
Deep learning

Machine learning overview

Hamid Beigy

Sharif University of Technology

February 20, 2021



Table of contents

1. What is machine learning?

2. Supervised learning

3. Reinforcement learning

4. Unsupervised learning

5. Representation learning

6. References

1/37



What is machine learning?



What is machine learning?

The field of machine learning is concerned with the question of how to construct computer programs

that automatically improve with the experience.

Definition (Mohri, Rostamizadeh, and Talwalkar 2018)

Computational methods that use experience to improve performance or to make accurate

predictions.

Definition (Mitchell 1997)

A computer program is said to learn

I from training experience E
I with respect to some class of tasks T
I and performance measure P,

if its performance at tasks in T , measured by P, improves with experience E .
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What is machine learning? (Example)

Example (Checkers learning problem)

Class of task T : playing checkers.

Performance measure P: percent of games won against opponents.

Training experience E : playing practice game against itself.

Example (Handwriting recognition learning problem)

Class of task T : recognizing and classifying handwritten words within images.

Performance measure P: percent of words classified correctly.

Training experience E : a database of handwritten words with given classifications.
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Why we need machine learning?

We need machine learning because

1. Tasks are too complex to program

I Tasks performed by animals/humans such as driving, speech recognition, image

understanding, and etc.
I Tasks beyond human capabilities such as weather prediction, analysis of genomic data, web

search engines, and etc.

2. Some tasks need adaptivity. When a program has been written down, it stays unchanged.

In some tasks such as optical character recognition and speech recognition, we need the

behavior to be adapted when new data arrives.
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Types of machine learning

Machine learning algorithms based on the information provided to the learner can be classified

into four main groups.

1. Supervised/predictive learning: The goal is to learn a mapping from inputs x to outputs

y given the labeled set S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.
2. Unsupervised/descriptive learning: The goal is to find interesting pattern in data

S = {x1, x2, . . . , xN}. Unsupervised learning is arguably more typical of human and animal

learning.

3. Representation Learning: The goal is to learn a good representation for every input raw

pattern. Unsupervised learning is arguably more typical of human and animal learning.

4. Reinforcement learning: Reinforcement learning is learning by interacting with an

environment. A reinforcement learning agent learns from the consequences of its actions.
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Applications of machine learning

1. Supervised learning:
I Classification:

I Document classification and spam filtering.
I Image classification and handwritten recognition.
I Face detection and recognition.

I Regression:

I Predict stock market price/ temperature of a location/ the amount of PSA.

2. Unsupervised/descriptive learning:

I Discovering clusters/latent factors.
I Discovering graph structures (correlation of variables).
I Matrix completion (filling missing values).
I Collaborative filtering.
I Market-basket analysis (frequent item-set mining).

3. Representation learning:

I Representing text, image, voice signals, graph nodes, etc.

4. Reinforcement learning:

I Game playing.
I robot navigation.
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Supervised learning



Supervised learning

I In supervised learning, the goal is to find a mapping from inputs X to outputs t given a

labeled set of input-output pairs

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.

S is called training set.

I In the simplest setting, each training input x is a D−dimensional vector of numbers.

I Each component of x is called feature and x is called feature vector.

I In general, x could be a complex structure of object, such as an image, a sentence, an

email message, a time series, a molecular shape, a graph.

I When ti ∈ {1, 2, . . . ,M}, the problem is known as classification.

I When ti ∈ R, the problem is known as regression.
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Classification

I In classification, the goal is to find a mapping from inputs X to outputs t, where

t ∈ {1, 2, . . . ,M} with M being the number of classes.

I When M = 2, the problem is called binary classification. In this case, we often assume

that t ∈ {−1,+1} or t ∈ {0, 1}.
I When M > 2, the problem is called multi-class classification.

I Let each sample represented by two features:x = [x1, x2]T

I Each sample is labeled as

h(x) =

{
1 if positive example

0 if negative example

I Each sample in the training set is represented by an ordered pair (x , t) and the training set

containing

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}.
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Classification (Cont.)

I The learning algorithm should find a particular hypotheses h ∈ H to approximate concept

c ∈ C as closely as possible.

I The expert defines the hypothesis class H, but he can not say h.

