
Deep learning

Sum Product Networks

Hamid Beigy

Sharif University of Technology

May 8, 2021

Table of contents

1. Introduction

2. Sum Product Networks

3. Applications

4. Reading

1/28

Introduction

Introduction

1. We assume x1, x2, . . . , xm are IID random variables are sampled from an unknown

distribution D, where each xi is k-dimensional vector.

2. We require to specify a high-dimensional distribution p(x1, . . . , xk) on the data and

possibly some latent variables.

3. The specific form of p will depend on some parameters w .

4. The basic operations will be to

I Structure learning: Specifying the parametric/non-parametric form of p(x1, . . . , xk).
I Parameter learning: Adjusting p(x1, . . . , xk) to the data.
I Inference: Computing marginals and modes of p(x1, . . . , xk).

5. Working with fully flexible joint distributions is intractable!

2/28

Structure learning

1. How the form of density function is specified?

2. We specify the form of density function in such a way that parameter learning and

inference become easier.

3. For example, we can consider the following conditional form.

p(x1, . . . , xk) = p(x1|x2)p(x1|x3) . . . p(x1|xk)

4. Consider the Naive Bayes classifier. We have p(class, x) = p(class)
∏n

j=1 p(xj | class)

...or...or naive Bayes naive Bayes

P (class,X) = P (class)P (X ∣2 class)P (X ∣3 class) …P (X ∣n class)

independence assumption: X ⊥i X ∣−i class

for classification (use Bayes rule)

P (class ∣ X) ∝ P (class)P (X ∣2 class)P (X ∣3 class) …P (X ∣n class)

Example: medical diagnosis (what if two symptoms are correlated?)

3/28

Structure learning

1. Or consider the following forms

p(x1, . . . , xk) = p(xk |xk−1)p(xk−1|xk−2) . . . p(x2|x1)

p(x1, . . . , xk) =
k∏

i=1

p(xi |x1, x2, . . . , xi−1)Simplifying the chain rule: Simplifying the chain rule: general casegeneral case

P (X) = P (X)P (X ∣1 2 X) …P (X ∣1 n X , … ,X)1 n−1

simplify the full conditionals:

2. We must work with structured or compact distributions.

3. For example, distributions in which the random variables interact directly with only very

few others in simple ways (why?).

4. One solution is to use probabilistic graphical models.

4/28

Some Inference queries

1. Simple queries: computing posterior marginal p(x1|E = e)

2. Conjunctive queries: Computing p(x1, x2|E = e)

3. How do you answer the following query?

p(x1) =
∑

x2

∑
x3
p(x1, x2, x3)

4. How do you answer the query p(x1) when density function has the following form?

p(x1, . . . , xk) = p(x1|x2)p(x1|x3) . . . p(x1|xk)

...or...or naive Bayes naive Bayes

P (class,X) = P (class)P (X ∣2 class)P (X ∣3 class) …P (X ∣n class)

independence assumption: X ⊥i X ∣−i class

for classification (use Bayes rule)

P (class ∣ X) ∝ P (class)P (X ∣2 class)P (X ∣3 class) …P (X ∣n class)

Example: medical diagnosis (what if two symptoms are correlated?)

5/28

Bayesian Networks

1. A simple Bayesian network

p(G ,S ,R) = p(G |S ,R)p(S |R)p(R)

6/28

Bayesian Networks

1. How calculate p(x1, . . . , xk) using Bayesian networks?

2. If a Bayesian network can be factorized, then we can write

p(x1, . . . , xk) =
∏
v∈V

p(xv |pa(v))

where pa(v) is the set of parents of v .

3. Cooper proved that exact inference in Bayesian networks is NP-hard.

7/28

Markov networks

1. A Markov network is a set of random variables having a Markov property described by an

undirected graph.

2. Each edge represents dependency.

I A depends on B and D.
I B depends on A and D.
I D depends on A, B, and E.
I E depends on D and C.
I C depends on E.

8/28

Markov networks

1. Consider the following network.

2. We’ll assume p is a general undirected model of the following form

p(x1, . . . , xn;w) =
p̄(x1, . . . , xn;w)

Z (w)
=

1

Z (w)

∏
k

φk(x{k};w),

where the φk are the factors and Z (w) is the normalization constant and x{k} is a subset

of variables .

