
Deep learning

Recurrent neural networks1

Hamid Beigy

Sharif University of Technology

April 12, 2021

1Some slides are taken from B. Raj’s slides

Table of contents

1. Introduction

2. Recurrent neural networks

3. Training recurrent neural networks

4. Design patterns of RNN

5. Long-term dependencies

6. Attention models

7. Augmented recurrent neural networks

8. Reading

1/87

Introduction

Introduction

1. In previous sessions, we considered deep learning models with the following
characteristics.

I Input Layer: (maybe vectorized), quantitative representation
I Hidden Layer(s): Apply transformations with nonlinearity
I Output Layer: Result for classification, regression, translation, segmentation, etc.

2. Models used for supervised learning

Example Through Diagram

4 2/87

Sequence learning

1. Sequence learning is the study of machine learning algorithms designed for

sequential data.

2. Language model (p(wt |wt−1,wt−2, . . . ,wt−n)) is one of the most interesting

topics that use sequence labeling.

3. For example, consider machine translation task.

I We have a sentence in the source language.
I We must translate the above sentence to the destination language.

4. How do we use feed-forward networks for solving the above machine translation

problem?

5. Consider other solutions such as autoregressive models, linear dynamical systems,

and hidden Markov models as an exercise.

3/87

Sequence learning (application)

1. Consider the stock market2.

2. We must consider the series of stock values in the past several days to decide if it

is wise to invest today (Ideally consider all of history).Should I invest..

• Stock market
– Must consider the series of stock values in the past several days to decide if it

is wise to invest today
• Ideally consider all of history

• Note: Inputs are vectors. Output may be scalar or vector
– Should I invest, vs. should I invest in X

15/0314/0313/0312/0311/0310/039/038/037/03

To invest or not to invest?

st
oc

ks

7

3. Inputs are vectors.

4. Output may be scalar (Should I invest) or vector (should I invest in X).

2
From Bhiksha Raj slides

4/87

Sequence learning (application)

1. We need a network that accepts previous days and decides.
The stock predictor

• The sliding predictor
– Look at the last few days
– This is just a convolutional neural net applied to series data

• Also called a Time-Delay neural network

Stock
vector

Time

X(t) X(t+1) X(t+2) X(t+3) X(t+4) X(t+5) X(t+6) X(t+7)

Y(t+4)

12

Credit: Bhiksha Raj

5/87

Sequence learning (Applications)

1. Although all problems in sequence learning can be converted into one with fixed-

length inputs and outputs, they may involve a variable time horizon3.

2. Sequence classification

I sentiment analysis,
I activity/action recognition,
I DNA sequence classification,
I action selection

3. Sequence synthesis:

I text synthesis,
I music synthesis,
I motion synthesis.

4. Sequence-to-sequence translation:

I speech recognition,
I text translation,
I part-of-speech tagging.

3
From Francois Fleuret slides

6/87

Processing sequences

1. Processing sequences4.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201813

Vanilla Neural Networks

“Vanilla” Neural Network

Vanilla Neural

Networks

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201814

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Image Captioning

(image → seq of

words)
Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201814

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Sentiment

Classification (seq

of words →
sentiment)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201814

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Machine

Translation (seq of

words → seq of

words)

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201814

Recurrent Neural Networks: Process Sequences

e.g. Image Captioning
image -> sequence of words

Video classification

on frame level

4
From Fei-Fei Li et al. slides

7/87

Can we process non-sequential data sequentially?

1. We have a non-sequence data and we are processing it sequentially.

2. Is it possible?

3. Please read papers (Ba, Mnih, and Kavukcuoglu 2015)5 and (Gregor et al. 2015)6.

5Jimmy Ba, Volodymyr Mnih, and Koray Kavukcuoglu (2015). “Multiple Object Recognition with

Visual Attention”. In: International Conference on Learning Representations.
6Karol Gregor et al. (2015). “DRAW: A Recurrent Neural Network For Image Generation”. In:

International Conference on Machine Learning, pp. 1462–1471.
8/87

Why MLP is not appropriate for sequence learning?

1. MLPs only accept an input of fixed dimensionality and map it to an output of

fixed dimensionality

2. In a traditional MLPs, we assume that all inputs (and outputs) are independent of

each other. Why this is problematic?

3. Need to re-learn the rules from scratch each time

4. Need to resuse knowledge about the previous events to help in classifying the

current

9/87

Recurrent neural networks

Introduction

1. A recurrent model maintains a recurrent state updated at each time step7.

2. Consider input x ∈ S
(
RD
)
, and an initial state h0 ∈ RQ , the recurrent model

would compute the following sequence of recurrent states iteratively.

ht = φ(xt , ht−1)

φ : RD × RQ 7→ RQ

3. A prediction can be computed at any time step from the recurrent state

yt = ψ(ht)

ψ : RQ 7→ RC

7
From Francois Fleuret slides

10/87

Recurrent neural networks

1. Recurrent neural networks are networks for handling sequential data such as a pair

of sentences with different lengths and two speech signals.

