Deep learning Deep dual learning¹

Hamid Beigy

Sharif University of Technology

May 8, 2021

¹Some slides are adopted from Tao Qin, Sreeja R Thoom et al. slides.

Table of contents

- 1. Introduction
- 2. Dual learning
- 3. Dual Supervised Learning
- 4. Reading

Introduction

Three Pillars of Deep Learning

1. Three Pillars of Deep Learning

- ▶ Big data: web pages, search logs, social networks, and new mechanisms for data collection: conversation and crowd—sourcing.
- ▶ Big models: 1000+ layers, tens of billions of parameters
- Big computing: CPU clusters, GPU clusters, TPU clusters, FPGA farms, provided by Amazon, Azure, Ali etc.

1. Big-Data Challenge

► Today's deep learning highly relies on huge amount of human-labeled training data

Task	Typical training data
Image classification Speech recognition Machine translation	Millions of labeled images Thousands of hours of annotated voice data Tens of millions of bilingual sentence pairs

► Human labeling is in general very expensive, and it is hard, if not impossible, to obtain large-scale labeled data for rare domains

- 1. How translate from a source language to a destination language?
- 2. Main problems
 - ► How translate words from the source language to the destination language?
 - How order words in the destination language?
 - ► How measure goodness of translation?
 - ► What type of corpus is needed? (monolingual or bilingual)
 - ▶ How build a sequence of translators? (Persian \rightarrow English \rightarrow French)

1. In NMT, recurrent neural networks such as LSTM or GRU units are used (Bahdanau, Cho, and Bengio 2015).

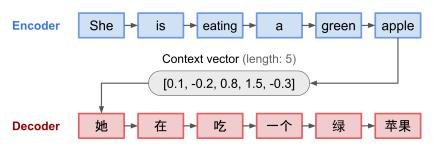
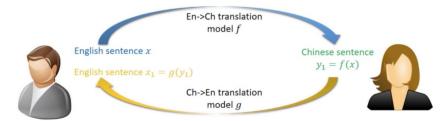


Figure: Lilian Weng

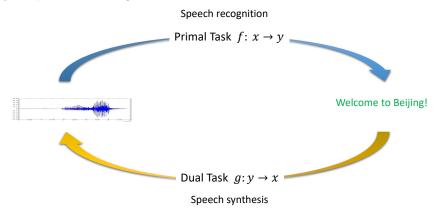
- A critical disadvantage of this fixed-length context vector design is incapability of remembering long sentences.
- 3. The attention mechanism was proposed to help memorize long source sentences in NMT
- 4. Another critical disadvantage of this model is training set. We need a large bilingual corpus.
- 5. Dual learning was introduced to overcome the need for a large bilingual corpus.

Dual learning

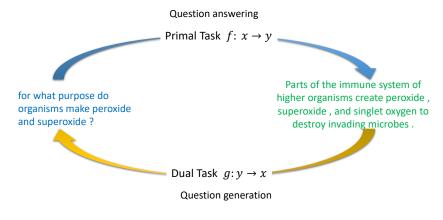
1. Dual learning is a auto-encoder like mechanism to utilize the monolingual datasets (He et al. 2016).



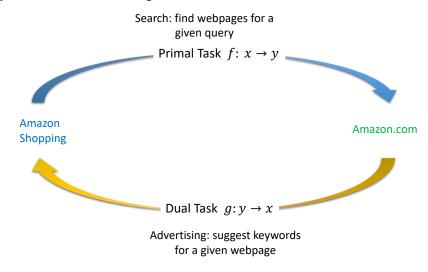
1. Duality in Speech Processing.



1. Duality in Question Answering and Generation.



1. Duality in Search and Advertising.



Structural duality is very common in artificial intelligence

AI Tasks	$X \rightarrow Y$	$Y \rightarrow X$
Machine translation	Translation from EN to CH	Translation from CH to EN
Speech processing	Speech recognition	Text to speech
Image understanding	Image captioning	Image generation
Conversation	Question answering	Question generation
Search engine	Query-document matching	Query/keyword suggestion

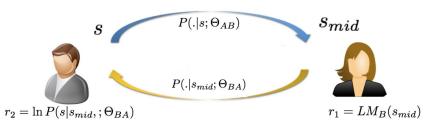
Currently most machine learning algorithms do not exploit structure duality for training and inference.

