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Introduction



Introduction

I Bayes classifier for two classes C1 and C2

p(C1|X ) =
P(X |C1)P(C1)

P(X )
=

P(X |C1)P(C1)

p(X |C1)p(C1) + p(X |C2)p(C2)

=
1

1 + p(X |C2)p(C2)
P(X |C1)P(C1)

=
1

1 + exp(−a)
= σ(a)

a = ln
P(X |C1)P(C1)

P(X |C2)P(C2)

where σ(x) refers to sigmoid function.
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Introduction (cont.)

I Let the class conditional densities be D−dimensional Gaussian (for k = 1, 2)

p(x |Ck) = N (µ,Σ) =
1

|Σ|D/2(2π)D/2
exp

(
−1

2
(x − µk)>Σ−1(x − µk)

)
I Hence a equals to

a = ln
P(X |C1)P(C1)

P(X |C2)P(C2)

= ln
exp

(
− 1

2 (x − µ1)>Σ−1(x − µ1)
)

exp
(
− 1

2 (x − µ2)>Σ−1(x − µ2)
) P(C1)

P(C2)
.

I Hence, we have

P(C1|X ) = σ
(
W>X + w0

)
where

W = Σ−1(µ1 − µ2)

w0 = −1

2
µ>1 Σ−1µ1 +

1

2
µ>2 Σ−1µ2 + ln

P(C1)

P(C2)

or simply

P(C1|X ) = σ
(
W ′>X

)
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Introduction (cont.)

I We compute a linear combination of the inputs but then we pass through a function that

ensures 0 ≤ yn ≤ 1 by defining.

yn = σ(w>x) ,
1

1 + exp(−w>x)
.

I If we find W directly, we need to find D parameters.
I If we find P(Ck |X ) via probabilistic modeling of data using Gaussian distribution and

MLE, we need

1. 2D parameters for mean

2. D(D+1)
2

parameters for shared covariance matrix

3. One parameter for P(C1)

resulting D(D+5)
2 + 1 parameters.

I This results in Logistic regression classifier.
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Logistic regression



Logistic regression

I Logistic regression is a model for probabilistic classification.

I It predicts label probabilities rather than a hard value of the label.

I Let

yn = P(C1|xn)

1− yn = P(C2|xn)

I The output of Logistic regression is a probability defined using the sigmoid function

P(C1|xn) = yn = σ
(
W>xn

)
=

1

1 + exp(−W>xn)

I The log of the ratio of probabilities ln P(C1|xn)
P(C2|xn) for the two classes, also known as the log

odds equals to

ln
P(C1|xn)

P(C2|xn)
= ln exp

(
W>xn

)
= W>xn

I Thus if W>xn > 0, the probable class is C1.
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Loss function of Logistic regression

I One loss function may be

`(tn, h(xn)) = (tn − h(xn))2

This loss function is not a convex function and is not easy to optimize.

I The likelihood function can be written

p(t|w) =

{
yn tn = 1

(1− yn) tn = 0

I If tn = 1 but yn is close to 0 then loss will be high.

I If tn = 0 but yn is close to 1 then loss will be high.

I The likelihood function can also be written

p(t|w) = y tn
n (1− yn)(1−tn)

I We can define a loss function by taking the negative logarithm of the likelihood.

L(W ) = − ln
N∏

n=1

`(tn, h(xn)) = −
N∑

n=1

[tn ln yn + (1− tn) ln(1− yn)]

I This loss function is called the cross-entropy loss.
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Logistic regression (cont.)

I Let tn ∈ {−1,+1}. Another way to write the log-likelihood of data is.

p(+1|x) =
1

1 + exp(−w>x)

p(−1|x) =
1

1 + exp(+w>x)

I By combining the above equations and computing negative log-likelihood of data, we

obtain

L(w) = −
N∑

n=1

ln
1

1 + exp(−tnw>xn)

=
N∑

n=1

ln
[
1 + exp(−tnw>xn)

]
I Unlike linear regression, we can no longer write down the minimum of negative

log-likelihood in the closed form. Instead, we need to use an optimization algorithm for

computing it.
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Logistic regression (cont.)