2. Are weights dependent to the time instant?

3. RNN shares parameters across different parts of the model.

4. Why do we share weights?

5. When there is no parameter sharing, it would not be possible to share statistical

strength and generalize to lengths of sequences not seen during training.

11/87

Recurrent neural network architecture8

h0 �

x1

h1 �

x2

. . . � hT�1

xT�1

hT�

xT

yT

yT�1

y1

w

Even though the number of steps T depends on x , this is a standard graph
of tensor operations, and autograd can deal with it as usual. This is referred to
as “backpropagation through time” (Werbos, 1988).

François Fleuret EE-559 – Deep learning / 11. Recurrent Neural Networks and Natural Language Processing 7 / 73

8
From Francois Fleuret slides

12/87

Recurrent neural network (Machine translation)

1. Machine Translation is similar to language modeling in that our input is a

sequence of words in the source language.

2. We want to output a sequence of words in our target language.

3. A key difference is that the output only starts after we have seen the complete

input, because the first word of our translated sentences may require information

captured from the complete input sequence.

Credit: Denny Britz

13/87

Recurrent neural network (shortcut)

1. We often use the following shortcut to represent the recurrent neural network.
Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons
• But will represent everything simple boxes

– Each box actually represents an entire layer with many units
8

Credit: Bhiksha Raj

14/87

Recurrent neural network (shortcut)

1. We often use the following shortcut to represent the recurrent neural network.
Representational shortcut

• Input at each time is a vector
• Each layer has many neurons

– Output layer too may have many neurons
• But will represent everything simple boxes

– Each box actually represents an entire layer with many units
10

Credit: Bhiksha Raj

15/87

Recurrent neural network (example application)9

1. We consider the following simple binary sequence classification problem:

I Label 1: the sequence is the concatenation of two identical halves,
I label 0: otherwise

We consider the following simple binary sequence classification problem:

• Class 1: the sequence is the concatenation of two identical halves,

• Class 0: otherwise.

E.g.

x y
(1, 2, 3, 4, 5, 6) 0
(3, 9, 9, 3) 0
(7, 4, 5, 7, 5, 4) 0
(7, 7) 1
(1, 2, 3, 1, 2, 3) 1
(5, 1, 1, 2, 5, 1, 1, 2) 1

François Fleuret EE-559 – Deep learning / 11. Recurrent Neural Networks and Natural Language Processing 8 / 73

9
From Francois Fleuret slides

16/87

Recurrent neural networks

1. Usually, we want to predict a vector at some steps10.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201822

Recurrent Neural Network

x

RNN

y
We can process a sequence of vectors x by
applying a recurrence formula at every time step:

new state old state input vector at
some time step

some function
with parameters W

I We can process input x by applying the following recurrence equation.

ht = fw (xt , ht−1)

I Assume that the activation function is tanh.

ht = tanh (Uxt ,Wht−1)

yt = Vht

10
From Fei-Fei Li et al. slides

17/87

Recurrent neural networks

1. The computational graph is 11.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201833

h0 fW h1 fW h2 fW h3

yT

…

x
W

RNN: Computational Graph: One to Many

hT

y3y2y1

11
From Fei-Fei Li et al. slides

18/87

Recurrent neural networks (character level language model)

1. Assume that the vocabulary is [h,e,l,o] 12.

2. Example training sequence: hello

3. At the output layer, we use softmax.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201838

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

12
From Fei-Fei Li et al. slides

19/87

Recurrent neural networks (character level language model)

1. Assume that the vocabulary is [h,e,l,o] 13.

2. Example training sequence: hello

3. At the output layer, we use softmax.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201842

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

13
From Fei-Fei Li et al. slides

20/87

Comparing two models

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201838

Example:
Character-level
Language Model

Vocabulary:
[h,e,l,o]

Example training
sequence:
“hello”

1. This is more powerful because a very

high dimensional hidden vector can be

considered.

2. The training will be harder. It must be

sequential.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201842

.03

.13

.00

.84

.25

.20

.05

.50

.11

.17

.68

.03

.11

.02

.08

.79
Softmax

“e” “l” “l” “o”
SampleExample:

Character-level
Language Model
Sampling

Vocabulary:
[h,e,l,o]

At test-time sample
characters one at a time,
feed back to model

1. This is less powerful unless very high

dimensional and rich output vector is

considered.

2. The training will be easier. It allows a

parallelization.

21/87

Training recurrent neural networks

Backpropagation through time

1. We have a collection of labeled samples.

S = {(xi , yi), (x2, y2), . . . , (xm, ym)}

where

I xi = (xi,0, xi,1, . . . , xi,T) is the input sequence and
I yi = (yi,0, yi,1, . . . , yi,T) is the output sequence.

2. The goal is to find weights of the network that minimizes the error between

ŷi = (ŷi ,0, ŷi ,1, . . . , ŷi ,T) and yi = (yi ,0, yi ,1, . . . , yi ,T)

3. In forward phase, the input is given to the network and the output is calculated.

4. In backward phase, the gradient of cost function with respect to the weights are

calculated and the weights are updated.