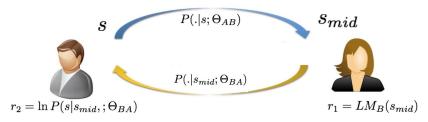
Dual Learning

- A new learning framework that leverages the symmetric (primal-dual) structure of AI tasks to obtain effective feedback or regularization signals to enhance the learning/inference process.
- 2. If you don't have enough labeled data for training, can we use unlabeled data?
- 3. Dual Unsupervised Learning can leverage structural duality to learn from unlabeled data.

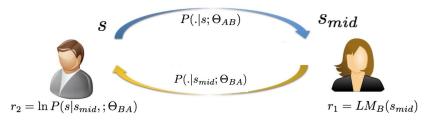
Dual learning (Definition)

- 1. Let us to define (He et al. 2016)
 - \triangleright D_A Corpus of language A.
 - ▶ D_B Corpus of language B.
 - ▶ $P(.|s, \theta_{AB})$ translation model from A to B.
 - ▶ $P(.|s, \theta_{BA})$ translation model from B to A.
 - ▶ $LM_A(.)$ learned language model of A.
 - ► *LM_B*(.) learned language model of B.

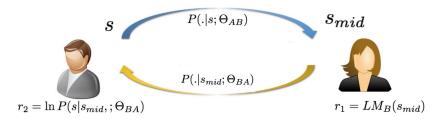




- 2. Generate K translated sentences $s_{mid,1}, s_{mid,2}, \dots, s_{mid,K}$ from $P(.|s, \theta_{AB})$
- 3. Compute intermediate rewards $r_{1,1}, r_{1,2}, \ldots, r_{1,K}$ from $LM_B(s_{mid,K})$ for each sentence as $r_{1,k} = LM_B(s_{mid,k})$

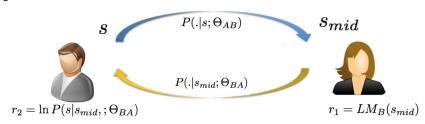


- 2. Compute communication rewards $r_{2,1}, r_{2,2}, \dots, r_{2,K}$ for each sentence as $r_{2,k} = \ln P(s|s_{mid},;\theta_{BA})$
- 3. Set the total reward of kth sentence as $r_k = \alpha r_{1,k} + (1-\alpha)r_{2,k}$



2. Compute the stochastic gradient of θ_{AB} and θ_{BA}

$$egin{aligned}
abla_{ heta_{AB}}\mathbb{E}[r] &= rac{1}{K} \sum_{k=1}^K lpha
abla_{AB} \ln P(s_{mid,k}|s, heta_{AB}) \
abla_{ heta_{BA}}\mathbb{E}[r] &= rac{1}{K} \sum_{k=1}^K (1-lpha)
abla_{BA} \ln P(s_{mid,k}|s, heta_{BA}) \end{aligned}$$



2. Update the mode parameters θ_{AB} and θ_{BA}

$$\theta_{AB} \leftarrow \theta_{AB} + \gamma_1 \nabla_{\theta_{AB}} \mathbb{E}[r]$$

$$\theta_{BA} \leftarrow \theta_{BA} + \gamma_2 \nabla_{\theta_{BA}} \mathbb{E}[r]$$

Dual learning algorithm (pseudo code))

Algorithm 1 The dual-learning algorithm

- 1: **Input**: Monolingual corpora D_A and D_B , initial translation models Θ_{AB} and Θ_{BA} , language models LM_A and LM_B , α , beam search size K, learning rates $\gamma_{1,t}, \gamma_{2,t}$.
- 2: repeat
- 3: t = t + 1.
- 4: Sample sentence s_A and s_B from D_A and D_B respectively.
- 5: Set $s = s_A$. \triangleright Model update for the game beginning from A.
- 6: Generate K sentences $s_{mid,1},\ldots,s_{mid,K}$ using beam search according to translation model $P(.|s;\Theta_{AB})$.
- 7: **for** k = 1, ..., K **do**
- 8: Set the language-model reward for the kth sampled sentence as $r_{1,k} = LM_B(s_{mid,k})$.
- 9: Set the communication reward for the kth sampled sentence as $r_{2,k} = \log P(s|s_{mid,k};\Theta_{BA})$.
- 10: Set the total reward of the kth sample as $r_k = \alpha r_{1,k} + (1-\alpha)r_{2,k}$.
- 11: end for
- 12: Compute the stochastic gradient of Θ_{AB} :

$$\nabla_{\Theta_{AB}} \hat{E}[r] = \frac{1}{K} \sum_{k=1}^{K} [r_k \nabla_{\Theta_{AB}} \log P(s_{mid,k} | s; \Theta_{AB})].$$

