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a b s t r a c t

Speech Activity Detectors (SADs) are essential in the noisy environments to provide an acceptable perfor-
mance in the speech applications, such as speech recognition tasks. In this paper, a two-stage speech
activity detection system is presented which at first takes advantage of a voice activity detector to discard
pause segments out of the audio signals; this is done even in presence of stationary background noises. In
the second stage, the remained segments are classified into speech or non-speech. To find the best feature
set in speech/non-speech classification, a large set of robust features are introduced; the optimal subset
of these features are chosen by applying a Genetic Algorithm (GA) to the initial feature set. It has been
discovered that fractal dimensions of numeric series of prosodic features are the most speech/non-speech
differentiating features. Models of the system are trained over a Farsi database, FARSDAT, however, test
experiments on the TIMIT English database have been also conducted. Employing the SAD system in con-
junction with an ASR system, has been resulted in a relative Word Error Rate (WER) reduction of as high
as 28.3%.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

Automatic speech activity detection has many applications
especially in the noisy environments. For example in a speech rec-
ognition task, the efficiency in automatic detection of speech
boundaries considerably influences the accuracy of the recognition
engine. Even a minor improvement in speech boundary detection
improves the overall system performance in long run. The most
common methods for speech endpoint detection are based on
short-time spectral energy (Savoji, 1989; Mauuary, 1994; Martin
et al., 2000; Ramirez et al., 2005). In (Ramirez et al., 2004), the
information of long-term spectral energy in sub-bands is the main
idea of speech detection. These approaches work well over clean
signal, but the performance is not acceptable in presence of various
kinds of noise. Typically an adaptive threshold based on the fea-
tures of the energy profile is employed to differentiate speech seg-
ments from silence/background voices (Martin and Mauuary,
2006; Prasad et al., 2002). In (Martin and Mauuary, 2006), a dy-
namic approach is employed to detect speech and non-speech seg-
ments. A finite state machine (FSM) with five states decides
whether an input frame is speech or not, in a manner that the state
of a frame depends on the state of its previous frame. Energy and
some duration constraints are scrutinized in order to make deci-

sion for every input frame. In this approach, some non-speech
noises specified by high energy in a short duration can be rejected,
which is an advantage. Moreover, low length pauses between nat-
ural speech will not be classified as non-speech. In order to in-
crease the algorithm robustness in presence of slowly variable
background noise, in each step, the energy threshold is updated
based on the statistics of the last non-speech frames. Lack of com-
plex features differentiating speech from non-speech voice and
noise is the main drawback of the approach introduced in (Martin
and Mauuary, 2006). Using ‘‘Teager” energy is another useful tech-
nique in speech/non-speech separation. This operator, depends
both on the signal energy and the basic frequency of the signal
(Ying et al., 1993; Chen et al., 2005). Teager energy is robust in
noisy environments, however, the main drawback is its weakness
in dealing with signals mixed with certain types of non-speech
voices.

Entropy as a measure of order and similarity is used in many
SAD systems. This parameter that was firstly used by Shannon in
information technology shows the degree of organization or the
uncertainty level of the signal (Wu and Wang, 2005). Entropy
can be used in both time (Waheed et al., 2002) and frequency do-
main (called spectral entropy) (Shen et al., 1998; Basu, 2003). En-
tropy is a powerful feature in speech and noise discrimination;
however, the main drawback is the inability to discard certain
types of non-speech voices produced by speakers such as cough
and breath.

MFCCs (Mel Frequency Cepstral Coefficients) and their deriva-
tives are often used in speech processing applications. The main
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idea of calculating these coefficients comes from hearing mecha-
nism in human. In (Martin and Mauuary, 2006), after Linear Dis-
criminative Analysis (LDA) of MFCC parameters, they are used in
a FSM to determine weather a frame is speech or not. The problem
of using just MFCCs is that they are not completely capable to dif-
ferentiate between speech and non-speech signals generated by
speaker, such as cough and breath, as experiments in this paper
confirm. In (Padrell et al., 2005) MFCCs are used besides other fea-
tures like short-time energy, sub-band energy and zero crossing
rate (ZCR) as discriminative features and finally a Support Vector
Machine (SVM) is employed to classify speech and non-speech sig-
nals. Cepstral variability is another approach used in (Skorik and
Berthommier, 2000). These complementary features significantly
improve the classification task, as these kind of features have
important information on entropy and the order of signal.

