Machine learning theory Kernel methods

Hamid Beigy

Sharif university of technology

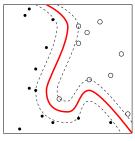
April 27, 2020

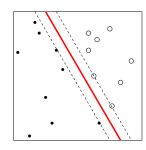
Table of contents

- 1. Motivation
- 2. Kernel methods
- 3. Basic kernel operations in feature space
- 4. Kernel-based algorithms
- $5. \ \mathsf{Summary}$

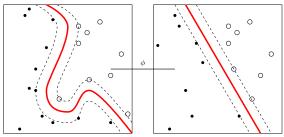
Motivation

- ▶ Most of learning algorithms are linear and are not able to classify non-linearly-separable data.
- ▶ How do you separate these two classes?





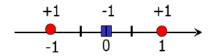
- Linear separation impossible in most problems.
- Non-linear mapping from input space to high-dimensional feature space: $\phi: \mathcal{X} \mapsto \mathbb{H}$.



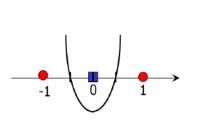
▶ Generalization ability: independent of $dim(\mathbb{H})$, depends only on ρ and m.

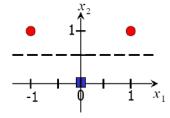
Kernel methods

▶ Most datasets are not linearly separable, for example



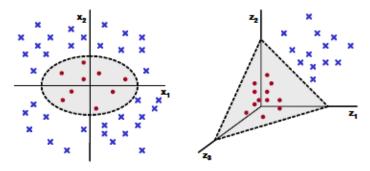
Instances that are not linearly separable in \mathbb{R} , may be linearly separable in \mathbb{R}^2 by using mapping $\phi(x) = (x, x^2)$.





- ▶ In this case, we have two solutions
 - ▶ Increase dimensionality of data set by introducing mapping ϕ .
 - ▶ Use a more complex model for classifier.

- \blacktriangleright To classify the non-linearly separable dataset, we use mapping ϕ .
- ▶ For example, let $\mathbf{x} = (x_1, x_2)^T$, $\mathbf{z} = (z_1, z_2.z_3)^T$, and $\phi : \mathbb{R}^2 \to \mathbb{R}^3$.
- ▶ If we use mapping $\mathbf{z} = \phi(x) = (x_1^2, \sqrt{2}x_1x_2, x_2^2)^T$, the dataset will be linearly separable in \mathbb{R}^3 .



- Mapping dataset to higher dimensions has two major problems.
 - ▶ In high dimensions, there is risk of over-fitting.
 - ▶ In high dimensions, we have more computational cost.
- ▶ The generalization capability in higher dimension is ensured by using large margin classifiers.
- ▶ The mapping is an implicit mapping not explicit.

- Kernel methods avoid explicitly transforming each point x in the input space into the mapped point $\phi(x)$ in the feature space.
- ▶ Instead, the inputs are represented via their $m \times m$ pairwise similarity values.
- The similarity function, called a kernel, is chosen so that it represents a dot product in some high-dimensional feature space.
- ▶ The kernel can be computed without directly constructing ϕ .
- ► The pairwise similarity values between points in S represented via the m × m kernel matrix, defined as

$$\mathbf{K} = \begin{pmatrix} k(\mathbf{x}_{1}, \mathbf{x}_{1}) & k(\mathbf{x}_{1}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{1}, \mathbf{x}_{m}) \\ k(\mathbf{x}_{2}, \mathbf{x}_{1}) & k(\mathbf{x}_{2}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{2}, \mathbf{x}_{m}) \\ \vdots & \vdots & \ddots & \vdots \\ k(\mathbf{x}_{m}, \mathbf{x}_{1}) & k(\mathbf{x}_{m}, \mathbf{x}_{2}) & \cdots & k(\mathbf{x}_{m}, \mathbf{x}_{m}) \end{pmatrix}$$

▶ Function $K(\mathbf{x}_i, \mathbf{x}_i)$ is called kernel function and defined as

Definition (Kernel)

Function $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a kernel if

- 1. $\exists \phi : \mathcal{X} \mapsto \mathbb{R}^N$ such that $K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$.
- 2. Range of ϕ is called the feature space.
- 3. N can be very large.

