
Deep learning

Graph neural networks1

Hamid Beigy

Sharif University of Technology

June 8, 2021

1Some slides and figures are taken from Prof. Leskovec’s slides

Table of contents

1. Introduction

2. Graph neural networks

3. Graph convolutional networks

4. Reading

1/17

Introduction

Introduction

1. Networks are a general language for describing and modeling complex systems.

2. Many data are networks such as

Social networks Economic networks Biological networks

Citation networks Internet Networks of neurons

2/17

Graphs

1. Graph G = (V ,E) is a data structure consisting of two components:

I the set of vertices/nodes V and
I and the set of edges E .

2. Edges can be either directed or undirected.

v1 v2

v3 v4

a

b

c e

f

A =

0 1 0 0

0 0 1 1

1 0 0 1

0 0 0 0

 v1 v2

v3 v4

a

b

c e

f

A =

0 1 1 0

1 0 1 1

1 1 0 1

0 1 1 0

Graphlets 2.1. GRAPH STATISTICS AND KERNEL METHODS 15

Disconnected
graphlet

Complete
graphlet

Two-edge
graphlet

Single-edge
graphlet

Figure 2.2: The four di↵erent size-3 graphlets that can occur in a simple graph.

The WL kernel is popular, well-studied and known to have important theoretical
properties. For example, one popular way to approximate graph isomorphism
is to check whether or not two graphs have the same label set after K rounds
of the WL algorithm, and this approach is known to solve the isomorphism
problem for a broad set of graphs [Shervashidze et al., 2011].

Graphlets and path-based methods

Finally, just as in our discussion of node-level features, one valid and power-
ful strategy for defining features over graphs is to simply count the occurrence
of di↵erent small subgraph structures, usually called graphlets in this context.
Formally, the graphlet kernel involves enumerating all possible graph structures
of a particular size and counting how many times they occur in the full graph.
(Figure 2.2 illustrates the various graphlets of size 3). The challenge with this
approach is that counting these graphlets is a combinatorially di�cult prob-
lem, though numerous approximations have been proposed [Shervashidze and
Borgwardt, 2009].

An alternative to enumerating all possible graphlets is to use path-based
methods. In these approaches, rather than enumerating graphlets, one simply
examines the di↵erent kinds of paths that occur in the graph. For example, the
random walk kernel proposed by Kashima et al. [2003] involves running ran-
dom walks over the graph and then counting the occurrence of di↵erent degree
sequences,3 while the shortest-path kernel of Borgwardt and Kriegel [2005] in-
volves a similar idea but uses only the shortest-paths between nodes (rather

3Other node labels can also be used.

3/17

Machine learning tasks on graphs

Node classification
Example: Node Classification

? ?

?
?

?
Machine
Learning

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 8

Link prediction

Example: Link Prediction

Machine
Learning

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 10

?

?

?

x

Community detection

Node embedding

A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.

OutputInput

A B

Embedding Nodes

Representation Learning on Networks, snap.stanford.edu/proj/embeddings-www, WWW 2018 3

Intuition: Find embedding of nodes to d-
dimensions so that “similar” nodes in the graph
have embeddings that are close together.

OutputInput

4/17

Node embedding

1. Goal is to encode nodes so that similarity in the embedding space (e.g., dot product)

approximates similarity in the original network.

2. Let zu be the embedding of node u.

3. Goal is to find the encoder function f such that similarity(u, v) ≈ z>u zv .

4. Learning node embedding

I Define an encoder
I Define a node similarity function
I Optimize the parameters of the encoder so that similarity(u, v) ≈ z>u zv .

5. Two key components

I Encoder function f (u) = zu.
I Similarity measure similarity(u, v) ≈ z>u zv .

5/17

Why is it hard to analyze a graph?

1. Graph data is so complex that it’s created a lot of challenges for existing machine learning

algorithms.

2. Images with the same structure and size can be considered as fixed-size grid graphs.

3. Text and speech are sequences, so they can be considered as line graphs.

4. Graphs have arbitrary size and complex topological structure.

5. In graphs, there is no fixed node ordering or reference point.

6. Graphs are often dynamic and have multimodal features.

6/17

Graph neural networks

Node embedding

1. Goal is to encode nodes so that similarity in the embedding space (e.g., dot product)

approximates similarity in the original network.

Chapter 3

Neighborhood
Reconstruction Methods

This part of the book is concerned with methods for learning node embeddings.
The goal of these methods is to encode nodes as low-dimensional vectors that
summarize their graph position and the structure of their local graph neigh-
borhood. In other words, we want to project nodes into a latent space, where
geometric relations in this latent space correspond to relationships (e.g., edges)
in the original graph or network [Ho↵ et al., 2002] (Figure 3.1).