I We choose H and the aim is to find h ∈ H that is similar to c . This reduces the problem

of learning the class to the easier problem of finding the parameters that define h.

I Hypothesis h makes a prediction for an instance x in the following way.

h(x) =

{
1 if h classifies x as an instance of a positive example

0 if h classifies x as an instance of a negative example
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Classification (Cont.)

I In real life, we don’t know c(x) and hence cannot evaluate how well h(x) matches c(x).

I We use a small subset of all possible values x as the training set as a representation of

that concept.

I Empirical error (risk)/training error is the proportion of training instances such that

h(x) 6= c(x).

ES(h) =
1

N

N∑
i=1

I [h(xi ) 6= c(xi )]

I When ES(h) = 0, h is called a consistent hypothesis with dataset S .

I For any problem, we can find infinitely many h such that ES(h) = 0. But which of them is

better than for prediction of future examples?

I This is the problem of generalization, that is, how well our hypothesis will correctly classify

the future examples that are not part of the training set.
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Classification (Generalization)

I The generalization capability of a hypothesis usually measured by the true error/risk.

E (h) = Prob
x∼D

[h(x) 6= c(x)]

I We assume that H includes C , that is there exists h ∈ H such that ES(h) = 0.

I Given a hypothesis class H, it may be the cause that we cannot learn C ; that is there is no

h ∈ H for which ES(h) = 0.

I Thus in any application, we need to make sure that H is flexible enough , or has enough

capacity to learn C .
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Support vector machines

I Support vector machine (SVM) is a linear classifier that maximizes the margine.

4.2 SVMs — separable case 65

margin

w·x+b=+1
w·x+b=−1

w·x+b=0

Figure 4.2 Margin and equations of the hyperplanes for a canonical maximum-

margin hyperplane. The marginal hyperplanes are represented by dashed lines on

the figure.

We define this representation of the hyperplane, i.e., the corresponding pair (w, b),

as the canonical hyperplane. The distance of any point x0 ∈ RN to a hyperplane

defined by (4.3) is given by

|w · x0 + b|
∥w∥ . (4.4)

Thus, for a canonical hyperplane, the margin ρ is given by

ρ = min
(x,y)∈S

|w · x + b|
∥w∥ =

1

∥w∥ . (4.5)

Figure 4.2 illustrates the margin for a maximum-margin hyperplane with a canon-

ical representation (w, b). It also shows the marginal hyperplanes, which are the

hyperplanes parallel to the separating hyperplane and passing through the closest

points on the negative or positive sides. Since they are parallel to the separating

hyperplane, they admit the same normal vector w. Furthermore, by definition of a

canonical representation, for a point x on a marginal hyperplane, |w · x + b| = 1,

and thus the equations of the marginal hyperplanes are w · x + b = ±1.

A hyperplane defined by (w, b) correctly classifies a training point xi, i ∈ [1,m]

when w · xi + b has the same sign as yi. For a canonical hyperplane, by definition,

we have |w · xi + b| ≥ 1 for all i ∈ [1,m]; thus, xi is correctly classified when

yi(w ·xi +b) ≥ 1. In view of (4.5), maximizing the margin of a canonical hyperplane

is equivalent to minimizing ∥w∥ or 1
2∥w∥2. Thus, in the separable case, the SVM

solution, which is a hyperplane maximizing the margin while correctly classifying all

training points, can be expressed as the solution to the following convex optimization

problem:

I We need a classifier to maximize the margin subject to the constraints that all the training

examples are classified correctly. Hence, we have

Minimize
1

2
‖w‖2 subject to tn (〈w, xn〉+ b) ≥ 1 for all n = 1, 2, . . . ,N
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Logistic regression

I Logistic regression is a model for probabilistic classification.

I It predicts label probabilities rather than a hard value of the label.

I The output of Logistic regression is a probability defined using the sigmoid function

P(C1|xn) = σ (〈θ, xn〉) =
1

1 + exp(−〈θ, xn〉)

I The loss function

ES(tn, h(xn)) =

{
− lnP(C1|xn) tn = 1

− ln(1− P(C1|xn)) tn = 0

I The loss function over training data is

ES(θ) =
N∑

n=1

[−tn lnP(C1|xn)− (1− tn) ln(1− P(C1|xn))]

I This loss function is called the cross-entropy loss.
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Regression

I c(x) is a continuous function. Hence the training set is in the form of

S = {(x1, t1), (x2, t2), . . . , (xN , tN)}, tk ∈ R.