- ▶ Let $\phi : \mathbb{R}^2 \to \mathbb{R}^3$ be defined as $\phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$.
- ▶ Then $\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$ equals to

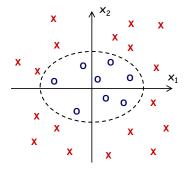
$$\langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle = \left\langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \right\rangle$$

$$= (x_1z_1 + x_2z_2)^2$$

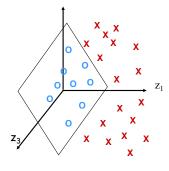
$$= (\langle \mathbf{x}, \mathbf{z} \rangle)^2$$

$$= K(\mathbf{x}, \mathbf{z}).$$

▶ The above mapping can be described



Input space



feature space

- ▶ Let $\phi_1 : \mathbb{R}^2 \mapsto \mathbb{R}^3$ be defined as $\phi(\mathbf{x}) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$.
- ▶ Then $\langle \phi_1(\mathbf{x}), \phi_1(\mathbf{z}) \rangle$ equals to

$$\langle \phi_1(\mathbf{x}), \phi_1(\mathbf{z}) \rangle = \left\langle (x_1^2, x_2^2, \sqrt{2}x_1x_2), (z_1^2, z_2^2, \sqrt{2}z_1z_2) \right\rangle$$

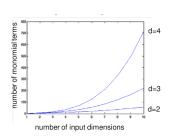
 $= (x_1z_1 + x_2z_2)^2$
 $= (\langle \mathbf{x}, \mathbf{z} \rangle)^2 = K(\mathbf{x}, \mathbf{z}).$

- ▶ Let $\phi_2 : \mathbb{R}^2 \to \mathbb{R}^4$ be defined as $\phi(x) = (x_1^2, x_2^2, x_1x_2, x_2x_1)$.
- ▶ Then $\langle \phi_2(\mathbf{x}), \phi_2(\mathbf{z}) \rangle$ equals to

$$\langle \phi_2(\mathbf{x}), \phi_2(\mathbf{z}) \rangle = \left\langle (x_1^2, x_2^2, x_1 x_2, x_2 x_1), (z_1^2, z_2^2, z_1 z_2, z_2 z_1) \right\rangle$$

= $(\langle \mathbf{x}, \mathbf{z} \rangle)^2 = K(\mathbf{x}, \mathbf{z}).$

- ► Feature space can grow really large and really quickly.
- ▶ Let K be a kernel $K(x,z) = (\langle x,z\rangle)^d = \langle \phi(x),\phi(z)\rangle$
- ▶ The dimension of feature space equals to $\binom{d+n-1}{d}$.
- Let n = 100, d = 6, there are 1.6 billion terms.



▶ The kernel methods have the following benefits.

Efficiency: K is often more efficient to compute than ϕ and the dot product.

Flexibility: K can be chosen arbitrarily so long as the existence of ϕ is guaranteed (Mercer's condition).

Theorem (Mercer's condition)

For all functions c that are square integrable (i.e., $\int c(x)^2 dx < \infty$), other than the zero function, the following property holds:

$$\int \int c(x)K(x,z)c(z)dxdz \geq 0.$$

- ▶ This Theorem states that $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ is a kernel if matrix **K** is positive semi-definite (PSD).
- ▶ Suppose $\mathbf{x}, \mathbf{z} \in \mathbb{R}^n$ and consider the following kernel

