### **Machine learning**

### Introduction

Hamid Beigy

Sharif University of Technology

October 29, 2021





- 1. What is machine learning?
- 2. Types of machine learning
- 3. Outline of course
- 4. References

# What is machine learning?



The field of *machine learning* is concerned with the question of how to construct computer programs that automatically improve with the experience.

```
Definition (Mohri et. al., 2012)
```

Computational methods that use experience to improve performance or to make accurate predictions.

#### **Definition (Mitchel 1997)**

A computer program is said to *learn* 

- ▶ from *training experience* E
- with respect to some class of tasks T
- ▶ and performance measure P,

if its performance at tasks in T, as measured by P, improves with experience E.



#### Example (Checkers learning problem)

Class of task T: playing checkers.

**Performance measure** *P***:** percent of games won against opponents.

Training experience E: playing practice game against itself.

Example (Handwriting recognition learning problem)

**Class of task** T: recognizing and classifying handwritten words within images.

Performance measure P: percent of words correctly classified.

**Training experience** *E*: a database of handwritten words with given classifications.

#### Example (Robot driving learning problem)

**Class of task** T: driving a robot on the public highways using vision sensors.

**Performance measure** *P***:** average distance travelled before an error.

**Training experience** *E*: a sequence of images and steering command recorded.



We need machine learning because

- 1. Tasks are too complex to program
  - Tasks performed by animals/humans such as driving, speech recognition, image understanding, and etc.
  - Tasks beyond human capabilities such as weather prediction, analysis of genomic data, web search engines, and etc.
- 2. Some tasks need adaptivity. When a program has been written down, it stays unchanged. In some tasks such as optical character recognition and speech recognition, we need the behavior to be adapted when new data arrives.

**Types of machine learning** 



Machine learning algorithms based on the information provided to the learner can be classified into three main groups.

- 1. Supervised/predictive learning: The goal is to learn a mapping from inputs x to outputs y given the labeled set  $S = \{(x_1, t_1), (x_2, t_2), \dots, (x_N, t_N)\}$ .  $x_k$  is called feature vector.
  - ▶ When  $t_i \in \{1, 2, ..., C\}$ , the learning problem is called classification.
  - When  $t_i \in \mathbb{R}$ , the problem is called regression.
- 2. Unsupervised/descriptive learning: The goal is to find interesting pattern in data  $S = \{x_1, x_2, \dots, x_N\}$ . Unsupervised learning is arguably more typical of human and animal learning.
- 3. Reinforcement learning: Reinforcement learning is learning by interacting with an environment. A reinforcement learning agent learns from the consequences of its actions.



#### 1. Supervised learning:

- Classification:
  - Document classification and spam filtering.
  - Image classification and handwritten recognition.
  - Face detection and recognition.
- ► Regression:
  - Predict stock market price.
  - Predict temperature of a location.
  - Predict the amount of PSA.
- 2. Unsupervised/descriptive learning:
  - Discovering clusters.
  - Discovering latent factors.
  - Discovering graph structures (correlation of variables).
  - Matrix completion (filling missing values).
  - Collaborative filtering.
  - Market-basket analysis (frequent item-set mining).

#### 3. Reinforcement learning:

- ► Game playing.
- robot navigation.



- Probability theory can be applied to any problem involving uncertainty.
- A key concept in machine learning is <u>uncertainty</u>. In machine learning, uncertainty comes in many forms:
  - What is the best prediction about the future given some past data?
  - What is the best model to explain some data?
  - What measurement should I perform next?
- Data comes from a process that is not completely known.
- This lack of knowledge is indicated by modeling the process as a random process.
- The process actually may be deterministic, but we don't have access to complete knowledge about it, we model it as random and we use the probability theory to analyze it.
- ► The probabilistic approach to machine learning is closely related to the field of statistics, but differs slightly in terms of its emphasis and terminology<sup>1</sup>.

<sup>&</sup>lt;sup>1</sup>http://www-stat.stanford.edu/~tibs/stat315a/glossary.pdf

**Outline of course** 



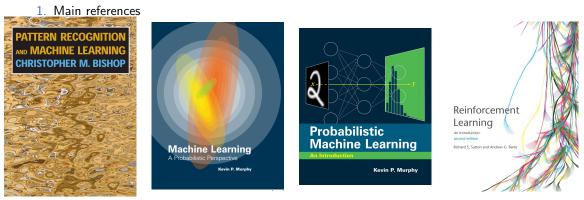
- 1. Introduction to machine learning & probability theory
- 2. Supervised learning:
  - Linear models for regression
  - Classifiers based on Bayes decision theory
  - Linear & Nonlinear models for classification
  - Combining classifiers
  - Evaluating classifiers
  - Computational learning theory
- 3. Unsupervised/descriptive learning:
  - ► Feature selection & Feature extraction/dimensionality reduction
  - Clustering & clustering evaluation
- 4. Reinforcement learning:
  - Reinforcement model & model-based learning
  - Monte-carlo & Temporal difference methods
- 5. Advanced topics:
  - Statistical learning theory
  - Graphical models
  - Deep & semi-supervised & Active & online learning
  - Large scale machine learning