The spectral distributions of speech and non-speech signals are
not alike; wavelet transform would be a suitable technique to
show the difference, i.e. the sub-band energies could be compared
in wavelet domain. This approach is mainly used in Voice Activity
Detection (VAD) applications (Shaojun et al., 2004; Chen et al.,
2005). Their efficiency in SAD systems is not comprehensively
studied.

Some researches have been employed different forms of gar-
bage models to detect and reject non-speech parts (Villarrubia
and Acero, 1993). In these approaches, to have good estimations
of parameters in non-speech models, a large amount of training
data is required.

In this work, we have considered features with high discrimina-
tion power and robustness against various background non-
speech/noise. Fractal dimension of short time prosodic features
have been proposed in this paper. Prosodic patterns differ exten-
sively in different languages; however, all languages, obey some
inherently fixed rules and specifications because of anatomical
similarities of vocal tracts of humans (Hori and Furui, 2003; Koum-
pis and Renals, 2001). Autocorrelation is a well-known technique
to compute the pitch frequency. Pitch frequency is mainly limited
in a special range and does not have abrupt changes along signal. In
(Tian et al., 2002), the smoothness of the variations of the autocor-
relation function is used as the main feature for speech/non-speech
discrimination. In this work, two criteria are used to estimate the
smoothness of the autocorrelation function, which are called Mean
Crossing Ratio and Energy Distribution Coefficient.

Different classifiers have been used to classify audio signals into
speech/non-speech. Neural networks as a supervised technique
have been widely used in classification problems. In (Hussain
et al., 2000) two kinds of neural networks have been used for this
purpose. An ADAptive LINEar network (ADALINE) with Widrow–
Hoff training rule and a two layer Perceptron network. The disad-
vantage for neural networks is costly training procedure. Cepstral
Linear Predictive Coding (LPC) is the main feature to train the neu-
ral networks. In (Beaufays et al., 2003), the features are extracted
from signal frames and used to train a three layer feed forward net-
work with 400 neurons in hidden layer to detect speech signals. To
evaluate this speech detector, a speech recognition system is used
with and without this stage and WER is calculated for each of the
conditions; by using the speech detector, error rate shows 12%
reduction.

Decision tree is another supervised classification technique
used in SAD systems. In (Padrell et al., 2005), a 31-dimensional fea-
ture vector is used as discriminative feature vector and a decision
tree is used as speech/non-speech classifier.

SVM is a powerful method in classifying an input space into two
classes and the convergence speed in the training phase is faster
than other classification techniques. However, in comparison with
neural networks, SVM is not efficient in multi-class classification
tasks. SVM has been extensively used in speech/non-speech classi-

fication problem (Abdulla et al., 2003; Enqing et al., 2002). In
(Xianbo and Guangshu, 2005), an adaptive SVM algorithm has been
used, in which, the support vectors of SVM are updated in each
step. The feature vector in this work consists of MFCCs, short-time
energy, sub-band energy and ZCR.

In this paper, which is an extension report of our previous work
presented in (Shafiee et al., 2008), a two-stage approach is pro-
posed for the SAD system. First, a segmentation block detects
high-energy segments in signal, which can potentially be speech.
These segments will be subject to further analysis in the following
speech/non-speech classifier. It should be clarified here that in
large part of the literature the term VAD is used in place of SAD;
however, in this paper SAD is supposed to mean speech detector
while VAD is simply a classification system to detect any sound,
including speech and non-speech segments as cough, laugh,
breath, etc. The conventional MFCC-based features are the main
features to segment auditory signals to speech/non-speech parts.
Moreover, prosodic features have been employed directly and indi-
rectly, as duration, energy and fractal calculation of the autocorre-
lation numeric series to increase the performance of the classifier.
Since, there may be a large amount of redundancy in some of these
features; GA is applied to find an optimal subset of the feature vec-
tor to be employed in the classification task. Finally, a SVM classi-
fier is exploited to discriminate speech from non-speech segments.

The remaining parts of the paper are organized as follows; Sec-
tion 2 describes the framework of the proposed system. In Section
3, databases and evaluation methods are introduced. Section 4 de-
tails the first stage of the system. In Section 5, features to be used in
speech/non-speech classification have been discussed. Feature
selection using GA is also presented in this section. In Section 6,
the SVM classifier will be discussed. Experimental results are pre-
sented in Section 7. Sections 8 and 9 are discussion and conclusion,
respectively.