3. How do yo compute Z (w) ?

9/28

Limitations of Graphical Models

1. Graphical models are limited in some aspects

I Many compact distributions cannot be represented as a GM.
I The cost of exact inference in GM is exponential in the worst case (using approximate

techniques).
I Because learning requires inference, learning GM will be difficult .
I Some distributions require GM with many layers of hidden variables to be compactly

encoded.

2. An alternative are sum product networks (Poon and Domingos 2011).

I New deep model with many layers of hidden variables.
I Exact inference is tractable (linear in the size of the model).

10/28

Sum Product Networks

Sum Product Networks

1. A SPN is rooted DAG whose leaves are x1, . . . , xn and x̄1, . . . , x̄n with internal sum and

product nodes, where each edge (i , j) emanating from sum node i has a weight wij ≥ 0.

2. The value of a product node is the product of the value of its children.

3. The value of a sum node i is
∑

j∈Ch(i) wijvj , where Ch(j) are the children of node i and vj
is the value of node j

4. The value of a SPN is the value of the root after a bottom up evaluation.

5. Layers of sum and product nodes usually alternate.

11/28

Sum Product Networks (example)

1. An example of SPNMarginal Inference

• P(𝑋1= 1) ?

2. What is the output of the above network?

12/28

Probabilistic Inference

SPN represents a joint distribution over a set of random variables. What is value of

p(x1 = 1, x2 = 0)?

Probabilistic inference

• An SPN represents
a joint distribution
over a set of
variables

• P(𝑋1= 1, 𝑋2= 0) ?

13/28

Marginal Inference

SPN represents a joint distribution over a set of random variables. What is value of p(x1 = 1)?Marginal Inference

• P(𝑋1= 1) ?

14/28

SPN Semantics

A valid SPN encodes a hierarchical mixture distribution.

I Sum nodes: hidden variables (mixture)

I Product nodes: factorization

(independence)

Marginal Inference

• P(𝑋1= 1) ?

15/28

Valid SPN

I The scope of a node is the set of variables that appear in the

sub-SPN rooted at the node

I An SPN is decomposable iff no variable appears in more than

one child of a product node.

I An SPN is complete when each sum node has children with

identical scopes.

I An SPN is consistent iff no variable appears negated in one

child of a product node and non-negated in another.

I A consistent and complete SPN is a valid SPN. An SPN is

valid if it always correctly computes the probability of

evidence.

Marginal Inference

• P(𝑋1= 1) ?

16/28

Building and using an SPN

1. We must specify the structure of SPN (structure Estimation or structure learning).

2. We must find the parameters of SPN (parameter learning).

3. We must answer queries (inference).

17/28

Structure learning

1. What is SPN for univariate distribution?

2. → A univariate distribution is an SPN

3. What is SPN for product of disjoint random variables?

4. → A product of SPNs over disjoint variables is an SPN.

5. What is SPN for a mixture model?

6. → A weighted sum of SPNs over the same variables is an SPN.

A Weighted Sum of SPNs
over the Same Variables

Is an SPN.

X Y X Y

w1 w2

18/28

Structure learning

1. In a structure learning, one alternates between

I Data Clustering: sum nodes
I Variable partitioning: product nodesStructure learning: LearnSPN

Cluster similar
instances

Split variables on
approximate
independence

2. Some others use SVD decomposition (Adel, Balduzzi, and Ghodsi 2015).

19/28

SPN learning

1. Initialize the SPN using a dense valid SPN.

2. Learn the SPN weights using gradient descent or EM.

3. Add some penalty to the weights so that they tend to be zero.

4. Prune edges with zero weights at convergence.

Algorithm 1 LearnSPN
Input: Set D of instances over variablesX .
Output: An SPN with learned structure and parameters.
S ← GenerateDenseSPN(X)
InitializeWeights(S)
repeat
for all d ∈ D do
UpdateWeights(S, Inference(S, d))

end for
until convergence
S ← PruneZeroWeights(S)
return S

explicitly represent only the features, and require the sums
to be inefficiently computed by Gibbs sampling or oth-
erwise approximated. Convolutional networks [15] alter-
nate feature layers with pooling layers, where the pool-
ing operation is typically max or average, and the fea-
tures in each layer are over a subset of the input variables.
Convolutional networks are not probabilistic, and are usu-
ally viewed as a vision-specific architecture. SPNs can be
viewed as probabilistic, general-purpose convolutional net-
works, with average-pooling corresponding to marginal in-
ference and max-pooling corresponding to MPE inference.
Lee at al. [16] have proposed a probabilistic version of
max-pooling, but in their architecture there is no corre-
spondence between pooling and the sum or max operations
in probabilistic inference, as a result of which inference is
generally intractable. SPNs can also be viewed as a prob-
abilistic version of competitive learning [27] and sigma-pi
networks [25]. Like deep belief networks, SPNs can be
used for nonlinear dimensionality reduction [14], and al-
low objects to be reconstructed from the reduced represen-
tation (in the case of SPNs, a choice of mixture component
at each sum node).

