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Introduction



Introduction

1. Computational learning theory seeks to answer questions such as

I Is it possible to identify classes of learning problems that are inherently easy or difficult?
I Can we characterize the number of training examples necessary or sufficient to assure

successful learning?
I How is this number affected if the learner is allowed to pose queries to the trainer?
I Can we characterize the number of mistakes that a learner will make before learning the

target function?
I Can we characterize the inherent computational complexity of classes of learning problems?

2. General answers to all these questions are not yet known.

3. In this lecture, we want to answer some of the above questions for simple learning

problems / algorithms?
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Problem setting

1. Problem setting for concept learning

I Domain Set of all possible instances over which target functions may be defined.

Training and Testing instances are generated from X according some unknown distribution

D.

We assume that D is stationary.
I Set of labels In this model label set T will either be {0, 1} or {1,+1}.
I Concept class Set of target concepts that our learner might be called upon to learn.

Target concept is a Boolean function c : X → {0, 1}.
I Hypothesis class Set of all possible hypotheses.

The goal is producing hypothesis h ∈ H which is an estimate of c.
I Performance measure Performance of h measured over new samples drawn randomly using

distribution D.
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Error of a classifier

Definition (Sample error)

The sample error (denoted EE (h)) of hypothesis h with respect to target concept c and data

sample S of size N is.

EE (h) =
1

N

∑
x∈S

I [c(x) 6= h(x)]

Definition (True error)

The true error (denoted E (h)) of hypothesis h with respect to target concept c and

distribution D is the probability that h will misclassify an instance drawn at random

according to distribution D.

E (h) = Px∼D[c(x) 6= h(x)]

=
∑

c(x)6=h(x)

D(x)
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Notions of errors

1. True error is

c h

Instance space X

2. E (h) depends strongly of the D.

Definition (Approximately correct)

Hypotesis h is approximately correct if E (h) ≤ ε.

5/19



Probably approximately correct (PAC)

learning



Probably approximately correct (PAC) learning

1. We are trying to characterize the number of training examples needed to learn a

hypothesis h for which E (h) = 0.

2. Is it possible?

I May be multiple consistent hypotheses and the learner can not pickup one of them.
I Since training set is chosen randomly, the true error may not be zero.

3. To accommodate these difficulties, we need

I We will not require that the learner output a zero error hypothesis, we will require only that

its error be bounded by some constant ε that can be made arbitrarily smal.
I We will not require that the learner succeed for every sequence of randomly drawn training

examples, we will require only that its probability of failure be bounded by some constant, δ,

that can be made arbitrarily small.
I δ is confidence parameter.
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Probably approximately correct (PAC) learning

Definition (PAC Learnability)

Concept class C is PAC-learnable by learning algorithm L using hypotheses space H if for all

concepts c ∈ C , distributions D over X , there exists

I an ε (0 < ε < 1
2 ), and

I a δ (0 < δ < 1
2 ),

with probability at least (1− δ), learner L will output a hypothesis h ∈ H such that

I E (h) ≤ ε , and

I in time that is polynomial in ( 1
ε ), ( 1

δ ), n, and |C |.
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Probably approximately correct (PAC) learning

1. If L requires some minimum processing time per training example, then for C to be

PAC-Learnable by L, L must learn from a polynomial number of training examples.

Definition (Sample complexity)

The growth in the number of required training examples with problem size.

2. The most limiting factor for success of a learner is the limited availability of training data.

Definition (Consistent learner)

A learner is consistent if it outputs hypotheses that perfectly fit the training data, whenever

possible.

3. Our concern : Can we bound E (h) given EE (h)?
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Probably approximately correct (PAC) learning

Theorem (Haussler, 1988)

Let H be a finite hypothesis class. Let A be an algorithm that for any target concept c ∈ H

and i.i.d. sample S returns a consistent hypothesis hS . Then, for any ε, δ > 0, the inequality

Px∼Dm [E (hS) ≤ ε] ≥ 1− δ

holds if m ≥ 1
ε

(
log |H|+ log 1

δ

)
.

Proof.

1. Bound the probability that any consistent learner will output a hypothesis h with

E (h) ≥ ε.
2. Want this probability to be below a specified threshold δ, i.e. |H|e−εm ≤ δ
3. To achieve, solve inequality for m such that m ≥ 1

ε

(
ln |H|+ ln

(
1
δ

))

It is possible that |H|e−εm > 1.
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PAC learning (example)

1. Let H be conjunctions of constraints on up to n boolean attributes. Then

|H| = 3n,m ≥ 1

ε

(
ln 3n + ln

(
1

δ

))
=

1

ε

(
n ln 3 + ln

(
1

δ

))
2. Thus this problem is PAC learnable.

3. Consider the following dataset, what is the sample complexity for ε = 0.1, δ = 0.05.

Machine Learning
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Probably Approximately Correct (PAC) Learning [5]

! Example : 

" H: conjunctions of constraints on up to n boolean attributes (n boolean literals)

" | H | = 3n, m ≥≥≥≥ 1/εεεε (ln 3n + ln (1/δδδδ)) = 1/εεεε (n ln 3 + ln (1/δδδδ))

! How About EnjoySport?