I There is noise added to the output of the unknown function.

tk = f (xk) + ε ∀k = 1, 2, . . . ,N

I The explanation for the noise is that there are extra hidden variables that we cannot

observe.

tk = f ∗(xk , zk) + ε ∀k = 1, 2, . . . ,N

zk denotes hidden variables
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Regression(cont.)

I Our goal is to approximate the output by function g(x).

I The empirical error on the training set S is

ES(g) =
1

N

N∑
k=1

[tk − g(xk)]2

I The aim is to find g(.) that minimizes the empirical error.

I We assume that a hypothesis class for g(.) with a small set of parameters.
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Model selection

I The training data is not sufficient to find the solution, we should make some extra

assumption for learning.

Inductive bias

The inductive bias of an algorithm is the set of assumptions that the learner uses to predict

outputs given inputs that it has not encountered.

I We assume a hypothesis class (inductive bias). Each hypotheses class has certain capacity

and can learn only certain functions.
I How to choose the right inductive bias (for example hypotheses class)? This is called model

selection.
I How well a model trained on the training set predicts the right output for new instances is

called generalization.
I For best generalization, we should choose the right model that matches the complexity of

the hypothesis with the complexity of the function underlying data.
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Model selection (cont.)

I For best generalization, we should choose the right model that match the complexity of

the hypothesis with the complexity of the function underlying data.

I If the hypothesis is less complex than the function, we have underfitting
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Model selection (cont.)

I If the hypothesis is more complex than the function, we have overfitting

I There are trade-off between three factors

I Complexity of hypotheses class
I Amount of training data
I Generalization error
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Model selection (cont.)

I As the amount of training data increases, the generalization error decreases.

I As the capacity of the models increases, the generalization error decreases first and then

increases.

I We measure generalization ability of a model using a validation set.

I The available data for training is divided to

I Training set
I Validation data
I Test data
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Summary of supervised learning

I The training set S

I A set of N i.i.d distributed data.
I The ordering of data is not important
I The instances are drawn from the same distribution p(x , t).

I In order to have successful learning, three decisions must take

I Select appropriate model (g(x ; θ))
I Select appropriate loss function

ES(θ) =
∑
k

`(tk , g(xk ; θ))

I Select appropriate optimization procedure

θ∗ = arg min
θ

ES(θ)
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Some performance measures of classifiers

1. What you can say about the accuracy of 90% or the error of 10% ?

2. For example, if 3− 4% of examples are from negative class, clearly accuracy of 90% is not

acceptable.

3. Confusion matrix

(+)

(−)

(+) (−)

Actual label

P
re

d
ic

te
d

la
b

el

TP

TN

FP

FN

4. Given M classes, a confusion matrix is a table of M ×M.
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Some performance measures of classifiers

1. Precision (Positive predictive value) Precision is proportion of predicted positives which

are actual positive and defined as

Precision(h) =
TP

TP + FP

2. Recall (Sensitivity) Recall is proportion of actual positives which are predicted positive

and defined as

Recall(h) =
TP

TP + FN

3. F1-measure F1-measure is harmonic mean between precision and recall and defined as

F1(h) = 2× Persicion(h)× Recall(h)

Persicion(h) + Recall(h)
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Cross validation method

1. K -fold cross validation The initial data are randomly partitioned into K mutually

exclusive subsets or folds, S1,S2, . . . ,SK , each of approximately equal size. .

1.4. The Curse of Dimensionality 33

Figure 1.18 The technique of S-fold cross-validation, illus-
trated here for the case of S = 4, involves tak-
ing the available data and partitioning it into S
groups (in the simplest case these are of equal
size). Then S − 1 of the groups are used to train
a set of models that are then evaluated on the re-
maining group. This procedure is then repeated
for all S possible choices for the held-out group,
indicated here by the red blocks, and the perfor-
mance scores from the S runs are then averaged.

run 1

run 2

run 3

run 4

data to assess performance. When data is particularly scarce, it may be appropriate
to consider the case S = N , where N is the total number of data points, which gives
the leave-one-out technique.