In this chapter we will provide an overview of node embedding methods for
simple and weighted graphs. Chapter 4 will provide an overview of analogous
embedding approaches for multi-relational graphs.

Figure 3.1: Illustration of the node embedding problem. Our goal is to learn an
encoder (enc), which maps nodes to a low-dimensional embedding space. These
embeddings are optimized so that distances in the embedding space reflect the
relative positions of the nodes in the original graph.

29

2. Graph neural network is a neural network architecture that learns embeddings of nodes in

a graph by looking at its nearby nodes.

GNN Overview

Structured deep models: Deep learning on graphs and beyond

7/17

Graph neural networks (GNNs)

1. The idea is to generate node embeddings based on local neighborhoods.

2. The intuition is nodes aggregate information from their neighbors using neural networks.5.1. NEURAL MESSAGE PASSING 49

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

A

A

A

C

F

B

E

A

D

B

Caggregate

Figure 5.1: Overview of how a single node aggregates messages from its local
neighborhood. The model aggregates messages from A’s local graph neighbors
(i.e., B, C, and D), and in turn, the messages coming from these neighbors are
based on information aggregated from their respective neighborhoods, and so on.
This visualization shows a two-layer version of a message-passing model. Notice
that the computation graph of the GNN forms a tree structure by unfolding the
neighborhood around the target node.

can be expressed as follows:

h(k+1)
u = UPDATE(k)

⇣
h(k)

u , AGGREGATE(k)({h(k)
v , 8v 2 N (u)})

⌘
(5.4)

= UPDATE(k)
⇣
h(k)

u ,m
(k)
N (u)

⌘
, (5.5)

where UPDATE and AGGREGATE are arbitrary di↵erentiable functions (i.e., neu-
ral networks) and mN (u) is the “message” that is aggregated from u’s graph
neighborhood N (u). We use superscripts to distinguish the embeddings and
functions at di↵erent iterations of message passing.1

At each iteration k of the GNN, the AGGREGATE function takes as input the
set of embeddings of the nodes in u’s graph neighborhood N (u) and generates

a message m
(k)
N (u) based on this aggregated neighborhood information. The

update function UPDATE then combines the message m
(k)
N (u) with the previous

embedding h
(k�1)
u of node u to generate the updated embedding h

(k)
u . The

initial embeddings at k = 0 are set to the input features for all the nodes, i.e.,

h
(0)
u = xu, 8u 2 V. After running K iterations of the GNN message passing, we

can use the output of the final layer to define the embeddings for each node,
i.e.,

zu = h(K)
u , 8u 2 V. (5.6)

Note that since the AGGREGATE function takes a set as input, GNNs defined in
this way are permutation equivariant by design.

1The di↵erent iterations of message passing are also sometimes known as the di↵erent
“layers” of the GNN.

3. Network neighborhood defines a computation graph.

Original Graph Neural Networks (GNNs)
• Intuition: Network neighborhood defines a computation graph

http://snap.stanford.edu/proj/embeddings-www/
8/17

Neural message passing

1. GNN uses a form of neural message passing in which vector messages are exchanged

between nodes and updated using neural networks.

2. During each message-passing iteration, a hidden embedding hk
u corresponding to each

node u ∈ U is updated according to information aggregated from its neighborhood N(u).5.1. NEURAL MESSAGE PASSING 49

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

A

A

A

C

F

B

E

A

D

B

Caggregate

Figure 5.1: Overview of how a single node aggregates messages from its local
neighborhood. The model aggregates messages from A’s local graph neighbors
(i.e., B, C, and D), and in turn, the messages coming from these neighbors are
based on information aggregated from their respective neighborhoods, and so on.
This visualization shows a two-layer version of a message-passing model. Notice
that the computation graph of the GNN forms a tree structure by unfolding the
neighborhood around the target node.

can be expressed as follows:

h(k+1)
u = UPDATE(k)

⇣
h(k)

u , AGGREGATE(k)({h(k)
v , 8v 2 N (u)})

⌘
(5.4)

= UPDATE(k)
⇣
h(k)

u ,m
(k)
N (u)

⌘
, (5.5)

where UPDATE and AGGREGATE are arbitrary di↵erentiable functions (i.e., neu-
ral networks) and mN (u) is the “message” that is aggregated from u’s graph
neighborhood N (u). We use superscripts to distinguish the embeddings and
functions at di↵erent iterations of message passing.1

At each iteration k of the GNN, the AGGREGATE function takes as input the
set of embeddings of the nodes in u’s graph neighborhood N (u) and generates

a message m
(k)
N (u) based on this aggregated neighborhood information. The

update function UPDATE then combines the message m
(k)
N (u) with the previous

embedding h
(k�1)
u of node u to generate the updated embedding h

(k)
u . The

initial embeddings at k = 0 are set to the input features for all the nodes, i.e.,

h
(0)
u = xu, 8u 2 V. After running K iterations of the GNN message passing, we

can use the output of the final layer to define the embeddings for each node,
i.e.,

zu = h(K)
u , 8u 2 V. (5.6)

Note that since the AGGREGATE function takes a set as input, GNNs defined in
this way are permutation equivariant by design.