$$K(\mathbf{x}, \mathbf{z}) = (\langle \mathbf{x}, \mathbf{z} \rangle)^2$$

It is a valid kernel because

$$K(\mathbf{x}, \mathbf{z}) = \left(\sum_{i=1}^{n} x_i z_i\right) \left(\sum_{j=1}^{n} x_j z_j\right)$$
$$= \sum_{i=1}^{n} \sum_{i=1}^{n} (x_i x_j) (z_i z_j) = \langle \phi(\mathbf{x}), \phi(\mathbf{z}) \rangle$$

where the mapping ϕ for n=2 is

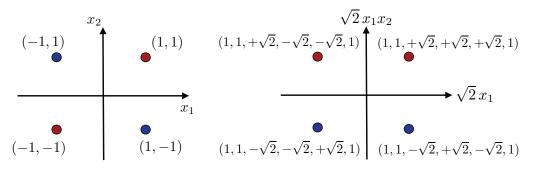
$$\phi(\mathbf{x}) = (x_1 x_1, x_1 x_2, x_2 x_1, x_2 x_2)^T$$

- ▶ Consider the polynomial kernel $K(x,z) = (\langle \mathbf{x}, \mathbf{z} \rangle + c)^d$ for all $\mathbf{x}, \mathbf{z} \in \mathbb{R}^n$.
- For n=2 and d=2,

$$K(\mathbf{x}, \mathbf{z}) = (x_1 z_1 + x_2 y_2 + c)^2$$

$$= \left\langle \left[x_1^2, x_2^2, \sqrt{2} x_1 x_2, \sqrt{2} c x_1, \sqrt{2} c x_2, c \right], \left[z_1^2, z_2^2, \sqrt{2} z_1 z_2, \sqrt{2} c z_1, \sqrt{2} c z_2, c \right] \right\rangle$$

▶ Using second-degree polynomial kernel with c = 1:



The left data is not linearly separable but the right one is.

- Some valid kernel functions
 - Polynomial kernels consider the kernel defined by

$$K(\mathbf{x},\mathbf{z}) = (\langle \mathbf{x},\mathbf{z} \rangle + c)^d$$

d is the degree of the polynomial and specified by the user and c is a constant.

▶ Radial basis function kernels consider the kernel defined by

$$K(\mathbf{x}, \mathbf{z}) = \exp\left(-\frac{\|\mathbf{x} - \mathbf{z}\|^2}{2\sigma^2}\right)$$

The width σ is specified by the user. This kernel corresponds to an infinite dimensional mapping ϕ .

Sigmoid kernel consider the kernel defined by

$$K(\mathbf{x}, \mathbf{z}) = \tanh (\beta_0 \langle \mathbf{x}, \mathbf{z} \rangle + \beta_1)$$

This kernel only meets Mercer's condition for certain values of β_0 and β_1 .

▶ Homework: Please prove VC-dimension of the above kernels.

We give the crucial property of PDS kernels, which is to induce an inner product in a Hilbert space.

Lemma (Cauchy-Schwarz inequality for PDS kernels)

Let K be a PDS kernel matrix. Then, for any $x, z \in \mathcal{X}$,

$$K(\mathbf{x}, \mathbf{z})^2 \leq K(\mathbf{x}, \mathbf{x})K(\mathbf{z}, \mathbf{z})$$

Theorem (Reproducing kernel Hilbert space (RKHS))

Let $K : \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be a PDS kernel. Then, there exists a Hilbert space \mathbb{H} and a mapping ϕ from \mathcal{X} to \mathbb{H} such that for all $\mathbf{x}, \mathbf{y} \in \mathcal{X}$

$$K(\mathbf{x}, \mathbf{y}) = \langle \phi(\mathbf{x}), \phi(\mathbf{y}) \rangle$$
.

▶ This Theorem implies that PDS kernels can be used to implicitly define a feature space.