One major drawback of cross-validation is that the number of training runs that
must be performed is increased by a factor of S, and this can prove problematic for
models in which the training is itself computationally expensive. A further problem
with techniques such as cross-validation that use separate data to assess performance
is that we might have multiple complexity parameters for a single model (for in-
stance, there might be several regularization parameters). Exploring combinations
of settings for such parameters could, in the worst case, require a number of training
runs that is exponential in the number of parameters. Clearly, we need a better ap-
proach. Ideally, this should rely only on the training data and should allow multiple
hyperparameters and model types to be compared in a single training run. We there-
fore need to find a measure of performance which depends only on the training data
and which does not suffer from bias due to over-fitting.

Historically various ‘information criteria’ have been proposed that attempt to
correct for the bias of maximum likelihood by the addition of a penalty term to
compensate for the over-fitting of more complex models. For example, the Akaike
information criterion, or AIC (Akaike, 1974), chooses the model for which the quan-
tity

ln p(D|wML) − M (1.73)

is largest. Here p(D|wML) is the best-fit log likelihood, and M is the number of
adjustable parameters in the model. A variant of this quantity, called the Bayesian
information criterion, or BIC, will be discussed in Section 4.4.1. Such criteria do
not take account of the uncertainty in the model parameters, however, and in practice
they tend to favour overly simple models. We therefore turn in Section 3.4 to a fully
Bayesian approach where we shall see how complexity penalties arise in a natural
and principled way.

1.4. The Curse of Dimensionality

In the polynomial curve fitting example we had just one input variable x. For prac-
tical applications of pattern recognition, however, we will have to deal with spaces

I Training and testing is performed K times.
I In iteration k, partition Sk is used for test and the remaining partitions collectively used for

training.
I The accuracy is the percentage of the total number of correctly classified test examples.
I The advantage of K -fold cross validation is that all the examples in the dataset are

eventually used for both training and testing.
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Reinforcement learning

I A key feature of reinforcement learning is that it explicitly considers the whole problem of

a goal-directed agent interacting with an uncertain environment.

314 Reinforcement Learning

EnvironmentAgent

action

state

reward

Figure 14.1 Representation of the general scenario of reinforcement learning.

and could vary as a result of the actions selected by the agent. This may be a more

realistic model for some learning problems than the standard supervised learning.

The objective of the agent is to maximize his reward and thus to determine

the best course of actions, or policy , to achieve that objective. However, the

information he receives from the environment is only the immediate reward related

to the action just taken. No future or long-term reward feedback is provided by

the environment. An important aspect of reinforcement learning is to take into

consideration delayed rewards or penalties. The agent is faced with the dilemma

between exploring unknown states and actions to gain more information about the

environment and the rewards, and exploiting the information already collected to

optimize his reward. This is known as the exploration versus exploitation trade-

off inherent in reinforcement learning. Note that within this scenario, training and

testing phases are intermixed.

Two main settings can be distinguished here: the case where the environment

model is known to the agent, in which case his objective of maximizing the reward

received is reduced to a planning problem, and the case where the environment

model is unknown, in which case he faces a learning problem. In the latter case,

the agent must learn from the state and reward information gathered to both

gain information about the environment and determine the best action policy. This

chapter presents algorithmic solutions for both of these settings.

14.2 Markov decision process model

We first introduce the model of Markov decision processes (MDPs), a model of the

environment and interactions with the environment widely adopted in reinforcement

learning. An MDP is a Markovian process defined as follows.

Definition 14.1 MDPs

A Markov decision process (MDP) is defined by:
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Elements of RL

Policy : A policy is a mapping from received states of the environment to actions to be taken

(what to do?).

Reward function: It defines the goal of RL problem. It map each state-action pair to a single

number called reinforcement signal, indicating the goodness of the action. (what is good?)

Value : It specifies what is good in the long run. (what is good because it predicts reward?)

Model of the environment (optional): This is something that mimics the behavior of the

environment. (what follows what?)
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Reinforcement learning

I Reinforcement learning is what how to map situations to actions so as to maximize a

scalar reward/reinforcement signal

I The learner is not told which actions to take as in supervised learning, but discover which

actions yield the most reward by trying them.