2. The overall framework of the system

The proposed SAD system consists of two basic stages, as shown
in Fig. 1. The first stage is a ‘‘segmentation block” which keeps
potentially speech parts and rejects other parts which are certainly
non-speech, considering energy and duration aspects simulta-
neously. Segmentation block utilizes a FSM which will be ex-
plained in details later. The main idea of the FSM is from (Martin
and Mauuary, 2006), which relies on the fact that speech parts of
an audio signal exist among segments with certain energy and
duration. The second stage is a ‘‘speech/non-speech discriminator”
which tags the remaining segments into speech and non-speech.
For this purpose, a large set of features are computed, and finally,
a SVM classifier is used to decide whether the segment is speech
or not. The features are mainly divided into two main groups
which are MFCC based features and prosodic and autocorrela-
tion-based features. The features will be discussed in detail in Sec-
tion 5.

The two-stage SAD system has an excellent performance in the
presence of both stationary and non-stationary noises. In the first
stage, the segmentation block is applied to the audio signal and
consequently in the next stage, speech/non-speech classification
is made for each segment. In this manner, the system is able to re-
ject transient noise segments which comprise high level energies.

Fig. 1. The block diagram of the proposed SAD system.
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The SAD system is not assigned to eliminate background noises
overlapped with speech segments. In such a situation, the solution
is the application of a post-processing unit just after the SAD sys-
tem to enhance the input speech segments prior to applying to
an ASR engine.

To detail the approach, after introducing the databases in Sec-
tion 3, segmentation block and the second stage of the system will
be described in detail in Sections 4 and 5, respectively.

3. Materials and methods, corpus and empirical workbench

3.1. Speech databases

We have used different databases to train and test the proposed
SAD system. The first used speech database is FARSDAT (Bijankhan
and Sheikhzadegan, 1994). FARSDAT consists of 6000 sentences ut-
tered by 304 Farsi speakers. Each speaker has uttered 20 sentences in
the acoustic booth of the Linguistics Laboratory of the University of
Tehran. The utterances are recorded with a sampling rate of
22050 Hz and are phonetically transcribed. A SONY cardioids dy-
namic microphone with a frequency response within 80–16 kHz
range has been used. The distance between microphone and lip po-
sition of the speaker was about 12 cm. The speech was collected
using sound blaster hardware cards, installed in four 80,486 IBM
microcomputers and sampled at 22,050 Hz samples per second at
16 bit resolution. Signal to noise ratio of the FARSDAT is about 31 db.

In this work, these speech signals are fed into the segmentation
block, introduced in Section 4, and 8579 segments detected as
speech are collected. These speech segments are used to train
and evaluate different parts of the proposed SAD. to test the perfor-
mance of the system over a language other than Farsi, ‘‘TIMIT”
database, which is a well-known English speech corpus has been
used In order to evaluate the language independency of the pro-
posed system. Moreover, the performance of an ASR system has
been examined with and without using SAD system at the front-
end speech recognition task. The ASR system had been trained by
the train set of TIMIT and is evaluated by its test set from 24 speak-
ers distorted by non-speech segments manually added in the pause
intervals between speech segments.

3.2. Non-speech databases

FARSDAT does not contain sufficient non-speech segments.
Therefore, non-speech signals were collected or recorded in the fol-
lowing three ways. Totally, 10,892 non-speech segments have been
used in this study.

3.2.1. Non-speech parts of the T-FARSDAT database
T-FARSDAT is a Farsi corpus consisting of phonetically hand-la-

beled telephony conversations (Bijankhan et al., 2003). This data-
base consists of conversation files from 64 Farsi speakers
recorded in a sampling rate of 11,025 Hz. In this database, non-
speech parts of conversations, such as breath and laugh, are la-
beled. These parts have been used as a source for non-speech seg-
ment collection.

3.2.2. Non-speech signals from internet available sources
Some internet sources, such as FREESOUND, include non-speech

sounds recorded in different formats and sampling rates. Sampling
rate of all of these samples has been changed into 22,050 Hz to be
unified for this work.

3.2.3. Recorded non-speech signals
In order to increase the variety of non-speech samples, some

frequent non-speech samples have been recorded especially for

this work. These samples have been uttered by 10 speakers and in-
clude cough, laugh, sneeze, crying, hiccup, scream, breath, etc.

3.3. Noise database

In order to evaluate the overall system in the presence of back-
ground noises, four different additive background noises, including
white, pink, babble and factory from NOISEX-92 have been exam-
ined. The sampling frequency of these signals has been changed
from 19,980 Hz to 22,050 Hz in order to be consistent with the
other speech and non-speech samples.