 \triangleright For any kernel K, we can associate a normalized kernel K_n defined by

$$\mathcal{K}_{\textit{n}}(\mathbf{x},\mathbf{z}) = \left\{ \begin{array}{ll} 0 & \text{if } ((\mathcal{K}(\mathbf{x},\mathbf{x}) = 0) \lor (\mathcal{K}(\mathbf{z},\mathbf{z}) = 0)) \\ \\ \frac{\mathcal{K}(\mathbf{x},\mathbf{z})}{\sqrt{\mathcal{K}(\mathbf{x},\mathbf{x})\mathcal{K}(\mathbf{z},\mathbf{z})}} & \text{otherwise} \end{array} \right.$$

Lemma (Normalized PDS kernels)

Let K be a PDS kernel. Then, the normalized kernel K_n associated to K is PDS.

Proof.

- 1. Let $\{x_1, \ldots, x_m\} \subseteq \mathcal{X}$ and let **c** be an arbitrary vector in \mathbb{R}^n .
- 2. We will show that $\sum_{i,j=1}^{m} \mathbf{c}_i \mathbf{c}_j K_n(\mathbf{x}_i, \mathbf{x}_j) \geq 0$.
- 3. By Lemma Cauchy-Schwarz inequality for PDS kernels, if $K(\mathbf{x}_i, \mathbf{x}_i) = 0$, then $K(\mathbf{x}_i, \mathbf{x}_j) = 0$ and thus $K_n(\mathbf{x}_i, \mathbf{x}_i) = 0$ for all $j \in \{1, 2, \dots, m\}$.
- 4. We can assume that $K(\mathbf{x}_i, \mathbf{x}_i) > 0$ for all $i \in \{1, 2, ..., m\}$.
- 5. Then, the sum can be rewritten as follows:

$$\sum_{i,j=1}^{m} \mathbf{c}_{i} \mathbf{c}_{j} K_{n}(\mathbf{x}_{i}, \mathbf{x}_{j}) = \sum_{i,j=1}^{m} \frac{\mathbf{c}_{i} \mathbf{c}_{j} K(\mathbf{x}_{i}, \mathbf{x}_{j})}{\sqrt{K(\mathbf{x}_{i}, \mathbf{x}_{i})K(\mathbf{x}_{j}, \mathbf{x}_{j})}} = \sum_{i,j=1}^{m} \frac{\mathbf{c}_{i} \mathbf{c}_{j} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle}{\|\phi(\mathbf{x}_{i})\|_{\mathbb{H}} \cdot \|\phi(\mathbf{x}_{j})\|_{\mathbb{H}}} = \left\| \sum_{i=1}^{m} \frac{\mathbf{c}_{i} \phi(\mathbf{x}_{i})}{\|\phi(\mathbf{x}_{i})\|_{\mathbb{H}}} \right\|_{\mathbb{H}}^{2} \geq 0.$$

Ш

▶ The following theorem provides closure guarantees for all of these operations.

Theorem (Closure properties of PDS kernels)

PDS kernels are closed under

- 1. *sum*
- 2. product
- 3. tensor product
- 4. pointwise limit
- 5. composition with a power series $\sum_{k=1}^{\infty} a_k x^k$ with $a_k \geq 0$ for all $k \in \mathbb{N}$.

Proof.

We only proof the closeness under sum. Consider two valid kernel matrices K_1 and K_2 .

- 1. For any $\mathbf{c} \in \mathbb{R}^m$, we have $\mathbf{c}^T \mathbf{K}_1 \mathbf{c} \geq 0$ and $\mathbf{c}^T \mathbf{K}_2 \mathbf{c} \geq 0$.
- 2. This implies that $\mathbf{c}^T \mathbf{K}_1 \mathbf{c} + \mathbf{c}^T \mathbf{K}_2 \mathbf{c} \geq 0$.
- 3. Hence, we have $\mathbf{c}^{\mathsf{T}}(\mathbf{K}_1 + \mathbf{K}_2)\mathbf{c} \geq 0$.
- 4. Let $\mathbf{K} = \mathbf{K}_1 + \mathbf{K}_2$, which is a valid kernel.

▶ Homework: Please prove other closure properties of PDS kernels.