Probabilistic context-free grammars and statistical parsing
[6] can be straightforwardly implemented as decomposable
SPNs, with non-terminal nodes corresponding to sums (or
maxes) and productions corresponding to products (logi-
cal conjunctions for standard PCFGs, and general products
for head-driven PCFGs). Learning an SPN then amounts
to directly learning a chart parser of bounded size. How-
ever, SPNs are more general, and can represent unrestricted
probabilistic grammars with bounded recursion. SPNs are
also well suited to implementing and learning grammatical
vision models (e.g., [10, 33]).

4 LEARNING SUM-PRODUCT
NETWORKS

The structure and parameters of an SPN can be learned
together by starting with a densely connected architecture
and learning the weights, as in multilayer perceptrons. Al-
gorithm 1 shows a general learning scheme with online
learning; batch learning is similar.

First, the SPN is initialized with a generic architecture.
The only requirement on this architecture is that it be valid
(complete and consistent). Then each example is processed
in turn by running inference on it and updating the weights.
This is repeated until convergence. The final SPN is ob-
tained by pruning edges with zero weight and recursively
removing non-root parentless nodes. Note that a weighted
edge must emanate from a sum node and pruning such
edges will not violate the validity of the SPN. Therefore,
the learned SPN is guaranteed to be valid.

Completeness and consistency are general conditions that
leave room for a very flexible choice of architectures. Here,
we propose a general scheme for producing the initial ar-
chitecture: 1. Select a set of subsets of the variables. 2. For
each subset R, create k sum nodes SR

1 , . . . , SR
k , and select

a set of ways to decompose R into other selected subsets
R1, . . . , Rl. 3. For each of these decompositions, and for
all 1 ≤ i1, . . . , il ≤ k, create a product node with par-
ents SR

j and children SR1
i1

, . . . , SRl
il
. We require that only a

polynomial number of subsets is selected and for each sub-
set only a polynomial number of decompositions is cho-
sen. This ensures that the initial SPN is of polynomial size
and guarantees efficient inference during learning and for
the final SPN. For domains with inherent local structure,
there are usually intuitive choices for subsets and decom-
positions; we give an example in Section 5 for image data.
Alternatively, subsets and decompositions can be selected
randomly, as in random forests [4]. Domain knowledge
(e.g., affine invariances or symmetries) can also be incor-
porated into the architecture, although we do not pursue
this in this paper.

Weight updating in Algorithm 1 can be done by gradient
descent or EM. We consider each of these in turn.

SPNs lend themselves naturally to efficient computation
of the likelihood gradient by backpropagation [26]. Let
nj be a child of sum node ni. Then ∂S(x)/∂wij =
(∂S(x)/∂Si(x))Sj(x) and can be computed along with
∂S(x)/∂Si(x) using the marginal inference algorithm de-
scribed in Section 2. The weights can then be updated by
a gradient step. (Also, if batch learning is used instead,
quasi-Newton and conjugate gradient methods can be ap-
plied without the difficulties introduced by approximate in-
ference.) We ensure that S(∗) = 1 throughout by renormal-
izing the weights at each step, i.e., projecting the gradient
onto the S(∗) = 1 constraint surface. Alternatively, we can
let Z = S(∗) vary and optimize S(X)/S(∗).

SPNs can also be learned using EM [20] by viewing each
sum node i as the result of summing out a correspond-
ing hidden variable Yi, as described in Section 2. Now
the inference in Algorithm 1 is the E step, computing the
marginals of the Yi’s, and the weight update is the M step,
adding each Yi’s marginal to its sum from the previous it-
erations and renormalizing to obtain the new weights.

20/28

Applications

Image completion

1. Main evaluation: Caltech-101

I 101 categories, e.g., faces, cars, elephants
I Each category: 30 – 800 images

2. Each category: Last third for test

3. Test images: Unseen objects

21/28

Image completionCool applications: Face completion

Poon & Domingos 201122/28

Language modeling

1. Fixed structure SPN encoding the conditional probability p(wi |wi−1 . . . ,wi−N) as an Nth

order language model (Cheng et al. 2014).