22/87

Forward phase

1. The input is given to a four-layers network and the output will be calculated.

2. Consider hidden-layers denoted by h(1) and h(2).

3. The output of the first hidden layer equals to

h
(1)
i (t) = σ1

∑
j

u
(1)
ij xj(t) +

∑
j

w
(1)
ij h

(1)
j (t − 1) + b

(1)
i

4. The output of the second hidden layer equals to

h
(2)
i (t) = σ2

∑
j

u
(2)
ij h

(1)
j (t) +

∑
j

w
(2)
ij h

(2)
j (t − 1) + b

(2)
i

5. The output equals to

ŷi (t) = σ3

∑
j

vijh
(2)
j (t) + ci

23/87

Backpropagation through time

1. Forward through entire sequence to compute loss, then backward through entire

sequence to compute gradient14.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201843

Backpropagation through time
Loss

Forward through entire sequence to
compute loss, then backward through
entire sequence to compute gradient

14
From Fei-Fei Li et al. slides

24/87

Backpropagation through time

1. We must find

∇V L(θ)

∇W L(θ)

∇UL(θ)

∇bL(θ)

∇cL(θ)

2. Then we threat the network as usual multi-layer network and apply the

backpropagation on the unrolled network.

25/87

Backpropagation through time

1. Let consider a network with one hidden layer.

2. We use softmax activation function for output layer

3. Suppose that L(t) be the loss at time t.

4. If L(t) is the negative log-likelihood of y(t) given x(1), x(2), . . . , x(t), then

L ({x(1), x(2), . . . , x(T)}, {y(1), y(2), . . . , y(T)}) =
∑
t

L(t)

L(t) = − log pmodel (y(t)|x(1), x(2), . . . , x(t))

26/87

Backpropagation through time

1. We backpropagate the gradient in the following way (L is loss function).
BPTT

x1

ŷ1

h1

U

V

@L
@U

x2

ŷ2

h2

U

W

V

@L
@U

@L
@W

x3

ŷ3

h3

U

W

V

@L
@U

@L
@W

x4

ŷ4

h4

U

V

W

@L
@U

@L
@W

x5

ŷ5

h5

U

W

V @L
@V

@L
@U

@L
@W

Lecture 11 Recurrent Neural Networks I CMSC 35246

Credit Trivedi & Kondor

27/87

Backpropagation through time

1. In forward phase, hidden layer computes

ht = tanh
(
W>ht−1 + U>xt + b

)

2. In forward phase, output layer computes

ot = V>ht + c

ŷt = softmax (ot)

28/87

Backpropagation through time

1. Calculating the gradient

∂L

∂L(t)
= 1

(
∇o(t)L

)
i

=
∂L

∂oi (t)
=

∂L

∂L(t)

∂L(t)

∂oi (t)

2. By using softmax in output layer, we have

ŷi (t) =
eoi (t)∑
k e

ok (t)

∂ŷi (t)

∂oj(t)
=
∂ eoi (t)∑

k e
ok (t)

∂oj(t)

=

ŷi (t)(1− ŷj(t)) i = j

−ŷj(t)ŷi (t) i 6= j

29/87

Backpropagation through time

1. We compute gradient of loss function with respect to oi (t)

L(t) = −
∑
k

yk(t)log(ŷk(t))

∂L(t)

∂oi (t)
= −

∑
k

yk(t)
∂log(ŷk(t))

∂oi (t)

= −
∑
k

yk(t)
∂log(ŷk(t))

∂ŷk(t)
× ∂ŷk(t)

∂oi (t)

= −
∑
k

yk(t)
1

ŷk(t)
× ∂ŷk(t)

∂oi (t)

30/87

Backpropagation through time

1. We compute gradient of loss function with respect to oi (t)

∂L(t)

∂oi (t)
= −

∑
k

yk(t)
1

ŷk(t)
× ∂ŷk(t)

∂oi (t)

= −yi (t)(1− ŷi (t))−
∑
k 6=i

yk(t)
1

ŷk(t)
(−ŷk(t).ŷi (t))

= −yi (t)(1− ŷi (t)) +
∑
k 6=i

yk(t).ŷi (t)

= −yi (t) + yi (t)ŷi (t) +
∑
k 6=i

yk(t).ŷi (t)

= ŷi (t)

yi (t) +
∑
k 6=i

yk(t)

− yi (t)

31/87

Backpropagation through time

1. We had

∂L(t)

∂oi (t)
= ŷi (t)

yi (t) +
∑
k 6=i

yk(t)

− yi (t)

2. Since y(t) is a one hot encoded vector for the labels, so
∑

k yk(t) = 1 and

yi (t) +
∑

k 6=1 yk(t) = 1. So we have

∂L(t)

∂oi (t)
= ŷi (t)− yi (t)

3. This is a very simple and elegant expression.

32/87

Backpropagation through time

1. At the final time step T , h(T) has only as o(T) as a descendant

∇h(T)L = V>∇o(T)L

2. We can then iterate backward in time to back-propagate gradients through time,

from t = T − 1 down to t = 1.