Basic kernel operations in feature space

Norm of a point: we can compute the norm of a point $\phi(x)$ in feature space as

$$\|\phi(\mathbf{x})\|^2 = \langle \phi(\mathbf{x}), \phi(\mathbf{x}) \rangle = K(\mathbf{x}, \mathbf{x}),$$

which implies that $\|\phi(\mathbf{x})\| = \sqrt{K(\mathbf{x}, \mathbf{x})}$.

Distance between Points: the distance between two points $\phi(\mathbf{x}_i)$ and $\phi(\mathbf{x}_j)$ can be computed as

$$\|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\|^2 = \|\phi(\mathbf{x}_i)\|^2 + \|\phi(\mathbf{x}_j)\|^2 - 2\langle\phi(\mathbf{x}_i),\phi(\mathbf{x}_j)\rangle$$

= $K(\mathbf{x}_i,\mathbf{x}_i) + K(\mathbf{x}_j,\mathbf{x}_j) - 2K(\mathbf{x}_i,\mathbf{x}_j),$

which implies that

$$\|\phi(\mathbf{x}_i) - \phi(\mathbf{x}_j)\| = \sqrt{K(\mathbf{x}_i, \mathbf{x}_i) + K(\mathbf{x}_j, \mathbf{x}_j) - 2K(\mathbf{x}_i, \mathbf{x}_j)}.$$

▶ Mean in feature space: the mean of the points in feature space is given as

$$\mu_{\phi} = \frac{1}{m} \sum_{i=1}^{m} \phi(\mathbf{x}_i).$$

Since we haven't access to $\phi(x)$, we cannot explicitly compute the mean point in feature space but we can compute the squared norm of the mean as follows.

$$\begin{split} \|\mu_{\phi}\|^2 &= \langle \mu_{\phi}, \mu_{\phi} \rangle \\ &= \left\langle \frac{1}{m} \sum_{i=1}^{m} \phi(\mathbf{x}_i), \frac{1}{m} \sum_{i=1}^{m} \phi(\mathbf{x}_i) \right\rangle \\ &= \frac{1}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} \langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle = \frac{1}{m^2} \sum_{i=1}^{m} \sum_{j=1}^{m} K(\mathbf{x}_i, \mathbf{x}_j). \end{split}$$

▶ Total variance in feature space: the squared distance of a point $\phi(x_i)$ to the mean μ_{ϕ} in feature space:

$$\|\phi(\mathbf{x}) - \mu_{\phi}\|^{2} = \|\phi(\mathbf{x}_{i})\|^{2} - 2\langle\phi(\mathbf{x}_{i}), \mu_{\phi}\rangle + \|\mu_{\phi}\|^{2}$$
$$= K(\mathbf{x}_{i}, \mathbf{x}_{i}) - \frac{2}{m} \sum_{j=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{m^{2}} \sum_{s=1}^{m} \sum_{b=1}^{m} K(\mathbf{x}_{s}, \mathbf{x}_{b}).$$

The total variance in feature space is obtained by taking the average squared deviation of points from the mean in feature space

$$\sigma_{\phi}^{2} = \frac{1}{m} \sum_{i=1}^{m} \|\phi(\mathbf{x}_{i}) - \mu_{\phi}\|^{2}$$

$$= \frac{1}{m} \sum_{i=1}^{m} \left(K(\mathbf{x}_{i}, \mathbf{x}_{i}) - \frac{2}{m} \sum_{j=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{m^{2}} \sum_{a=1}^{m} \sum_{b=1}^{m} K(\mathbf{x}_{a}, \mathbf{x}_{b}) \right)$$

$$= \frac{1}{m} \sum_{i=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{i}) - \frac{2}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{j}) + \frac{1}{m^{2}} \sum_{a=1}^{m} \sum_{b=1}^{m} K(\mathbf{x}_{a}, \mathbf{x}_{b})$$

$$= \frac{1}{m} \sum_{i=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{i}) - \frac{1}{m^{2}} \sum_{i=1}^{m} \sum_{j=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{j})$$

$$= \frac{1}{m} \operatorname{Tr} \left[\left[\left| \mathbf{K} \right| - \left\| \mu_{\phi} \right\|^{2} \right] \right].$$