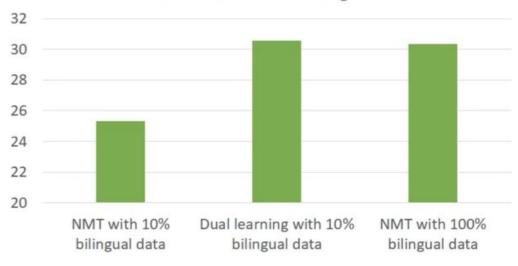
13: Compute the stochastic gradient of Θ_{BA} :

$$\nabla_{\Theta_{BA}} \hat{E}[r] = \frac{1}{K} \sum_{k=1}^{K} [(1 - \alpha) \nabla_{\Theta_{BA}} \log P(s|s_{mid,k}; \Theta_{BA})].$$

14: Model updates:

$$\Theta_{AB} \leftarrow \Theta_{AB} + \gamma_{1,t} \nabla_{\Theta_{AB}} \hat{E}[r], \Theta_{BA} \leftarrow \Theta_{BA} + \gamma_{2,t} \nabla_{\Theta_{BA}} \hat{E}[r].$$

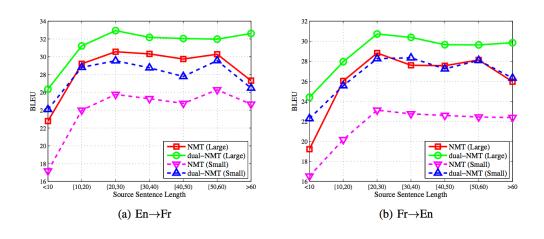
- 15: Set $s = s_B$. \triangleright Model update for the game beginning from B.
- 16: Go through line 6 to line 14 symmetrically.
- 17: **until** convergence



1. Reconstruction performance (BLEU: geometric mean of *n*-gram precision)

	$En \rightarrow Fr \rightarrow En (L)$	$Fr \rightarrow En \rightarrow Fr (L)$	$En \rightarrow Fr \rightarrow En(S)$	$Fr \rightarrow En \rightarrow Fr(S)$
NMT	39.92	45.05	28.28	32.63
pseudo-NMT	38.15	45.41	30.07	34.54
dual-NMT	51.84	54.65	48.94	50.38

1. For different source sentence length (Improvement is significant for long sentences)



1. Reconstruction examples

	Translation-back-translation results	Translation-back-translation results			
	before dual-NMT training	after dual-NMT training			
Source (En)	The majority of the growth in the years to come will come from its				
	liquefied natural gas schemes in Australia.				
	La plus grande partie de la crois-	La majorité le la croissance dans			
En→Fr	-sance des années à venir viendra	les années à venir viendra de ses			
	de ses systèmes de gaz naturel	régimes de gaz naturel liquéfié			
	liquéfié en Australie .	en Australie .			
	Most of the growth of future	The majority of growth in the			
En→Fr→En	years will come from its liquefied	coming years will come from its			
	natural gas systems in Australia.	liquefied natural gas systems			
		in Australia .			
Source (Fr)	Il précise que " les deux cas identifiés en mai 2013 restent donc				
	les deux seuls cas confirmés en France à ce jour ".				
	He noted that " the two cases	He states that " the two cases			
Fr→En	identified in May 2013 therefore	identified in May 2013 remain the			
	remain the only two two confirmed	only two confirmed cases in France			
	cases in France to date ".	to date "			
	Il a noté que " les deux cas	Il précise que " les deux cas			
Fr→En→Fr	identifiésen mai 2013 demeurent	identifiés en mai 2013 restent les			
	donc les deux seuls deux deux cas	seuls deux cas confirmés en France			
	confirmés en France à ce jour "	à ce jour ".			