∇h(t)L =

(
∂h(t + 1)

∂h(t)

)> (
∇h(t+1)L

)
+

(
∂o(t)

∂h(t)

)> (
∇o(t)L

)
= W> diag

((
1− (h(t + 1))2

)) (
∇h(t+1)L

)
+ V>

(
∇o(t)L

)
33/87

Backpropagation through time

1. The gradient on the remaining parameters is given by

∇cL =
∑
t

(
∂o(t)

∂c(t)

)>
∇o(t)L =

∑
t

∇o(t)L

∇bL =
∑
t

(
∂h(t)

∂b(t)

)>
∇h(t)L =

∑
t

diag
((

1− (h(t))2
)) (
∇h(t)

)
L

∇V L =
∑
t

∑
i

(
∂L

∂oi (t)

)>
∇V (t)o(t) =

∑
t

(
∇o(t)L

)
h(t)>

∇W L =
∑
t

∑
i

(
∂L

∂hi (t)

)>
∇W (t)hi (t) =

∑
t

diag
((

1− (h(t))2
)) (
∇h(t−1)L

)
(h(t − 1))>

∇UL =
∑
t

∑
i

(
∂L

∂hi (t)

)>
∇U(t)hi (t) =

∑
t

diag
((

1− (h(t))2
)) (
∇h(t)L

)
(x(t))>

34/87

Backpropagation through time

1. Finally, bearing in mind that the weights to and from each unit in the hidden layer

are the same at every time-step, we sum over the whole sequence to get the

derivatives with respect to each of the network weights.

∆U = −η
>∑
t=1

∇UL(t) ∆b = −η
>∑
t=1

∇bL(t)

∆W = −η
>∑
t=1

∇W L(t)

∆V = −η
>∑
t=1

∇V L(t) ∆c = −η
>∑
t=1

∇cL(t)

35/87

Truncated Backpropagation through time

1. Run forward and backward through chunks of the sequence instead of whole

sequence15.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201845

Truncated Backpropagation through time
Loss

Carry hidden states
forward in time forever,
but only backpropagate
for some smaller
number of steps

15
From Fei-Fei Li et al. slides

36/87

Truncated Backpropagation through time

1. Run forward and backward through chunks of the sequence instead of whole

sequence16.

Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 2018Fei-Fei Li & Justin Johnson & Serena Yeung Lecture 10 - May 3, 201846

Truncated Backpropagation through time
Loss

16
From Fei-Fei Li et al. slides

37/87

Design patterns of RNN

Design patterns of RNN (summarization)

1. Producing a single output and have recurrent connections between hidden units.

2. This is useful for summarizing a sequence such as sentiment analysis
Design Patterns of Recurrent Networks

Summarization: Produce a single output and have recurrent
connections from output between hidden units

Useful for summarizing a sequence (e.g. sentiment analysis)

Lecture 11 Recurrent Neural Networks I CMSC 35246

38/87

Design patterns of RNN (fixed vector as input)

1. Sometimes we are interested in only taking a single, fixed sized vector x as input,

which generates the y sequence

2. Most common ways to provide an extra input at each time step

Design Patterns: Fixed vector as input

The first option (extra input at each time step) is the most
common:

Maps a fixed vector x into a distribution over sequences Y
(xT R e↵ectively is a new bias parameter for each hidden unit)

Lecture 11 Recurrent Neural Networks I CMSC 35246

3. Other solutions? (Please consider them)

4. Application: Image caption generation

39/87

Bidirectional RNNs

1. We considered RNNs in the context of a sequence x(t)(t = 1, . . . ,T)

2. In many applications, y(t) may depend on the whole input sequence.

3. Bidirectional RNNs were introduced to address this need.

Design Patterns: Bidirectional RNNs

Lecture 11 Recurrent Neural Networks I CMSC 35246 40/87

Encoder-Decoder

1. How do we map input sequences to output sequences that are not necessarily of

the same length?

2. The input to RNN is called context, we want to find a representation of the

context C .

3. C may be a vector or a sequence that summarizes x = {x(1), . . . , x(nx)}

41/87

Encoder-Decoder
Design Patterns: Encoder-Decoder

In the context of Machine Trans. C is called a thought vector

Lecture 11 Recurrent Neural Networks I CMSC 35246

42/87

Deep recurrent networks

1. The computations in RNNs can be decomposed into three blocks of parameters
and transformations

I Input to hidden state
I Previous hidden state to the next
I Hidden state to the output

2. Each of these transforms were learned affine transformations followed by a fixed

nonlinearity.