► Centering in feature space:

▶ We can center each point in feature space by subtracting the mean from it

$$\hat{\phi}(\mathbf{x}_i) = \phi(\mathbf{x}_i) - \mu_{\phi}.$$

- We have not $\phi(\mathbf{x}_i)$ and μ_{ϕ} , hence, we cannot explicitly center the points.
- However, we can still compute the centered kernel matrix K, that is, the kernel matrix over centered points.

$$\begin{split} \hat{K}(\mathbf{x}_{i}, \mathbf{x}_{j}) &= \left\langle \hat{\phi}(\mathbf{x}_{i}), \hat{\phi}(\mathbf{x}_{j}) \right\rangle \\ &= \left\langle \phi(\mathbf{x}_{i}) - \mu_{\phi}, \phi(\mathbf{x}_{j}) - \mu_{\phi} \right\rangle \\ &= \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \right\rangle - \left\langle \phi(\mathbf{x}_{i}), \mu_{\phi} \right\rangle - \left\langle \phi(\mathbf{x}_{j}), \mu_{\phi} \right\rangle + \left\langle \mu_{\phi}, \mu_{\phi} \right\rangle \\ &= K(\mathbf{x}_{i}, \mathbf{x}_{j}) - \frac{1}{m} \sum_{k=1}^{m} \left\langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{k}) \right\rangle - \frac{1}{m} \sum_{k=1}^{m} \left\langle \phi(\mathbf{x}_{j}), \phi(\mathbf{x}_{k}) \right\rangle + \left\| \mu_{\phi} \right\|^{2} \\ &= K(\mathbf{x}_{i}, \mathbf{x}_{j}) - \frac{1}{m} \sum_{k=1}^{m} K(\mathbf{x}_{i}, \mathbf{x}_{k}) - \frac{1}{m} \sum_{k=1}^{m} K(\mathbf{x}_{j}, \mathbf{x}_{k}) + \left\| \mu_{\phi} \right\|^{2} \end{split}$$

▶ In other words, we can compute the centered kernel matrix using only the kernel function.

► Normalizing in feature space:

- A common form of normalization is to ensure that points in feature space have unit length by replacing $\phi(\mathbf{x})$ with the corresponding unit vector $\phi_n(\mathbf{x}) = \frac{\phi(\mathbf{x})}{\|\phi(\mathbf{x})\|}$.
- The dot product in feature space then corresponds to the cosine of the angle between the two mapped points, because

$$\langle \phi_n(\mathbf{x}_i), \phi_n(\mathbf{x}_j) \rangle = \frac{\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \rangle}{\|\phi(\mathbf{x}_i)\| \cdot \|\phi(\mathbf{x}_j)\|} = \cos \theta.$$

- If the mapped points are both centered and normalized, then a dot product corresponds to the correlation between the two points in feature space.
- ▶ The normalized kernel function, K_n , can be computed using only the kernel function K, as

$$K_n(\mathbf{x}_i, \mathbf{x}_j) = \frac{\left\langle \phi(\mathbf{x}_i), \phi(\mathbf{x}_j) \right\rangle}{\|\phi(\mathbf{x}_i)\| \cdot \|\phi(\mathbf{x}_j)\|} = \frac{K(\mathbf{x}_i, \mathbf{x}_j)}{\sqrt{K(\mathbf{x}_i, \mathbf{x}_i) \cdot K(\mathbf{x}_j, \mathbf{x}_j)}}$$

Kernel-based algorithms

▶ The optimization problem for SVM is defined as

$$extit{Minimize} rac{1}{2} \left\| \mathbf{w}
ight\|^2 \qquad \qquad ext{subject to } y_k \left(\left\langle \mathbf{w}, \mathbf{x}_k
ight
angle + b
ight) \geq 1 ext{ for all } k = 1, 2, \ldots, m$$

In order to solve this constrained optimization problem, we use the Lagrangian function

$$L(\mathbf{w}, b, \alpha) = \frac{1}{2} \|\mathbf{w}\|^2 - \sum_{k=1}^{m} \alpha_k \left[y_k \left(\langle \mathbf{w}, \mathbf{x}_k \rangle + b \right) - 1 \right]$$

where $\alpha = (\alpha_1, \alpha_2, \dots, \alpha_m)^T$.