3.4. Evaluation parameters

The proposed system, as shown in Fig. 1, consists of two main
stages. In this paper, these two stages have been evaluated sepa-
rately, and the overall performance is also evaluated by conducting
a speech recognition experiment with/without SAD system.

The first stage of the SAD is a segmentation block to detect
audio segments. This block of the system is evaluated using a sig-
nal consisting of 20 utterances. The audio segments have been
manually labeled. Two parameters, HR0 and HR1 have been used
to evaluate the segmentation block.

tHR0 ¼ ðThe total duration of correctly detected silenceÞ=
ðTotal duration of silence in the signalÞ ð1Þ

tHR1¼ðThe total duration of correctly detected audio segmentsÞ=
ðTotal duration of audio segments in the signalÞ ð2Þ

The second stage of the SAD system classifies audio segments
into speech and non-speech. In order to evaluate this stage, two
criteria have been proposed: ‘‘non-speech segment rejection ratio”
or ‘‘hit rate for non-speech” and ‘‘speech segment false rejection
ratio” or ‘‘hit rate for non-speech” (Górriz et al., 2005). These crite-
ria are called HR0 (Hit rate for non-speech) and HR1 (Hit rate for
speech), respectively. These parameters are defined as follows:

HR0 ¼ ðThe number of non-speech segments detected as
non-speech segmentsÞ=ðTotal number of non-speech
segmentsÞ ð3Þ

HR1 ¼ ðThe number of speech segments detected as speech
segmentsÞ=ðTotal number of speech segmentsÞ ð4Þ

In addition, to evaluate the ASR system performance with/with-
out the SAD system, Word Recognition Rate (WRR) has been mea-
sured for the ASR system.

WRR ¼ TW � SW � DW � IW
TW

ð5Þ

where TW is the total number of the words,SW sits for the number
of substituted words, DW is the number of deleted words and IW is
the number of false insertions.

4. Segmentation module, the first stage of the proposed SAD

The proposed SAD system, at the first stage, detects those parts
of the signal which are likely to be speech. These are often high-en-
ergy segments of the signal which have a reasonable duration to be
speech. Errors in this section may cause a false rejection of speech
segments. These errors degrade the overall performance of the SAD
system. FSM is a dynamic technique used to extract likely to be
speech segments from the input audio signal similar to the ap-
proach in (Martin and Mauuary, 2006). The FSM proposed in this
work, applies duration constraints besides energy constraints, to
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reject non-speech segments, especially those ones with high en-
ergy levels and small durations. The inputs of the FSM are frames
of the audio signal. Energy level across the signal is compared with
an adaptive threshold. The energy threshold is updated periodi-
cally based on the statistics driven from the last non-speech
frames. The adaptive threshold increases the robustness of the sys-
tem to semi-stationary background noises with variable ampli-
tude. Fig. 2 shows the proposed FSM.

The FSM shown in Fig. 2 has five states: (1) low-energy, (2)
high-energy presumption, (3) high-energy, (4) brief energy
increasing and (5) high-energy continuation. The transition regime
checks energy and duration conditions to determine the present
state. Constraints and actions are shown in Fig. 2 with letters C
and A, respectively. In each transition, some actions take place.
Constraints and actions are defined in Table 1.

The energy threshold update regime is based on the statistics of
the few last non-speech frames similar to (Prasad et al., 2002). For
every frame of the signal, the updated threshold value is calculated
by the following equation.

Tnew ¼ ð1� pÞTold þ pTsilence ð6Þ

where Told is the previous energy threshold, Tsilence is the mean en-
ergy of the last eight non-speech frames and 0 < p < 1 is determined
based on the variation rate of energy for non-speech frames. The
frames here contain 512 samples with a sampling frequency of
22,050 Hz. The energies of the last eight non-speech frames are al-
ways stored in Tsilence array. The variation rate of background noise
is calculated as dnew/dold ratio, where dnew and dold are noise energies
calculated from updated and previous energy arrays, respectively.
Table 2 shows the P value determination scheme.