3. Introducing depth in each of these operations is advantageous.

4. The intuition on why depth should be more useful is quite similar to that in deep

feed-forward networks

5. Optimization can be made much harder, but can be mitigated by tricks such as

introducing skip connections

43/87

Deep recurrent networks

Deep Recurrent Networks

(b) lengthens shortest paths linking di↵erent time steps, (c) mitigates this by introducing skip layers

Lecture 11 Recurrent Neural Networks I CMSC 35246

44/87

Long-term dependencies

Long-term dependencies

1. RNNs involve the composition of a function multiple times, once per time step.

2. This function composition resembles matrix multiplication.

3. Consider the recurrence relationship h(t + 1) = W>h(t)

4. This is very simple RNN without a nonlinear activation and x .

5. This recurrence equation can be written as: h(t) = (W t)> h(0).

6. If W has an eigendecomposition of formW = QΛQ> with orthogonal Q.

7. The recurrence becomes h(t) = (W t)> h(0) = Q>ΛtQh(0).

Q is matrix composed of eigenvectors W .

Λ is a diagonal matrix with eigenvalues placed on the diagonals.

45/87

Long-term dependencies

1. The recurrence becomes h(t) = (W t)> h(0) = Q>ΛtQh(0).

Q is matrix composed of eigenvectors W .

Λ is a diagonal matrix with eigenvalues placed on the diagonals.

2. Eigenvalues are raised to t: Quickly decay to zero or explode. ConsiderEigenvalues and stability
Vanishing gradients

Exploding gradients

3. Problem: Gradients propagated over many stages tend to vanish (most of

the time) or explode (relatively rarely)

46/87

Why do gradients vanish or explode?

1. The expression for h(t) was h(t) = tanh (Wh(t − 1) + Ux(t)).

2. The partial derivative of loss wrt to hidden states equals to

∂L

∂h(t)
=

∂L

∂h(T)

∂h(T)

∂h(t)

=
∂L

∂h(T)

T−1∏
k=t

∂h(k + 1)

∂h(k)

=
∂L

∂h(T)

T−1∏
k=t

Dk+1W
>
k

where

Dk+1 = diag
(
1− tanh2 (Wh(t − 1) + Ux(t))

)

47/87

Why do gradients vanish or explode?

1. For any matrices A,B , we have ‖AB‖ ≤ ‖A‖‖B‖∥∥∥∥ ∂L

∂h(t)

∥∥∥∥ =

∥∥∥∥∥ ∂L

∂h(T)

T−1∏
k=t

Dk+1W
>
k

∥∥∥∥∥ ≤
∥∥∥∥ ∂L

∂h(T)

∥∥∥∥ T−1∏
k=t

∥∥∥Dk+1W
>
k

∥∥∥
2. Since ‖A‖ equals to the largest singular value of A (σmax(A)), we have∥∥∥∥ ∂L

∂h(t)

∥∥∥∥ =

∥∥∥∥∥ ∂L

∂h(T)

T−1∏
k=t

Dk+1W
>
k

∥∥∥∥∥ ≤
∥∥∥∥ ∂L

∂h(T)

∥∥∥∥ T−1∏
k=t

σmax(Dk+1)σmax(Wk)

3. Hence the gradient norm can shrink to zero or grow up exponentially fast

depending on the σmax .

48/87

Echo state networks

1. Set the recurrent weights such that they do a good job of capturing past history

and learn only the output weights

2. Methods: Echo State Machines and Liquid State Machines

3. The general methodology is called reservoir computing

4. How to choose the recurrent weights?

5. In Echo State Machines, choose recurrent weights such that the hidden-to-hidden

transition Jacobian has eigenvalues close to 1

49/87

Other solutions

1. Adding skip connection through time : Adding direct connections from variables

in the distant past to the variables in the present.

2. Leaky units: Having units with self-connections.

3. Removing connections: Removing length-one connections and replacing them with

longer connections.

50/87

Leaky units

1. Recall that

ht = σ
(
W>ht−1 + U>xt

)
2. Now, consider the following equation

ht,i =

(
1− 1

γi

)
+

1

γi
σ
(
W>ht−1 + U>xt

)

where 1 ≤ γi ≤ ∞
3. Now, considering the following cases

When γi = 1, The resulting network becomes the ordinary RNN.

When γi =∞, The resulting network becomes by no changing the hidden

states.

When γi > 1, The gradient propagates more easily.

When γi � 1, The hidden states change slowly and the network incorporates

inputs and past hidden states.
51/87

Gated units

1. RNNs can accumulate but it might be useful to forget.

2. Creating paths through time where derivatives can flow.

3. Learn when to forget!

4. Gates allow learning how to read, write and forget.

5. We consider two gated units:

I Long Short-Term Memory (LSTM)
I Gated Recurrent Unit (GRU)

52/87

Long short term memory

1. LSTMs are explicitly designed to avoid the long-term dependency problem.

2. All recurrent neural networks have the form of a chain of repeating modules of

neural network.

3. In standard RNNs, this repeating module will have a very simple structure, such

as a single tanh layer.

53/87

Long short term memory

1. LSTMs also have this chain like structure, but the repeating module has a

different structure.

2. Instead of having a single neural network layer, there are four, interacting in a very

special way.

54/87

Long short term memory

1. Let us to define the following notations

2. In the above figure, each line carries an entire vector, from the output of one node

to the inputs of others.