I Computing the gradients of L(w) with respect to w , we obtain

∇L(w) =
N∑

n=1

tnxn(yn − tn)

I Updating the weight vector using the gradient descent rule will result in

W (k+1) = W (k) − η
N∑

n=1

tnxn(yn − tn)

η is the learning rate.

I In order to have a good trade-off between the training error and the generalization error,

we can add the regularization term.

L(w) =
N∑

n=1

log
[
1 + exp(−tnw>xn)

]
+
λ

2
‖w‖2

I Using the gradient descent rule, will result in the following updating rule.

W (k+1) = W (k) − η
N∑

n=1

tnxn(yn − tn)− λW (k)
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MLE formulation of Logistic regression



MLE formulation of Logistic regression

I In linear regression, we often assume that the noise has a Gaussian distribution.

p(t|x ,w) = N (t|µ(x), σ2(x))

I We can generalize the linear regression to binary classification by making two changes:

I First, replacing the Gaussian distribution for t with Bernoulli distribution, which is more

appropriate for classification.

p(tn|xn,w) = Ber(tn|yn) =

yn if tn = 1

1− yn if tn = 0

where µ(xn) = E [tn|xn] = p(tn = 1|xn).
I This is equivalent to

p(tn|xn,w) = Ber(tn|µ(xn)) = µ(xn)tn (1− µ(xn))(1−tn)

I Second, compute a linear combination of the inputs and then we pass this through a

function that ensures 0 ≤ µ(x) ≤ 1 by defining

µ(x) = σ(w>x)
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MLE formulation of Logistic regression (cont.)

I Putting these two steps together and dropping index n, we obtain

p(t|x ,w) = Ber(t|σ(w>x)).

I This is called logistic regression due to its similarity to linear regression.

I If we threshold the output probability at 1
2 , we can introduce a decision rule of the form

if p(t = 1|x) > 0.5⇐⇒ h(x) = 1.

I Logistic regression learns weights so as to maximize the (log-)likelihood of the data.

I Let S = {(x1, t1), (x2, t2), . . . , (xN , tN)} be the training set. The negative log-likelihood of

data equals

L(w) = − ln
N∏

n=1

y tn
n (1− yn)(1−tn)

= −
N∑

n=1

tn ln yn + (1− tn) ln(1− yn)

This is called the cross-entropy error function.
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MAP formulation for Logistic regression

I Maximum likelihood estimate of W can lead to overfitting when data set is linearly

separable. A solution is to use a prior on w .

I This can be avoided by inclusion of a prior and finding a MAP solution or equivalently by

adding a regularization term to the error function.

I Same as linear regression, we consider a Gaussian prior on w

p(W ) = N (0, σ2
0 ID).

I ID denotes the D × D identity matrix. This is equivalent to assume that the prior selects

each component of W independently from a N (0, σ2
0). This prior can be written as

p(W ) =
1

(2π)D/2σD
0

exp

{
− 1

2σ2
0

||W ||22
}
.
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MAP formulation for Logistic regression

I Assume that noise precision is known, The posterior density of W given set S and solving

the equation gives the form

L(w) =
N∑

n=1

log
[
1 + exp(−tnw>xn)

]
+
λ

2
‖w‖2

I Thus MAP estimation is equivalent to regularized logistic regression.

I Using the gradient descent rule, will result in the following updating rule.

W (k+1) = W (k) − η
N∑

n=1

tnxn(yn − tn)− λW (k)
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Readings

1. Sections 4.3.2 of Pattern Recognition and Machine Learning Book (Bishop 2006).

2. Chapter 8 of Machine Learning: A probabilistic perspective (Murphy 2012).

3. Chapter 10 of Probabilistic Machine Learning: An introduction (Murphy 2022).
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Questions?

cba
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