Applications IV: language modeling
Fixed structure SPN encoding the conditional probability p(wi|wi−1, . . . , wi−n)

as an n-th order language model.

Figure 2: SPN for language modeling.

probability as

P (Y=y|X=x) =
� (Y=y|X=x)P
y0 � (Y=y0|X=x)

=

P
h � (Y=y,H=h|X=x)P

y0,h � (Y=y0,H=h|X=x)

where � (Y = y|X = x) is an unnormalized probability. Thus
the partial derivative of the conditional log-likelihood with re-
spect to a weight w in an SPN is given by:

@

@w
log P (y|x)=

@

@w
log

X

h

� (y,h|x)� @

@w
log

X

y0,h

�
�
y0,h|x

�

(1)
To train an SPN, we first specify its architecture, i.e., its

sum and product nodes, and the connections between them.
Then we learn the weights of the sum nodes via gradient de-
scent to maximize the conditional log-likelihood of a training
set of (x,y) examples. The gradient of each weight (Equa-
tion 1) is computed via backpropagation. The first summation
on the right-hand side of Equation 1 can be computed tractably
in a single upward pass through the SPN by setting all hid-
den variables to 1, and the second summation can be computed
similarly by setting both hidden and query variables to 1. The
partial derivatives are passed from parent to child according to
the chain rule as described by [14]. Each weight is changed
by multiplying a learning rate parameter ⌘ to Equation 1, i.e.,
�w = ⌘ @

@w
log P (y|x). To speed up training, we could esti-

mate the gradient by computing it with a subset (mini-batch) of
examples from the training set, rather than using all examples.

3. SPN Architecture
Figure 2 shows the architecture of our discriminative SPN for
language modeling1. To predict a word (a query variable), we

1https://github.com/stakok/lmspn/blob/master/faq.md contains
more details about the architecture.

use its previous N words as evidence in our SPN. Each previous
word is represented by a K-dimensional vector where K is the
number of words in a vocabulary. Each vector has exactly one
1 at the index corresponding to the word it represents, and 0’s
everywhere else. When we predict the ith word, we have a
vector vi�j (1 j N) at the bottommost layer for each of
the previous N words.

Above the bottommost layer, we have a (hidden) layer of
sum nodes. There are D sum nodes Hj1 . . . HjD for each vec-
tor vi�j . Each sum node Hjl has an edge connecting it to every
entry in vi�j . Let the mth entry in vi�j be denoted by vm

i�j ,
and the weight of the edge from Hjl to vm

i�j be denoted by
wlm. We constrain each weight wlm to be the same for each
pair of Hjl and vm

i�j (1 j N). This layer of sum nodes
can be interpreted as compressing each K-dimensional vectors
vi�j into a smaller continuous-valued D-dimensional feature
vector (thus gaining the same advantages of [5] as described in
Section 1). Because the weights wlm’s are constrained to be
the same between each pair of K-dimensional input vector and
D-dimensional feature vector, we ensure that the weights are
position independent, i.e., the same word will be compressed
into the same feature vector regardless of its position. This
also makes it easier to train the SPN by reducing the number
of weights to be learned.

Above the Hjl layer, we have another layer of sum nodes.
In this layer, each node Mk (1 k K) is connected to every
Hjl node. Moving up, we have a layer of product nodes. Each
Gk product node is connected via two edges to an Mk node.
Each Gk node transforms the output from its child Mk node by
squaring it. This helps to capture more complicated dependency
among the input words.

Moving up, we have another layer of sum nodes. Each Bk

node in this layer is connected to an Mk node and a Gk node in
the lower layers. Above this, there is a layer of Sk nodes, each
of which is connected to a Bk node and an indicator variable yk

representing a value in our categorical query variable (i.e., the
ith word which we are predicting). yk = 1 if the query variable
is the kth word, and yk = 0 otherwise. Intuitively, the indicator
variables select which part of the SPN below an Sk node gets
“activated”. Finally, we have an S node which connects to all
Sk nodes. When we normalize the weights between S and the
Sk nodes to sum to 1, S’s output is the conditional probability
of the ith word given its previous N words.

