. (2018). “Improving the Classification accuracy of Noisy Dataset by

Effective Data Preprocessing”. In: International Journal of Computer Applications

180.36, pp. 37–46.

Zhang, Xiang, Junbo Zhao, and Yann LeCun (2015). “Character-level Convolutional

Networks for Text Classification”. In: NIPS.

102/102

Questions?

cba

102/102

	Introduction
	Autoencoders
	Undercomplete Autoencoder
	Regularized Autoencoders
	Denoising Autoencoders
	Contractive Autoencoder
	Stacked autoencoder
	Applications

	Word embedding
	Neural probabilistic language model
	Word2vec algorithm
	Global vectors for word representation
	Character-level embedding

	Graph embedding
	Similarity measures
	Random-walk approaches

	Other 2vec embeddings
	Reading