- 1. Course name : Machine learning
- 2. The objective of machine learning is the study of computer algorithms that can improve automatically through experience and by the use of data.
- Instructor : Hamid Beigy Email : beigy@sharif.edu
- 4. Class Link: https://vc.sharif.edu/ch/beigy

5. Course Website: http://ce.sharif.edu/courses/00-01/1/ce717-1/ http://sharif.edu/~beigy/14001-40717.html

- 6. Lectures: Sat-Mon (8:30-10:30)
- 7. TAs : Fariba Lotfi Email: flotfi@ce.sharif.edu
  - Hassan Hamidi Email: hamidi3031@gmail.com




#### ► Evaluation:

| Mid-term exam         | 20% | 1400-09-17 |                             |
|-----------------------|-----|------------|-----------------------------|
| Final exam            | 25% | 1400-10-29 |                             |
| Practical Assignments | 35% |            |                             |
| Quiz                  | 15% |            |                             |
| Paper                 | 5%  | 1400-09-17 | Hard deadline for selection |

# References





2. Other useful references are (Mitchell 1997), (Alpaydin 2014), (Hastie, Tibshirani, and Friedman 2009), and (Szepesvari 2010).

### **Relevant journals**

- 1. IEEE Trans on Pattern Analysis and Machine Intelligence
- 2. Journal of Machine Learning Research
- 3. Pattern Recognition
- 4. Machine Learning
- 5. Neural Networks
- 6. Neural Computation
- 7. Neurocomputing
- 8. IEEE Trans. on Neural Networks and Learning Systems
- 9. Annuals of Statistics
- 10. Journal of the American Statistical Association
- 11. Pattern Recognition Letters
- 12. Artificial Intelligence
- 13. Data Mining and Knowledge Discovery
- 14. IEEE Transaction on Cybernetics (SMC-B)
- 15. IEEE Transaction on Knowledge and Data Engineering
- 16. Knowledge and Information Systems





- 1. Neural Information Processing Systems (NIPS)
- 2. International Conference on Machine Learning (ICML)
- 3. European Conference on Machine Learning (ECML)
- 4. Asian Conference on Machine Learning (ACML2013)
- 5. Conference on Learning Theory (COLT)
- 6. Algorithmic Learning Theory (ALT)
- 7. Conference on Uncertainty in Artificial Intelligence (UAI)
- 8. Practice of Knowledge Discovery in Databases (PKDD)
- 9. International Joint Conference on Artificial Intelligence (IJCAI)
- 10. IEEE International Conference on Data Mining series (ICDM)



#### 1. Packages:

- R http://www.r-project.org/
- Weka http://www.cs.waikato.ac.nz/ml/weka/
- RapidMiner http://rapidminer.com/
- MOA http://moa.cs.waikato.ac.nz/
- 2. Datasets:
  - UCI Machine Learning Repository http://archive.ics.uci.edu/ml/
  - > StatLib http://lib.stat.cmu.edu/datasets/
  - Delve http://www.cs.toronto.edu/~delve/data/datasets.html



- 1. Chapter 1 of Pattern Recognition and Machine Learning Book (Bishop 2006).
- 2. Chapter 1 of Machine Learning: A probabilistic perspective (Murphy 2012).
- 3. Chapter 1 of Probabilistic Machine Learning: An introduction (Murphy 2022).



- Alpaydin, Ethem (2014). Introduction to Machine Learning. 3rd ed. MIT Press.
- Bishop, Christopher M. (2006). Pattern Recognition and Machine Learning. Springer-Verlag.
- Hastie, Trevor, Robert Tibshirani, and Jerome Friedman (2009). The Elements of Statistical Learning: Data Mining, Inference and Prediction. 2nd ed. Springer.
  - Mitchell, Tom M. (1997). Machine Learning. McGraw-Hill.
- Murphy, Kevin P. (2012). Machine Learning: A Probabilistic Perspective. The MIT Press.
- (2022). Probabilistic Machine Learning: An introduction. MIT Press.
- Szepesvari, Csaba (2010). Algorithms for Reinforcement Learning. Morgan and Claypool Publishers.

## **Questions?**