4. Experiments
4.1. Dataset

We performed our experiments on the commonly used Penn
Treebank corpus [15], and adhered to the experimental setup
used in previous work [6, 9]. We used sections 0-20, sections
21-22, and sections 23-24 respectively as training, validation
and test sets. These sections contain segments of news re-
ports from the Wall Street Journal. We treated punctuation as
words, and used the 10,000 most frequent words in the cor-
pus to create a vocabulary. All other words are regarded as
unknown and mapped to the token <unk>. The percentages
of out-of-vocabulary (<unk>) tokens in them are about 5.91%,
6.96% and 6.63% respectively. Thus only a small fraction of
the dataset consists of unknown words.

4.2. Methodology

Using the training set, we learned the weights of all sum
nodes in our SPN described in Section 3. To evaluate

One-hot encoding of word vocabulary.
Windowed representation of size

First embedding layer with size D,
sharing word weights across different
mixtures (position invariance).

State-of-the-art perplexity on PennTreeBank even for low orders (n = 4).

Cheng et al., “Language modeling with Sum-Product Networks”, 2014

23/28

Language modeling

1. Perplexity scores (PPL) of different language modelsits performance on the test set, we used the standard
(per-word) perplexity measure. The perplexity (PPL)
on a sequence of words w1, w2, . . . , wM is given by

PPL = M

vuut
MY

i=1

1

P (wi|w1, ..., wi�1)
.

We estimated the probability P (wi|w1, ..., wi�1) in PPL as
P (wi|wi�1, ..., wi�N) that is given by our SPN.

We used a learning rate of ⌘=0.1, a mini-batch size of 100,
randomly initialized the weights to a value between 0 and 1, and
imposed an L2 penalty of 10�5 on all weights. With reference
to Figure 2, We used K =10000, feature vectors with D=100
dimensions, and N =3 and N =4 previous words. We denote
an SPN that uses N previous words as SPN-N . We stopped
training our SPN when its performance on the validation set
stops improving at two consecutive evaluation points, or when
it has run for 40 hours, whichever occurred first. (It turned out
that both SPN-3 and SPN-4 ran for the maximum of 40 hours.)
We parallelized our SPN code2 to run on a GPU, and ran our
experiments on a machine with a 2.4 GHz CPU and an NVIDIA
Tesla C2075 GPU (448 CUDA cores, 5GB of device memory).

We compared our SPNs to an interpolated 5-gram model
with modified Kneser-Ney smoothing and no count cutoffs
(KN5) [3], the log-bilinear model [4], feedforward neural net-
works [5], syntactical neural networks [8], recurrent neural net-
works (RNN) [6], and LDA-augmented RNN [9], all of which
are described in Section 1.

4.3. Results

Table 1 shows the results of our experiments. The scores of
comparison systems are obtained from [9]. The “Individual
PPL” column shows the perplexity score of the respective
systems. The “+KN5” column shows the perplexity score af-
ter taking a weighted average of a system’s predictions and
KN5’s predictions (both equally weighted). ‘TrainingSetFre-
quency’ refers to a system that sets the probability of a token
to its frequency of occurrence in the training set. This base-
line is outperformed by all other models, suggesting that they
are capturing some form of dependency among words when
making their predictions. As the table shows, both SPN-3 and
SPN-4 outperform all other systems. Note that even though
LDA-augmented RNN uses additional information from latent
Dirichlet allocation (LDA; which is not used by our SPNs),
SPN-3 and SPN-4 still do better by 8.4% and 5.4% respectively
on “Individual PPL”, and by 16.6% and 16.2% respectively on
“+KN5”. They have more pronounced improvements over the
next best comparison system, RNN (which is a fairer compari-
son because it does not use information beyond what is available
to our SPNs). SPN-3 and SPN-4 outperform RNN by 16.4%
and 13.7% respectively on “Individual PPL”, and by 22.4%
and 22.0% respectively on “+KN5”.

We were initially surprised by SPN-3’s better performance
over SPN-4 (because the latter uses more information and thus
should make better predictions). Upon inspecting their perplex-
ity scores on the training set, we found that SPN-4 consistently
had lower perplexity than SPN-3 during the later stages of train-
ing. This suggests that SPN-4 is overfitting the data. (From Fig-
ure 2, we see that SPN-4 has D⇥K +D⇥K = 2⇥106 more
parameters than SPN-3, and hence is more likely to overfit.)

2Our implementation is publicly available at
https://github.com/stakok/lmspn.

Table 1: Perplexity scores (PPL) of different language models.