In the proposed FSM, frame sequences with more than 70 ms
with certain energy level, are labeled as likely to be speech and
low energy segments with a duration of more than 116 ms will
be rejected. The algorithm checks the duration, when a low to high
energy transition is detected; in this case if the energy of the input
frames remains higher than the threshold, at least for 70 ms, it
would be labeled as a likely to be speech segment. In contrary,
when the energy level remains at least 116 ms below the thresh-
old, the frames will be rejected. The energy threshold is adaptively
updated in each step. In this scheme, a small duration high energy
noise or a brief silence in the middle of a speech segment would
not switch the state. There are five different states for the frames
of the input signal. The five states of FSM are then used to make
a final decision on whether the frame sequence is likely to be
speech or non-speech. The original five states and the final labels
FSM are shown in Fig. 3, for a sample audio signal. In this figure,
five states of the FSM, from 1 to 5, are shown on the vertical axis
with rational numbers 0.2, 0.4, 0.6, 0.8 and 1, respectively. The final

labels are shown with the dashed line with the higher level for
speech segments.

In the next stage, after applying FSM, the remaining segments
are subject to further processing. Sections 5 and 6 explain features
and the proposed SVM used for speech/non-speech classification
task in the next stage of SAD system.

5. Feature extraction and selection

As mentioned earlier, the second stage of the proposed system,
classifies the remaining segments, which are likely to be speech seg-
ments, into speech/non-speech. For this purpose, a segment is di-
vided into a number of overlapping frames with the same lengths.
Here, a frame length of 256 samples (for sampling frequency of
22,050 it leads to 11.6 ms frames), with overlap of 128 samples
(5.8 ms) between adjacent frames is considered. Next to the framing
process, a number of MFCC-based features are calculated distinc-
tively for each of the frames. The average value for features is calcu-
lated across frames to have an averaged unit MFCC-based feature
vector. Some extra features extracted from the same segment will
be added to the feature vector, and finally, a SVM binary classifier will
decide on whether or not the segment is speech. In the following sub-
sections, feature extraction and selection methods will be explained.

5.1. Features

One of the main goals of this work is to find the most discrim-
inating features for speech/non-speech classification of audio seg-Fig. 2. Schematic of the segmentation block.

Table 1
Actions and constraints in the state transition regime FSM.

Actions Constraints

A1: LD = LD + 1 C1: Frame Energy < Energy Threshold
A2: HD = 1
A3: LD = LD + HD C2: High Energy Duration (HD) > 70 ms
A4: HD = HD + 1
A5: LD = 1 C3: Low Energy Duration (LD) > 116 ms
A6: LD = HD = 0

Table 2
‘‘p” value determination, based on the dnew/dold ratio.

dnew/dold P value

dnew/dold P1.25 0.25
1.25 Pdnew/dold P1.1 0.2
1.1 Pdnew/dold P1 0.15
1 Pdnew/dold 0.10

Fig. 3. The original 5 states of the FSM (red solid line), and the corresponding final
labels (blue dashed line).
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ments. The most differentiating features out of a crude set of fea-
tures have been discovered using GA. The features investigated
here can be mainly divided into two groups: (1) MFCC-based fea-
tures and (2) prosodic features. In the following subsections, fea-
tures will be discussed in more detail.

5.1.1. MFCC-based features
Mel Frequency Cepstral Coefficients or MFCCs and their

derivatives are known to be the most common features in speech
processing applications (Padrell et al., 2005; Skorik, and Berthom-
mier, 2000). To compute these features from signal, a filter bank is
applied to the signal spectrum. The center frequencies of these fil-
ters are distributed in Mel scale. MFCCs are cosine transform of the
logarithm of filter banks’ outputs. In this work, the first 13 MFCCs
and their derivatives are exploited. As an audio segment consists of
a number of frames, the mean values of MFCCs can be calculated
over frames of a segment. As a result, a feature vector of 13 com-
ponents called mean-MFCC can be calculated. at the second step,
first derivatives of MFCCs, for the consecutive frames in a segment,
are calculated by the following equation.

DMFCCi½n� ¼ Ci½nþ 1� � Ci½n�; 1 6 n 6 N � 1; 1 6 i 6 13

ð7Þ

where Ci(n) is the ith MFCC from the nth frame in a segment, and N
is the total number of frames in a segment. Moreover, a new feature
vector consisting of maximum values of DMFCC[n] is obtained for a
segment as follows.

Di ¼max
n
ðDMFCCi½n�Þ;1 6 n 6 N � 1;1 6 i 6 13 ð8Þ

where Di is the maximum value of the ith component in DMFCC vec-
tor across the segment. This vector is called max-diff-MFCC. The
discrimination ability of various components of mean-MFCC vectors
is shown in Fig. 4, which shows the histograms over a large number
of segments.