I The trial-and-error and delayed reward are the two most important feature of

reinforcement learning.

I Reinforcement learning is defined not by characterizing learning algorithms, but by

characterizing a learning problem.

I Any algorithm that is well suited for solving the given problem, we consider to be a

reinforcement learning.

I One of the challenges that arises in reinforcement learning and other kinds of learning is

trade-off between exploration and exploitation.
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An example : Tic-Tac-Toe

1. Consider a two-playes game (Tic-Tac-Toe)

X

X

X

O O

XO

..

•

our move{
opponent's move{

our move{

starting position

•

•

•

a

b

c*

d

ee*

opponent's move{

c

•f

•g*g

opponent's move{
our move{

.

•

e

2. Consider the following updating

V (s)← V (s) + α[V (s ′)− V (s)]
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Unsupervised learning

I Unsupervised learning is fundamentally problematic and subjective.

I Examples :

Clustering Find natural grouping in data.

Dimensionality reduction Find projections that carry important information.

Compression Represent data using fewer bits.

I Unsupervised learning is like supervised learning with missing outputs (or with missing

inputs).
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Clustering

I Given data

X = {x1, x2, . . . , xm}

learn to understand data, by re-representing it in some intelligent way.

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering is fundamentally problematic and subjective

Clustering

Clustering is fundamentally problematic and subjective
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Clustering

I Given data set X = {x1, x2, . . . , xm}
I Given distance function d : X × X → R

1. d(x , y) ≥ 0, ∀x , y ∈ X .

2. d(x , y) = 0 iff x = y .

3. d(x , y) = d(y , x).

I A clustering C is a partition of X .

Definition

I A clustering function is a function F which given a data set X and a distance function d it

returns a partition C of X . F : (X , d)→ C

I A clustering quality function is any function Q which given a data set X , a partioning C of X

and a distance function d it returns a real number. Q : (X , d ,C)→ R

I Given Q we can define F as F (X , d) = argmax
C

Q(X , d ,C )
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K-means clustering

I Let µ1, . . . , µK ∈ Rn be K cluster centroids. Then K-means clustering objective function is

Q(X , d ,C ) = arg min
µ1,...,µK∈X ′

K∑
k=1

∑
x∈Ck

d(x , µk)2

X ⊂ X ′ (e.g., data points are in Rn)

Theorem

K-means clustering belongs to class of NP-Hard problems.

I A good practical heuristic is Lloyd’s algorithm

31/37



Dimensionality reduction methods

I There are two main methods for reducing the dimensionality of inputs

I Feature selection: These methods select d (d < D) dimensions out of D dimensions and

D − d other dimensions are discarded.
I Feature extraction: Find a new set of d (d < D) dimensions that are combinations of the

original dimensions.
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Principal component analysis

I In PCA, transformation z = wT x is used to reduce dimensionality of x .

I To find the best k-first principle components dimensional using PCA, we compute the

eigenvalues of covariance matrix Σ of data.

I The eigenvalues of Σ are sorted in decreasing order

λ1 ≥ λ2 ≥ . . . λj−1 ≥ λj ≥ . . . ≥ λD ≥ 0

I We then select the k largest eigenvalues, and their corresponding eigenvectors to form the

best k-dimensional approximation.

I Since Σ is symmetric, for two different eigenvalues, their corresponding eigenvectors are

orthogonal.
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Representation learning1

I This type of learning is becoming a extremely popular topic.

I Number of submissions at the International Conference on Learning Representations’

(ICLR)

Representation Learning

This is becoming a extremely popular topic!

Number of submissions at the “International Conference on Learning
Representations” (ICLR):

André Martins (IST) Lecture 6 IST, Fall 2018 6 / 103

1This slide borrowed from Andre Martins slides.
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Representation learning 2

I As an example,

Hierarchical Compositionality

Feature visualization of convolutional net trained on ImageNet from Zeiler
and Fergus (2013):

André Martins (IST) Lecture 6 IST, Fall 2018 10 / 103

2This slide borrowed from Andre Martins slides.
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Readings

1. Chapter 5 of Deep Learning Book3

3Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
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Questions?

cba
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