Dual Supervised Learning

- 1. Given *m* training pairs $\{(x_1, y_2), \dots, (x_m, y_m)\}$ sampled from the space $\mathcal{X} \times \mathcal{Y}$.
- 2. Learn the bi-directional relationship of (x, y), in two independent supervised learning tasks (primal f and dual g) (Xia et al. 2017):

$$\min_{\theta_{xy}} \frac{1}{m} \sum_{i}^{m} \mathsf{L}_{1} \left(f(\mathsf{x}_{i}; \theta_{xy}), \mathsf{y}_{i} \right)$$

$$\min_{\theta_{yx}} \frac{1}{m} \sum_{i}^{m} \mathsf{L}_{2} \left(g(\mathsf{y}_{i}; \theta_{yx}), \mathsf{x}_{i} \right)$$

3. If the learned primal and dual models are perfect, for all x and y, we should have

$$P(x)P(y|x;\theta_{xy}) = P(y)P(x|y;\theta_{yx})$$

1. Incorporate joint distribution matching in supervised learning

$$\begin{aligned} & \min_{\theta_{xy}} \frac{1}{m} \sum_{i}^{m} \mathsf{L}_{1} \left(f(x_{i}; \theta_{xy}), y_{i} \right) \\ & \min_{\theta_{yx}} \frac{1}{m} \sum_{i}^{m} \mathsf{L}_{2} \left(g(y_{i}; \theta_{yx}), x_{i} \right) \\ & P(x) P(y|x; \theta_{xy}) = P(y) P(x|y; \theta_{yx}) \end{aligned}$$

2. Empirical marginal distributions $\hat{P}(x)$ and $\hat{P}(y)$

$$\mathsf{L}_{\textit{duality}} = \left(\log \hat{P}(x) + \log \hat{P}(y|x;\theta_{xy})\right) - \left(\log \hat{P}(y) + \log \hat{P}(x|y;\theta_{yx})\right)$$

Algorithm 1 Dual Supervise Learning Algorithm

Input: Marginal distributions $\hat{P}(x_i)$ and $\hat{P}(y_i)$ for any $i \in [n]$; Lagrange parameters λ_{xy} and λ_{yx} ; optimizers Opt_1 and Opt_2 ;

repeat

Get a minibatch of m pairs $\{(x_j, y_j)\}_{j=1}^m$; Calculate the gradients as follows:

$$G_{f} = \nabla_{\theta_{xy}}(1/m) \sum_{j=1}^{m} \left[\ell_{1}(f(x_{j}; \theta_{xy}), y_{j}) + \lambda_{xy} \ell_{\text{duality}}(x_{j}, y_{j}; \theta_{xy}, \theta_{yx}) \right];$$

$$G_{g} = \nabla_{\theta_{yx}}(1/m) \sum_{j=1}^{m} \left[\ell_{2}(g(y_{j}; \theta_{yx}), x_{j}) + \lambda_{yx} \ell_{\text{duality}}(x_{j}, y_{j}; \theta_{xy}, \theta_{yx}) \right];$$

$$(4)$$

Update the parameters of f and g: $\theta_{xy} \leftarrow Opt_1(\theta_{xy}, G_f), \theta_{yx} \leftarrow Opt_2(\theta_{yx}, G_g).$ **until** models converged

Tasks	RNNSearch	DSL	Δ
En→Fr	29.92	31.99	2.07
Fr→En	27.49	28.35	0.86
En→De	16.54	17.91	1.37
De→En	20.69	20.81	0.12
En→Zh (MT08)	15.45	15.87	0.42
Zh→En (MT08)	31.67	33.59	1.92
En→Zh (MT12)	15.05	16.10	1.05
Zh→En (MT12)	30.54	32.00	1.46

Reading

Readings

 $1. \ \mbox{Read}$ the survey paper (Khoshvishkaie and Beigy 2020).

- Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). "Neural Machine Translation by Jointly Learning to Align and Translate". In: *International Conference on Learning Representations*.
- He, Di et al. (2016). "Dual Learning for Machine Translation". In: Advances in Neural Information Processing Systems, pp. 820–828.
- Khoshvishkaie, Ali Akbar and Hamid Beigy (2020). "Deep Learning: Methods and Applications". In: The CSI Journal on Computing Science and Information Technology 17.2, pp. 33-44. URL: https://jcsit.ir/article/86.
- Xia, Yingce et al. (2017). "Dual Supervised Learning". In: *Proceedings of the 34th International Conference on Machine Learning*. Vol. 70, pp. 3789–3798.

Questions?