As shown in Fig. 4, coefficients with indices 1, 3, 10 and 12 seem
to be better in discrimination speech and non-speech. Fig. 5 shows
the histograms of max-diff-MFCC coefficients over speech/non-

speech segments, distinctively. The coefficients with indices 1, 2,
12 and 13 seem to have the maximum discriminative power.

5.1.2. Autocorrelation-based features
Autocorrelation function has a tight relation to the pitch trajec-

tory in speech signals, and one of the most well-known techniques
in pitch frequency calculation of speech signals. The pitch fre-
quency of a speech signal could vary in a limited range. Autocorre-
lation function can be used to extract features which are useful in
speech/non-speech discrimination. Autocorrelation function for
the frame l, with N samples of sequence s, is given by the following
equation.

UlðmÞ ¼
XN�m

n¼1

slðnÞslðnþmÞ ð9Þ

The maximum output of the equation always occurs at m = 0. Ul

can be normalized by dividing Ul(m) by Ul(0). This value is called
‘‘Normalized AutoCorrelation Function” (NACF) similar to (Tian
et al., 2002). NACFs are calculated for all of the frames taken from
the segment. Index and magnitude of the first peak of NACF func-
tion (the peak at m = 0 is ignored) are called PI and PM, respec-
tively. The frames of a segment have a series of PI and PM values
called PIS and PMS, respectively. The length of these series depends
on the length of a segment, or the number of frames in the seg-
ment. An example of PIS and PMS extracted from a speech and a
non-speech segment is shown in Fig. 6.

As shown in Fig. 6, PIS and PMS of a speech segment have less
variation than a non-speech one. So, smoothness of PIS and PMS
sequences extracted from audio segments is an important measure
to distinguish between speech and non-speech segments. Here,
three criteria are introduced to measure the smoothness of PIS
and PMS, as brought in the following subsections.

5.1.2.1. Mean crossing ratio of PIS and PMS. Mean Crossing Ratio
(MCR) of PIS and PMS sequences are employed to discriminate
speech/non-speech segments. These features are defined as the
number of times that PIS and PMS series cross their mean values.
This can be formalized as follows, in which x(l) is PIS or PMS.

Fig. 4. Distributions of various components of mean-MFCC vector for speech and non-speech segments.

940 S. Shafiee et al. / Pattern Recognition Letters 31 (2010) 936–948



Author's personal copy

MCR ¼ 1
L

XL

l¼2

fjsgn½xðlÞ �M� � sgn½xðl� 1Þ �M�jg ð10Þ

where x is PIS or PMS, l is the index component in x, M ¼ 1
L

� �PL
l¼1xðlÞ

and L is the length of PIS or PMS (i.e. the total number of frames in
the audio segment). These features are called PIS–MCR and PMS–
MCR.

Histograms of these two features are shown in Fig. 7(a) and (b).
It could be seen in figures that they are just able to partially sepa-
rate speech and non-speech segments and some more robust fea-
tures are then needed. Although the MCR distribution for speech

and non-speech are almost similar in Fig. 7, some kinds of non-
speech, like breath, have a very high MCR which can make them
distinguishable from speech. Fig. 6 shows such a case for a typical
breath and a speech signal.

5.1.2.2. Energy distribution of PIS and PMS. Energy Distribution Coef-
ficient (EDC) of PIS and PMS sequences are two other features ap-
plied in this work. EDC is originally inspired from the idea that
non-smooth signals have greater frequency components than
smooth ones. This means that for non-smooth signals, the fre-
quency components distribution is mainly located in higher fre-

Fig. 5. Distributions of ‘‘max-diff-MFCC” coefficients for speech and non-speech segments.

Fig. 6. (a) An audio signal, (b) Extracted PIS and (c) Extracted PMS

S. Shafiee et al. / Pattern Recognition Letters 31 (2010) 936–948 941
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quencies. Correspondingly, the energy distributions of PIS and PMS
extracted from speech segments are mostly expected to be located
in lower frequencies, and vice versa for non-speech segments. EDC
parameter for an audio segment is calculated as follows.

EDC ¼

PL
l¼1

lxl

� �

L
PL
l¼1

xl

� � ð11Þ

where xl is the spectral amplitude of the lth sample of the DFT of
PIS or PMS sequences with L samples. By applying Eq. (11) to PIS
and PMS sequences, two parameters called PIS–EDC and PMS–EDC
would be obtained, which are used as two other features in this
work. These two features have been calculated for the speech/
non-speech segments. The histograms are shown in Fig. 8(a) and
(b).