1The di↵erent iterations of message passing are also sometimes known as the di↵erent
“layers” of the GNN.

3. This message-passing update can be expressed as follows:

hk+1
u = Updatek

(
hk
u ,Aggregate(hk

v | ∀v ∈ N(u))
)

= Updatek
(

hk
u ,m

k
N(u)

)

where
I Update and Aggregate are arbitrary differentiable functions and
I mk

N(u) is the message aggregated from neighborhoods of u.

4. The initial embeddings at k = 0 are set to the input features for all the nodes, i.e.,

h(0)
u = xu ∀u ∈ V

9/17

The basic GNN

1. The basic GNN message passing is defined as

hk
u = σ

Wk

self hk−1
u + Wk

neigh

∑

v∈N(u)

hk−1
v + bk

 .

2. As a simplification of the neural message passing approach, it is common to add self-loops

to the input graph and omit the explicit update step.

hk
u = Aggregate

({
hk−1
v | ∀v ∈ N(u) ∪ {u}

})

3. A benefit of this approach is that we no longer need to define an explicit update function.

4. Simplifying message passing in this way limits the expressiveness of GNN, because we

can’t distinguish the information coming from neighboring nodes from the node itself.

5. Adding self-loops is equivalent to sharing parameters between Wk
self and Wk

neigh matrices.

Ht = σ
(
(A + I)Ht−1Wt

)

10/17

Training GNNs

1. How do we train the model to generate high-quality embeddings?5.1. NEURAL MESSAGE PASSING 49

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

A

A

A

C

F

B

E

A

D

B

Caggregate

Figure 5.1: Overview of how a single node aggregates messages from its local
neighborhood. The model aggregates messages from A’s local graph neighbors
(i.e., B, C, and D), and in turn, the messages coming from these neighbors are
based on information aggregated from their respective neighborhoods, and so on.
This visualization shows a two-layer version of a message-passing model. Notice
that the computation graph of the GNN forms a tree structure by unfolding the
neighborhood around the target node.

can be expressed as follows:

h(k+1)
u = UPDATE(k)

⇣
h(k)

u , AGGREGATE(k)({h(k)
v , 8v 2 N (u)})

⌘
(5.4)

= UPDATE(k)
⇣
h(k)

u ,m
(k)
N (u)

⌘
, (5.5)

where UPDATE and AGGREGATE are arbitrary di↵erentiable functions (i.e., neu-
ral networks) and mN (u) is the “message” that is aggregated from u’s graph
neighborhood N (u). We use superscripts to distinguish the embeddings and
functions at di↵erent iterations of message passing.1

At each iteration k of the GNN, the AGGREGATE function takes as input the
set of embeddings of the nodes in u’s graph neighborhood N (u) and generates

a message m
(k)
N (u) based on this aggregated neighborhood information. The

update function UPDATE then combines the message m
(k)
N (u) with the previous

embedding h
(k�1)
u of node u to generate the updated embedding h

(k)
u . The

initial embeddings at k = 0 are set to the input features for all the nodes, i.e.,

h
(0)
u = xu, 8u 2 V. After running K iterations of the GNN message passing, we

can use the output of the final layer to define the embeddings for each node,
i.e.,

zu = h(K)
u , 8u 2 V. (5.6)

Note that since the AGGREGATE function takes a set as input, GNNs defined in
this way are permutation equivariant by design.

1The di↵erent iterations of message passing are also sometimes known as the di↵erent
“layers” of the GNN.

2. We need to define a loss function on the embeddings, `(zA).

3. Train on a set of nodes, i.e., a batch of compute graphs.

11/17

Graph convolutional networks

Graph convolutional networks (GCNs)

1. In GNN, we have aggregated the neighbor messages by taking their weighted average. Can

we do better?

So far we have aggregated the neighbor
messages by taking their (weighted) average

Can we do better?

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 43

INPUT GRAPH

TARGET NODE B

D
E

F

C
A

B

C

D

A

A

A

C

F

B

E

A

?

?

?

?

[Hamilton et al., NIPS 2017]

2. Any differentiable function that maps set of vectors in N(u) to a single vector can be used

as the Aggregate function.