I The pink circles represent point-wise operations, like vector addition.
I The yellow boxes are learned neural network layers.
I Lines merging denote concatenation
I Line forking denote its content being copied and the copies going to different

locations.

55/87

Long short term memory

1. The key to LSTMs is the cell state, the horizontal line running through the top of

the diagram.

2. The cell state is kind of like a conveyor belt.

3. It runs straight down the entire chain, with only some minor linear interactions.

4. It’s very easy for information to just flow along it unchanged.

5. The LSTM does have the ability to remove or add information to the cell state,

carefully regulated by structures called gates

56/87

Long short term memory

1. Gates are a way to optionally let information through.

2. They are composed out of a sigmoid neural net layer and a pointwise

multiplication operation.

3. The sigmoid layer outputs numbers between zero and one, describing how much

of each component should be let through. A value of zero means let nothing

through, while a value of one means let everything through!

4. An LSTM has three of these gates, to protect and control the cell state.

57/87

Long short term memory

1. This decision is made by a sigmoid layer called the forget gate layer.

2. It looks at ht−1 and xt , and outputs a number between 0 and 1 for each number

in the cell state Ct−1.

58/87

Long short term memory

1. The next step is to decide what new information we’re going to store in the cell

state.

2. This has the two following parts that could be added to the state.

I A sigmoid layer called the input gate layer decides which values we’ll update.
I A tanh layer creates a vector of new candidate values, C̃t .

3. Then we’ll combine these two to create an update to the state.

59/87

Long short term memory

1. Now, we must update the old cell state, Ct−1 into the new cell state Ct .

2. We multiply the old state by ft , forgetting the things we decided to forget earlier.

3. Then we add it × C̃t . This is the new candidate values, scaled by how much we

decided to update each state value.

60/87

Long short term memory

1. Finally, we need to decide what we’re going to output.

2. This output will be based on our cell state, but will be a filtered version.

I First, we run a sigmoid layer which decides what parts of the cell state we’re going

to output.
I Then, we put the cell state through tanh and multiply it by the output of the

sigmoid gate.

3. So that we only output the parts we decided to.

61/87

Long short term memory

62/87

Variants on Long short term memory

1. One popular LSTM variant is adding peephole connections. This means that we

let the gate layers look at the cell state (Gers and Schmidhuber 2000).

63/87

Variants on Long short term memory

1. Another variation is to use coupled forget and input gates.

2. Instead of separately deciding what to forget and what we should add new

information to, we make those decisions together.

3. We only forget when we’re going to input something in its place. We only input

new values to the state when we forget something older.

64/87

Variants on Long short term memory (GRU)

1. GRU combines the forget and input gates into a single (Cho et al. n.d.).

2. It merges the cell and hidden states, and makes some other changes.

3. The resulting model is simpler than standard LSTM models, and has been

growing increasingly popular.

65/87

Gated recurrent units (GRU)

66/87

Variants on Long short term memory

1. There are also other LSTM variants such as

I Jan Koutnik, et. al. ”A clockwork RNN”, Proceedings of the 31st International

Conference on International Conference on Machine Learning, 2014.
I Kaisheng Yao, et. al. ”Depth-Gated Recurrent Neural Networks”,

https://arxiv.org/pdf/1508.03790v2.pdf.

67/87

https://arxiv.org/pdf/1508.03790v2.pdf

Optimization for long-term dependencies

1. Two simple solutions for gradient vanishing / exploding.

I For vanishing gradients: Initialization + ReLus
I Trick for exploding gradient: clipping trick

When ‖g‖ > v Then

g ← vg

‖g‖

2. Vanishing gradient happens when the optimization gets stuck in a saddle point,

the gradient becomes too small for the optimization to progress. This can also be

fixed by using gradient descent with momentum or other methods.

3. Exploding gradient happens when the gradient becomes too big and you get

numerical overflow. This can be easily fixed by initializing the network’s weights

to smaller values.

68/87

Optimization for long-term dependencies

1. Gradient clipping helps to deal with exploding gradients but it does not help with

vanishing gradients.

2. Another way is encourage creating paths in the unfolded recurrent architecture

along which the product of gradients is near 1.

3. Solution: regularize to encourage information flow.

4. We want that
(
∇h(t)L

) ∂h(t)
∂h(t−1) to be as large as ∇h(t)L.

5. One regularizer is ∑
t

∥∥∥(∇h(t)L

) ∂h(t)
∂h(t−1)

∥∥∥∥∥∇h(t)L
∥∥ − 1

2

6. Computing this regularizer is difficult and its approximation is used.

69/87

Attention models

Sequence to sequence modeling

1. Sequence to sequence modeling transforms an input sequence (source) to a new

one (target) and both sequences can be of arbitrary lengths.

2. Examples of transformation tasks include

I Machine translation between multiple languages in either text or audio
I Question-answer dialog generation
I Parsing sentences into grammar trees.

3. The sequence to sequence model normally has an encoder-decoder architecture,
composed of

I An encoder processes the input sequence and compresses the information into a

context vector of a fixed length.