5.1.2.3. Fractal dimension of PIS and PMS. Recently, many research-
ers have treated speech as a chaotic, complex and unpredictable
phenomenon, and many nonlinear processes have been success-
fully exploited in speech processing (Kokkinos and Maragos,
2005; Banbrook and McLaughlin, 1994). Fractal dimension is one
of the conventional methods used to describe the geometry and
dimension of state space attractors of chaotic phenomena. Of
course, in this paper, we have no intention to discuss chaotic nat-
ure of speech, but it is just intended to use fractal dimension of
prosodic numeric series as a measure of irregularity. It is believed
that irregular signals have greater fractal dimension than the reg-
ular ones. As mentioned previously, PIS and PMS extracted from
non-speech segments are usually more irregular than the ones ex-
tracted from speech segments. Petrosian which is a well-known

method to calculate fractal dimension is used in this work (Esteller
et al., 2001; Hilborn, 2001). In this method, fractal dimension is cal-
culated as follows.

D ¼ log10N

log10N þ log10
N

Nþ0:4ND

� � ð12Þ

where N is the length of the sequence and ND is the number of times
that the direction of variations between consecutive samples has
been changed in the sequence. The method for calculation of ND

constructs a binary sequence by subtracting consecutive samples.
From the sequence of subtractions, a binary sequence of + 1 and
�1 is created by assigning on whether the result of the subtraction
is positive or negative, respectively. Sequence, here, can be PIS or
PMS described previously in Section 5.1.2. Applying this function
to PIS and PMS, two features can be extracted for audio segments.
We have computed these two features for speech/non-speech seg-
ments. The histograms are shown in Fig. 9(a) and (b). From the fig-
ure, the proposed features seem to be powerful features for
separating speech from non-speech.

Fractal features are basically defined on the self-similarity spec-
ification of a signal. For a speech segment, especially for a vowel,
this self-similarity must be more realized than for a non-speech
one. The low-level overlapping histograms in Fig. 9 and the feature
selection study discussed in Section 5.2, verify the high capability
of these two new introduced features in discriminating speech
from non-speech.

5.1.3. Duration
Duration of a segment is another feature discussed in this work.

Some non-speech events such as breath, cough, sneeze, etc. gener-

Fig. 7. (a) PIS-MCR distributions and (b) PMS-MCR distributions.

Fig. 8. (a) PIS-EDC distributions and (b) PMS-EDC distributions.
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ally have short durations. For such non-speech segments, duration
is a constructive feature within the set of features for discrimina-
tion. Histograms of this feature for speech and non-speech seg-
ments could be compared in Fig. 10. There is a considerable
overlap between these two distributions which shows the limita-
tion of this feature in speech-non-speech classification.

5.1.4. Energy gradient
Energy variation in a segment is another prosodic feature which

has been used in this study. To calculate this feature, next to break-
ing the audio segment to sub-frames, frames energy is calculated
distinctively and energy gradient is given by

DE½n� ¼ absðE½nþ 1� � E½n�Þ;1 6 n 6 N � 1 ð13Þ

where N is the total number of frames in the segment. Mean of
DE[n] is computed to have a unique value of this parameter for
an audio segment. Normalized histograms of this feature for speech
and non-speech segments, as shown in Fig. 11, have a wide-spread
overlap region.

5.2. Feature selection

There are 34 features introduced in Section 5.1, which are consid-
ered to be fed to a classifier to classify audio segments. Many fea-
tures may contain overlapped information and could be pruned
with a minimal loss of information. It must be notified that the most
common classifiers are mostly suffering from different limitations.
An increase in the feature vector dimension, generally not only in-
creases the complexity of the classification process, but also may
sometimes decrease the performance of the classification task. To
overcome this problem, a reduced version of the original feature

set, can be used. For instance, in the speech/non-speech classifica-
tion of audio segments, PIS-Petrosian and PMS-Petrosian are the
best discriminators (as will be discussed in Section 5.2.1), but they
have considerable repeated information; so, it is sensible to employ
only one of them in the classification process.

To follow this approach, we applied F-Ratio value (Cohen,
1986). By running GA, which uses F-Ratio as its fitness function,
we get forward to find an optimally pruned version of the original
crude feature set.