" H as given in EnjoySport (conjunctive concepts with don’t cares)

• | H | = 973

• m ≥≥≥≥ 1/εεεε (ln |H| + ln (1/δδδδ))

" Example goal: probability 1 - δδδδ = 95% of hypotheses with errorD(h) < 0.1

" m ≥≥≥≥ 1/0.1 (ln 973 + ln (1/0.05)) ≈≈≈≈ 98.8

Example Sky Air
Temp

Humidity Wind Water Forecast Enjoy
Sport

0 Sunny Warm Normal Strong Warm Same Yes
1 Sunny Warm High Strong Warm Same Yes
2 Rainy Cold High Strong Warm Change No
3 Sunny Warm High Strong Cool Change Yes

4. In this case, |H| = 973 and

m ≥ 1/0.1(ln 973 + ln(1/0.05)) ' 98.8
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PAC learning (example)

1. Let H be the set of all funtions on up to n boolean attributes. Then

|H| = 2|X |, |X | = 2n

m ≥ 1

ε

(
ln 22n + ln

(
1

δ

))
=

1

ε

(
2n ln 2 + ln

(
1

δ

))
2. Sample complexity is exponential in n and thus this problem is not PAC learanable.

3. This is a unbiased learner. It has no assumption about the hypotheses space or search

method.
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Agnostic learner

Definition (Agnostic learner)

A learner that make no assumption that the target concept is representable by H and that

simply finds the hypothesis with minimum error.

1. How hard is this?

m ≥ 1

2ε2

(
ln |H|+ ln

(
1

δ

))
2. Derived from Hoeffding bounds

P [E (h) > EE (h) + ε] ≤ e−2mε2
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Vapnik-Chervonekis dimension

1. Drawbacks of sample complexity

The bound is not tight, when |H| is large and the probability may be grater than 1.

When |H| is infinite.

Definition (Vapnik-Chervonekis dimension (VC (H)))

VC-dimension measures complexity of hypothesis space H,not by the number of distinct

hypotheses |H|, but by the number of distinct instances from X that can be completely

discriminated using H.

Definition (Dichotomy)

A dichotomy of a set S is a partition of S into two subsets S1 and S2.
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Vapnik-Chervonekis dimension

Definition (Shattering)

A set S is shattered by hypothesis space H if and only if for every dichotomy (concept) of S ,

there exists a hypothesis in H consistent with this dichotomy

Machine Learning
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Probably Approximately Correct (PAC) Learning [7]

! Drawbacks of sample complexity

" The bound is not tight, when |H| is large and probability may be grater than 1. 

" When |H| is infinite.

! Vapnik-Chervonekis dimension (VC (H))

" VC-dimension measures complexity of hypothesis space H, not by the number of distinct hypotheses |H|, 

but by the number of distinct instances from X that can be completely discriminated using H. 

! Dichotomies: A dichotomy(concept) of a set S is a partition of S into two subsets S1 and S2

! Shattering

" A set of instances S is shattered by hypothesis space H if and only if for every dichotomy 

(concept) of S, there exists a hypothesis in H consistent with this dichotomy

" Intuition: a rich set of functions shatters a larger instance space

Instance 
Space X
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Vapnik-Chervonekis dimension

Definition (Vapnik-Chervonekis dimension (VC (H)))

VC (H) of hypotheses space H defined over the instance space X is the size of largest finite

subset of X shattered by H. If arbitrary large finite sets of X can be shattered by H, then

VC (H) =∞.

Lemma

For any finite H, we have VC (H) ≤ log2 |H|.

Example

1. Let X = < and H = {(a, b)|a < b}, then VC (H) = 2.

2. Let X = <2 and H be the set of linear decision surfaces, then VC (H) = 3.

3. Let X = <n and H be the set of linear decision surfaces, then VC (H) = n + 1.

4. Let X = <2 and H be the set of all axis aligned rectangles in <2, then VC (H) = 4.

5. VC for a NN with linear activation and N free parameters is O(N).

6. VC for a NN with threshold activation and N free parameters is O(N logN).

7. VC for a NN with sigmoid activation and N free parameters is O(N2).
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Mistake bounds

Definition (Mistake bound)

How many mistakes will the learner make in its prediction before it learns the target concept?

1. Suppose H be conjunction of up to n Boolean literals and their negations.

2. Find-S algorithm

I Initialize h to the most specific hypothesis

(l̄1 ∧ l1) ∧ (l̄2 ∧ l2) ∧ . . . ∧ (l̄n ∧ ln)

I For each positive training instance x remove from h any literal that is not satisfied by x .
I Output hypothesis h
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Mistake bounds

1. How many mistakes before converging to correct h?

I Once a literal is removed, it is never put back
I No false positives (started with most restrictive h), count only false negatives
I First example will remove n candidate literals
I Worst case: every remaining literal is also removed (incurring 1 mistake each)
I Find-S makes at most n + 1 mistakes
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Reading



Readings

1. Chapter 7 of Machine Learning Book (Mitchell 1997).
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Questions?

cba
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