This representation is expected to be a good summary of the meaning of the whole

source sequence.
I A decoder is initialized with the context vector to emit the transformed output. The

early work only used the last state of the encoder network as the decoder initial state.

70/87

Attention models

1. Both the encoder and decoder are recurrent neural networks such as LSTM or

GRU units.

2. A critical disadvantage of this fixed-length context vector design is incapability of

remembering long sentences.

71/87

Attention models

1. RNNs cannot remember longer sentences and sequences due to the

vanishing/exploding gradient problem.

2. The performance of the encoder-decoder network degrades rapidly as the length

of the input sentence increases.

3. In psychology, attention is the cognitive process of selectively concentrating on

one or a few things while ignoring others.

Example (Counting the number of people in a photo)

Counting the number of heads and ignoring the rest.

72/87

Attention models

1. The attention mechanism was born to help memorize long source sentences in

neural machine translation (NMT) (Bahdanau, Cho, and Bengio 2015).

2. Instead of building a single context vector out of the encoder’s last hidden state,

the goal of attention is to create shortcuts between the context vector and the

entire source input.

3. The weights of these shortcut connections are customizable for each output

element.

4. The alignment between the source and target is learned and controlled by the

context vector.

5. Essentially the context vector consumes three pieces of information:

I Encoder hidden states
I Decoder hidden states
I Alignment between source and target

73/87

Attention models

1. Assume that we have a source sequence x of length n and try to output a target

sequence y of length m

x = [x1, x2, . . . , xn]

y = [y1, y2, . . . , ym]

2. The encoder is a bidirectional RNN with a forward hidden state
−→
h i and a

backward one
←−
h i .

3. A simple concatenation of two represents the encoder state.

4. The motivation is to include both the preceding and following words in the

annotation of one word.

hi =
[−→
h >i ;
←−
h >i
]>

i = 1, 2, . . . , n

74/87

Attention models

1. Model of attention

75/87

Attention models

1. The decoder network has hidden state st = f (st−1, yt−1, ct) at position

t = 1, 2, . . . ,m.

2. The context vector ct is a sum of hidden states of the input sequence, weighted

by alignment scores:

ct =
n∑

i=1

αt,ihi Context vector for output yt

αt,i = align(yt , xi) How well two words yt and xi are aligned.

=
exp (score(st−1,hi))∑n
j=1 exp (score(st−1,hj))

Softmax of predefined alignment score.

3. The alignment model assigns a score αt,i to the pair of (yt , xi) based on how well

they match.

4. The set of {αt,i} are weights defining how much of each source hidden state

should be considered for each output.

76/87

Attention models

1. The alignment score α is parametrized by a feed-forward network with a single

hidden layer (Bahdanau, Cho, and Bengio 2015).

2. This network is jointly trained with other parts of the model.

3. The score function is in the following form.

score(st ,hi) = v>a tanh(Wa[st ; hi])

where both Va and Wa are weight matrices to be learned in the alignment model.

77/87

Alignment scores

1. The matrix of alignment scores explicitly show the correlation between source and

target words.

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

78/87

Alignment scores

1. The matrix of alignment scores explicitly show the correlation between source and

target words.

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

Published as a conference paper at ICLR 2015

(a) (b)

(c) (d)

Figure 3: Four sample alignments found by RNNsearch-50. The x-axis and y-axis of each plot
correspond to the words in the source sentence (English) and the generated translation (French),
respectively. Each pixel shows the weight ↵ij of the annotation of the j-th source word for the i-th
target word (see Eq. (6)), in grayscale (0: black, 1: white). (a) an arbitrary sentence. (b–d) three
randomly selected samples among the sentences without any unknown words and of length between
10 and 20 words from the test set.

One of the motivations behind the proposed approach was the use of a fixed-length context vector
in the basic encoder–decoder approach. We conjectured that this limitation may make the basic
encoder–decoder approach to underperform with long sentences. In Fig. 2, we see that the perfor-
mance of RNNencdec dramatically drops as the length of the sentences increases. On the other hand,
both RNNsearch-30 and RNNsearch-50 are more robust to the length of the sentences. RNNsearch-
50, especially, shows no performance deterioration even with sentences of length 50 or more. This
superiority of the proposed model over the basic encoder–decoder is further confirmed by the fact
that the RNNsearch-30 even outperforms RNNencdec-50 (see Table 1).

6

79/87

Augmented recurrent neural networks

Neural Turing machine

1. Turing machines, which are proposed by Alan Turing in (1936–7), are simple

abstract computational devices intended to help investigate the extent and

limitations of what can be computed.

2. Neural Turing machines combine a RNN with an external memory bank (Graves,

Wayne, and Danihelka 2014).

80/87

Neural Turing machine

1. Memory is an array of vectors, for example array with M entry where each entry is

a vector of size N.
2. Two types of addressing are used to address the memory.

I Content-based addressing.
I Location-based addressing.