▶ Eliminating **w** and *b* from $L(\mathbf{w}, b, a)$ using these conditions then gives the dual representation of the problem in which we maximize

$$\psi(\alpha) = \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_k \alpha_j y_k y_j \langle \mathbf{x}_k, \mathbf{x}_j \rangle$$

- ▶ We need to maximize $\psi(\alpha)$ subject to constraints $\sum_{k=1}^{m} \alpha_k y_k = 0$ and $\alpha_k \ge 0 \ \forall k$.
- ▶ For optimal α_k 's, we have $\alpha_k [1 y_k (\langle \mathbf{w}, \mathbf{x}_k \rangle + b)] = 0$.
- ▶ To classify a data **x** using the trained model, we evaluate the following function

$$h(\mathbf{x}) = \operatorname{sgn}\left(\sum_{k=1}^{m} \alpha_k y_k \left\langle \mathbf{x}_k, \mathbf{x} \right\rangle\right)$$

This solution depends on the dot-product between two pints \mathbf{x}_k and \mathbf{x} .

 \triangleright By using kernel K, the dual representation of the problem in which we maximize

$$\psi(\alpha) = \sum_{k=1}^{m} \alpha_k - \frac{1}{2} \sum_{k=1}^{m} \sum_{j=1}^{m} \alpha_k \alpha_j y_k y_j K(\mathbf{x}_i, \mathbf{x}_j)$$

▶ To classify a data x using the trained model, we evaluate the following function

$$h(\mathbf{x}) = \operatorname{sgn}\left(\sum_{k=1}^{m} \alpha_k y_k K(\mathbf{x}_k, \mathbf{x})\right)$$

▶ This solution depends on the dot-product between two pints \mathbf{x}_k and \mathbf{x} .

Theorem (Rademacher complexity of kernel-based hypotheses)

Let $K: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be a PDS kernel and let $\phi: \mathcal{X} \mapsto \mathbb{H}$ be a feature mapping associated to K. Let also $S \subseteq \left\{\mathbf{x} \mid \mathbf{K}(\mathbf{x}, \mathbf{x}) \leq r^2\right\}$ be a sample of size m and let $H = \left\{\mathbf{x} \mapsto \langle \mathbf{w}, \phi(\mathbf{x}) \rangle \mid \|\mathbf{x}\|_{\mathbb{H}} \leq \Lambda\right\}$ for some $\Lambda \geq 0$. Then

$$\hat{\mathcal{R}}_{\mathcal{S}}(H) \leq \frac{\Lambda\sqrt{\mathsf{Tr}\left[\left[\left]\mathsf{K}\right]}}{m} \leq \sqrt{\frac{r^2\Lambda^2}{m}}.$$

Proof.