12/6/18 Jure Leskovec, Stanford CS224W: Machine Learning with Graphs, http://cs224w.stanford.edu 47

*

hk
v = �

0
@Wk

X

u2N(v)

hk�1
u

|N(v)| + Bkh
k�1
v

1
Ahk

v = �

0
@Wk

X

u2N(v)

hk�1
u

|N(v)| + Bkh
k�1
v

1
A

hk
v = �

0
@Wk

X

u2N(v)

hk�1
u

|N(v)| + Bkh
k�1
v

1
A

Key idea: Generate node embeddings based on local
neighborhoods

§ Nodes aggregate “messages” from their neighbors using
neural networks

¡ Graph convolutional networks:
§ Basic variant: Average neighborhood information and stack

neural networks
¡ GraphSAGE:

§ Generalized neighborhood aggregation

3. GCN defines the message passing function as

hk
v = σ

([
Wk .Aggregate

(
{hk−1

u | u ∈ N(v)}
)
,Bkhk−1

v

])
12/17

Neighborhood aggregation

1. The basic GNN can be improved upon and generalized in many ways: improving

Aggregate and Update functions.

2. GNN has the two following limitations:

I Multiplication with A means that, for every node, we sum up all the feature vectors of all

neighboring nodes.
I A is typically not normalized and therefore the multiplication withA will completely change

the scale of the feature vectors.

3. The most basic neighborhood aggregation operation takes sum of neighboring embeddings.

4. One issue is that it can be unstable and highly sensitive to node degrees.

5. Let |N(u)| � |N(v)|, then we would reasonably expect that

∥∥∥∥∥∥
∑

u′∈N(u)

h′u

∥∥∥∥∥∥
�

∥∥∥∥∥∥
∑

v ′∈N(v)

h′v

∥∥∥∥∥∥

for any reasonable vector norm.

6. This drastic difference in magnitude can lead to numerical instabilities as well as

difficulties for optimization.

13/17

Neighborhood aggregation

1. This drastic difference in magnitude can lead to numerical instabilities as well as

difficulties for optimization.

2. One solution is to normalize the aggregation operation based upon the degrees of the

given node.

3. The simplest approach is to just take an average rather than sum

mN(u) =

∑
v∈N(u) hv

|N(u)|
4. Other normalization is symmetric normalization.

mN(u) =
∑

v∈N(u)

hv√
|N(u)||N(v)|

5. GCN employs the symmetric-normalized aggregation as well as the self-loop update

approach.

6. GCN defines the message passing function as

hk
v = σ

Wk

∑

u∈N(v)∪{v}

hu√
|N(u)||N(v)|

14/17

Neighborhood aggregation

1. Simple neighborhood aggregation

hk
v = σ

Wk

∑

u∈N(v)

hk−1
u

|N(v)| + Bkhk−1
v

2. GraphSAGE concatenates neighbor embedding and self-embedding.

hk
v = σ

([
Wk .Aggregate

(
{hk−1

u | u ∈ N(v)}
)
,Bkhk−1

v

])

3. Pool aggregate function transforms neighbor vectors and apply symmetric vector function.

Aggregate = γ
(
{Qhk−1

u | u ∈ N(v)}
)

where γ is element-wise min / max.

4. LSTM aggregate function applies LSTM to the reshuffles neighbors.

Aggregate = LSTM
([

hk−1
u | u ∈ π(N(v))

])

5. Many aggregations can be performed efficiently by (sparse) matrix operations.

15/17

Reading

Readings

1. Chapter 5 of Graph Representation Learning2.

2. Paper A Comprehensive Survey on Graph Neural Networks3.

3. Paper Deep Learning on Graphs: A Survey4.

2William L. Hamilton (2020). Graph Representation Learning. Morgan and Claypool.
3Zonghan Wu et al. (2021). “A Comprehensive Survey on Graph Neural Networks”. In: IEEE Trans. Neural

Networks Learn. Syst. 32.1, pp. 4–24.
4Ziwei Zhang, Peng Cui, and Wenwu Zhu (2018). “Deep Learning on Graphs: A Survey”. In: CoRR

abs/1812.04202. url: http://arxiv.org/abs/1812.04202.
16/17

http://arxiv.org/abs/1812.04202

References i

Hamilton, William L. (2020). Graph Representation Learning. Morgan and Claypool.

Wu, Zonghan et al. (2021). “A Comprehensive Survey on Graph Neural Networks”. In: IEEE

Trans. Neural Networks Learn. Syst. 32.1, pp. 4–24.

Zhang, Ziwei, Peng Cui, and Wenwu Zhu (2018). “Deep Learning on Graphs: A Survey”. In:

CoRR abs/1812.04202. url: http://arxiv.org/abs/1812.04202.

17/17

http://arxiv.org/abs/1812.04202

Questions?

17/17

	Introduction
	Graph neural networks
	Graph convolutional networks
	Reading