3. Reading from memory

rt ←
M∑
i

wt(i)Mt(i)

0 ≤ wt(i) ≤ 1

M∑
i=1

wt(i) = 1

4. Writing to the memory

Merased
t (i)←Mt−1(i)[1− wt(i)et]

Mt(i)←Merased
t (i) + wt(i)at

81/87

Neural Turing machine

1. Copying (store and recall a long sequence of arbitrary information).

2. Repeated copying (output the copied sequence a specified number of times and

then emit an end-of-sequence marker).

82/87

Adaptive Computation Time

1. Standard RNNs do the same amount of computation for each time step. .

2. Adaptive computation time (ACT) is a way for RNNs to do different amounts of

computation each step (Graves 2016).

3. The big picture idea is simple: allow the RNN to do multiple steps of computation

for each time step.

Figure 1: RNN Computation Graph. An RNN unrolled over two input steps (separated by vertical dotted lines). The input
and output weights Wx, Wy , and the state transition operator S are shared over all steps.

Figure 2: RNN Computation Graph with Adaptive Computation Time. The graph is equivalent to Figure 1, only with
each state and output computation expanded to a variable number of intermediate updates. Arrows touching boxes denote
operations applied to all units in the box, while arrows leaving boxes denote summations over all units in the box.

properties the vectors embody. There are several reasons to believe that such an assumption is
reasonable. Firstly, it has been observed that the high-dimensional representations present in neu-
ral networks naturally tend to behave in a linear way [32, 20], even remaining consistent under
arithmetic operations such as addition and subtraction [22]. Secondly, neural networks have been
successfully trained under a wide range of adversarial regularisation constraints, including sparse
internal states [23], stochastically masked units [28] and randomly perturbed weights [1]. This leads
us to believe that the relatively benign constraint of approximately linear representations will not
be too damaging. Thirdly, as training converges, the tendency for both mean-field and stochastic
latent variables is to concentrate all the probability mass on a single value. In this case that yields a
standard RNN with each input duplicated a variable, but deterministic, number of times, rendering
the linearity assumption irrelevant.

A diagram of the unrolled computation graph of a standard RNN is illustrated in Figure 1, while
Figure 2 provides the equivalent diagram for an RNN trained with ACT.

4

83/87

Neural programmer17

1. Neural nets are excellent at many tasks, but they also struggle to do some basic

things like arithmetic, which are trivial in normal approaches to computing.

2. It would be really nice to have a way to fuse neural nets with normal

programming, and get the best of both worlds.

3. Neural programmer is one approach to this. It learns to create programs in order

to solve a task (Neelakantan, Le, and Sutskever 2016).

4. In fact, it learns to generate such programs without needing examples of correct

programs.

5. It discovers how to produce programs as a means to the end of accomplishing

some task.

17This slide taken from (Olah and Carter 2016)
84/87

Reading

Readings

1. Chapter 10 of Deep Learning Book18

2. For more information about the augmented networks, please read (Olah and

Carter 2016).

18Ian Goodfellow, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT Press.
85/87

References i

Ba, Jimmy, Volodymyr Mnih, and Koray Kavukcuoglu (2015). “Multiple Object

Recognition with Visual Attention”. In: International Conference on Learning

Representations.

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio (2015). “Neural Machine

Translation by Jointly Learning to Align and Translate”. In: International Conference

on Learning Representations.

Cho, Kyunghyun et al. (n.d.). “Learning Phrase Representations using RNN

Encoder-Decoder for Statistical Machine Translation”. In: Conference on Empirical

Methods in Natural Language Processing, pp. 1724–1734.

Gers, Felix A. and Jürgen Schmidhuber (2000). “Recurrent Nets that Time and

Count”. In: International Joint Conference on Neural Networks, pp. 189–194.

Goodfellow, Ian, Yoshua Bengio, and Aaron Courville (2016). Deep Learning. MIT

Press.

Graves, Alex (2016). “Adaptive Computation Time for Recurrent Neural Networks”.

In: CoRR abs/1603.08983. url: http://arxiv.org/abs/1603.08983.

86/87

http://arxiv.org/abs/1603.08983

References ii

Graves, Alex, Greg Wayne, and Ivo Danihelka (2014). “Neural Turing Machines”. In:

CoRR abs/1410.5401. url: http://arxiv.org/abs/1410.5401.

Gregor, Karol et al. (2015). “DRAW: A Recurrent Neural Network For Image

Generation”. In: International Conference on Machine Learning, pp. 1462–1471.

Neelakantan, Arvind, Quoc V. Le, and Ilya Sutskever (2016). “Neural Programmer:

Inducing Latent Programs with Gradient Descent”. In: International Conference on

Learning Representations.

Olah, Chris and Shan Carter (2016). “Attention and Augmented Recurrent Neural

Networks”. In: Distill.

87/87

http://arxiv.org/abs/1410.5401

Questions?

cba

87/87

	Introduction
	Recurrent neural networks
	Training recurrent neural networks
	Design patterns of RNN
	Long-term dependencies
	Attention models
	Augmented recurrent neural networks
	Reading