$$\hat{\mathcal{R}}_{S}(H) = \frac{1}{m} \mathbb{E} \left[\sup_{\|\mathbf{w}\| \leq \Lambda} \sum_{i=1}^{m} \sigma_{i} \langle \mathbf{w}, \phi(\mathbf{x}_{i}) \rangle \right] = \frac{1}{m} \mathbb{E} \left[\sup_{\|\mathbf{w}\| \leq \Lambda} \left\langle \mathbf{w}, \sum_{i=1}^{m} \sigma_{i} \phi(\mathbf{x}_{i}) \right\rangle \right] \\
\leq \frac{\Lambda}{m} \mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} \phi(\mathbf{x}_{i}) \right\|_{\mathbb{H}} \right] \leq \frac{\Lambda}{m} \sqrt{\mathbb{E} \left[\left\| \sum_{i=1}^{m} \sigma_{i} \phi(\mathbf{x}_{i}) \right\|_{\mathbb{H}}^{2} \right]} = \frac{\Lambda}{m} \sqrt{\mathbb{E} \left[\sum_{i,j=1}^{m} \sigma_{i} \sigma_{j} \langle \phi(\mathbf{x}_{i}), \phi(\mathbf{x}_{j}) \rangle \right]} \\
\leq \frac{\Lambda}{m} \sqrt{\mathbb{E} \left[\sum_{i=1}^{m} \|\phi(\mathbf{x}_{i})\|^{2} \right]} = \frac{\Lambda}{m} \sqrt{\mathbb{E} \left[\sum_{i=1}^{m} \mathbf{K}(\mathbf{x}_{i}, \mathbf{x}_{i}) \right]} \\
\leq \frac{\Lambda \sqrt{\text{Tr} \left[\left[\left| \mathbf{K} \right| \right]}}{m} = \sqrt{\frac{r^{2} \Lambda^{2}}{m}}$$

Theorem (Margin bounds for kernel-based hypotheses)

Let $\mathbf{K}: \mathcal{X} \times \mathcal{X} \mapsto \mathbb{R}$ be a PDS kernel with $r^2 = \sup_{\mathbf{x} \in \mathcal{X}} \mathbf{K}(\mathbf{x}, \mathbf{x})$. Let $\phi: \mathcal{X} \mapsto \mathbb{H}$ be a feature mapping associated to \mathbf{K} and let $H = \left\{ x \mapsto \langle \mathbf{w}, \phi(\mathbf{x}) \rangle \;\middle|\; \|\mathbf{w}\|_{\mathbb{H}} \leq \Lambda \right\}$ for some $\Lambda \geq 0$. Fix $\rho > 0$. Then for any $\delta > 0$, each of the following statements holds with probability at least $(1 - \delta)$ for any $h \in H$:

$$\begin{aligned} &\mathsf{R}(h) \leq \hat{\mathsf{R}}_{\mathcal{S},\rho}(h) + 2\sqrt{\frac{r^2\Lambda^2/\rho^2}{m}} + \sqrt{\frac{\log(1/\delta)}{2m}} \\ &\mathsf{R}(h) \leq \hat{\mathsf{R}}_{\mathcal{S},\rho}(h) + 2\sqrt{\frac{\mathsf{Tr}\left[\left[\left]\mathsf{K}\right]\Lambda^2/\rho^2}{m}} + 3\sqrt{\frac{\log(2/\delta)}{2m}} \end{aligned}$$

Summary

Advantages

- The problem doesn't have local minima and we can found its optimal solution in polynomial time.
- ▶ The solution is stable, repeatable, and sparse (it only involves the support vectors).
- ▶ The user must select a few parameters such as the penalty term *C* and the kernel function and its parameters.
- ▶ The algorithm provides a method to control complexity independently of dimensionality.
- SVMs have been shown (theoretically and empirically) to have excellent generalization capabilities.

Disadvantages

- ▶ There is no method for choosing the kernel function and its parameters.
- ▶ It is not a straight forward method to extend SVM to multi-class classifiers.
- Predictions from a SVM are not probabilistic.
- ▶ It has high algorithmic complexity and needs extensive memory to be used in large-scale tasks.

- 1. Chapter 16 of Shai Shalev-Shwartz and Shai Ben-David Book¹
- 2. Chapter 5 of Mehryar Mohri and Afshin Rostamizadeh and Ameet Talwalkar Book².

¹Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms*. Cambridge University Press, 2014.

²Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*. Second Edition. MIT Press, 2018.

Mehryar Mohri, Afshin Rostamizadeh, and Ameet Talwalkar. *Foundations of Machine Learning*. Second Edition. MIT Press, 2018.

Shai Shalev-Shwartz and Shai Ben-David. *Understanding machine learning: From theory to algorithms.* Cambridge University Press, 2014.

Questions?