Model Individual PPL +KN5
TrainingSetFrequency 528.4
KN5 [3] 141.2
Log-bilinear model [4] 144.5 115.2
Feedforward neural network [5] 140.2 116.7
Syntactical neural network [8] 131.3 110.0
RNN [6] 124.7 105.7
LDA-augmented RNN [9] 113.7 98.3
SPN-3 104.2 82.0
SPN-4 107.6 82.4
SPN-4’ 100.0 80.6

To ameliorate this problem, we used the weights of the smaller
SPN to guide the weight learning in the larger SPN. We trained
an SPN-(N�1) for 10 hours, and used its weights to initialize
the corresponding weights in an SPN-N (all other weights are
initialized to zero) before training the SPN-N for another 10
hours. We repeated this process for N = 2, 3, 4. The final SPN
thus obtained uses 4 previous words and is denoted SPN-4’. As
Table 1 shows, SPN-4’ is the best performing system3.

Running a test example on our SPNs is typically very fast
(sub-second). Our SPNs took less time to train than RNN. To
attain the level of KN5’s perplexity score, RNN4 and SPN-4
took about 10 hours and 4 hours to train respectively.

To demonstrate that our SPN can scale to larger data, we
trained an SPN-4 for 40 hours on the Brown Laboratory for
Linguistic Information Processing 1987-89 WSJ corpus, which
is about 40 times larger than Penn Treebank (PTB). We tested
this SPN-4 on the same test set (section 23-24 of PTB) and ob-
tained a perplexity of 93.0 (an improvement of 13.6% over the
SPN-4 trained on the smaller PTB dataset). This suggests that
our model can scale, and can perform better with more data.

To show that our trained SPN is encapsulating useful in-
formation, we “seeded” it with some random initial words, and
used it to generate a sequence of words. Some examples of the
generated word sequences are shown below. These sentences
have the “flavor” of news reports, and qualitatively suggest that
our SPN is capturing meaningful information from the data.

• IT COULD BE SIMPLY EARNINGS FOR MANY IN-
VESTOR IN THE WATERS FEDERAL CAPITAL

• BUSINESS REGULATORY SAID IT EXPECTS TO
ARGUE OWN ’S THREE MEDICAL INVESTMENT
IN <unk>

5. Conclusion and Future Work
We presented the first SPN that is used for language model-
ing. Our proposed SPN is able to contain multiple hidden layers
to capture rich dependencies among words, while maintaining
tractable inference and training times. Our empirical compar-
isons with six previous language models on the standard Penn
Treebank corpus demonstrate the effectiveness of our SPN.

As future work, we want to combine our SPN language
model with an SPN for acoustic modeling to create an integrated
speech recognition system. We also want to create a “recurrent”
SPN to capture long range dependencies in word sequences.

Acknowledgements. This work is supported by DSO grant
DSOCL13083.

3Note that the total training time for SPN-4’ is also 40 hours, so its
better performance is not due to longer training times.

4We used the RNNLM Toolkit at
http://www.fit.vutbr.cz/ imikolov/rnnlm.

24/28

Other applications

1. Image completion

2. Image classification

3. Activity recognition

4. Click-through logs

5. Nucleic acid sequences

6. Collaborative filtering

25/28

Advantages of SPNs

1. Unlike graphical models, SPNs are tractable over high treewidth models.

2. SPNs are deep architectures with full probabilistic semantics

3. SPNs can incorporate features into an expressive model without requiring approximate

inference.

26/28

Reading

Readings

1. Read the survey paper (Paris, Sanchez-Cauce, and Diez 2020).

27/28

References i

Adel, Tameem, David Balduzzi, and Ali Ghodsi (2015). “Learning the Structure of

Sum-Product Networks via an SVD-based Algorithm”. In: Proceedings of the Thirty-First

Conference on Uncertainty in Artificial Intelligence, pp. 32–41.

Cheng, Wei-Chen et al. (2014). “Language modeling with sum-product networks”. In:

Proceedings of the 15th Annual Conference of the International Speech Communication

Association, pp. 2098–2102.

Paris, Iago, Raquel Sanchez-Cauce, and Francisco Javier Diez (2020). “Sum-product networks:

A survey”. In: CoRR abs/2004.01167. arXiv: 2004.01167.

Poon, Hoifung and Pedro M. Domingos (2011). “Sum-Product Networks: A New Deep

Architecture”. In: Proceedings of the Twenty-Seventh Conference on Uncertainty in Artificial

Intelligence, pp. 337–346.

28/28

https://arxiv.org/abs/2004.01167

Questions?

28/28

	Introduction
	Sum Product Networks
	Applications
	Reading