5.2.1. F-Ratio
Fisher discriminator analysis for a two-class problem, leads us

to the Eq. (14) as the Fisher’s measure or F-Ratio (Cohen, 1986):

F ¼ B
W

ð14Þ

where B matrix, the ‘‘between class scatter matrix”, is given by

B ¼ ðl̂1 � l̂2Þðl̂1 � l̂2ÞT ð15Þ

where l̂i is the mean of the Ni samples of class wi in the n dimen-
sional space. The W matrix is the sum of scatter matrices for two
classes and is given by

W ¼W1 þW2 ð16Þ

Wi ¼
X
b2wi

ðb� l̂iÞðb� l̂iÞT ; i ¼ 1;2 ð17Þ

It is expected that a feature vector with a higher F-Ratio has
more discrimination power, and is a good measure to compare ex-
tracted features in the involved task.Fig. 10. Distribution of duration over the speech and non-speech segments.

Fig. 11. Distribution of energy gradient over the speech and non-speech segments.

Fig. 9. (a) PIS-Petrosian distributions and (b) PMS-Petrosian distributions.
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To have some experiments in this field, first, F-Ratio has been
individually computed the introduced features over the two class
dataset consisting of the speech/non-speech segments. Fig. 12
shows the F-Ratio values calculated for each of the 34 features in
a left to right descending order.

These values are brought in Table 3, in a different manner.
As can be seen in the table, fractal dimension-based features

have the highest F-Ratio value. By considering F-Ratio criterion,
the best discriminator feature is known to be PMS-Petrosian.

5.2.2. Feature selection using GA
In the previous section, 34 distinct features, extracted from

audio segments, were compared to each other using the F-Ratio
factor. Employing all of these features in the classification process
will not necessarily lead to the best results. On the other hand,
some features with high F-Ratio values have repeated information
and are redundant. For example, from Table 3 and Fig. 12, the best
discriminator features are two fractal features, PMS-Petrosian and
PIS-Petrosian. But, these features have almost similar information.
This kind of problems can significantly reduce the performance of
most classifiers. To avoid these problems, GA, which is an adaptive
feature selection procedure, can be employed in order to choose
the best feature set. There is not a problem with the high complex-
ity and low speed of the GA, since, the feature selection procedure
needs to be done only one time, and the found optimum feature set
will remain fixed to be employed in classification process
afterwards.

It has been shown that, the GA is an efficient approach for large
scale optimal subset selection problems (Xu and Chan, 2002;
Selouani and O’Shaughnessy, 2004). The search algorithm in GA
does not follow the steepest path of the error gradient, to find
the minimum value for the error function; in contrary it examines
various points in the search space based on a random approach
which considers the laws of evolution, to minimize the error func-
tion. Therefore, it is particularly appealing when such information
is unavailable or costly to obtain. GA, unlike the gradient-based
training algorithms, can handle the global search problem better
in a vast, complex, multi-modal and non-differentiable surface.
Moreover, GA is generally much less sensitive to initial conditions
of the training data. GA always globally searches for an optimal
solution, while a gradient descent algorithm can only look for a lo-
cal optimum in a neighborhood of the initial condition.

GA is basically inspired by the laws of natural evolution and
genetics. Its principal idea is to search for the optimal solution in
a large population. It usually uses a fixed length continuous or dis-
crete string, called chromosome, to represent a possible solution.
Usually, a simple GA consists of three main operations called par-

ent selection, crossover and mutation. The population comprises a
group of chromosomes from which the candidates can be selected,
as the possible solutions of a given problem. The initial population
often consists of a group of individuals whose chromosomes are
randomly selected. During the optimization task, the appropriate-
ness of the individuals, in the current generation, is evaluated
using a user-defined fitness function.

In this work, each individual’s chromosome is made of a binary
string which represents a set of active or inactive genes. Active
genes’ indexes represent those components in the feature vector
which participate in the classification task.

To optimize the speech/non-speech classification task, the opti-
mum number of features to be used as well as their combination
should be determined. In this work, parent selection in GA works
based on a stochastic uniform selection algorithm. The cross over
function employs a so-called scattered function to generate chil-
dren. This function creates a random binary vector and selects
the genes where the vector is a 1 from the first parent, and the
genes where the vector is a 0 from the second parent, and com-
bines the genes to form the child. The mutation function, adds a
random number taken from a Gaussian distribution with mean 0
to each entry of the parent vector. In generation replacement, 2
individuals are guaranteed to be survived in the next generation.
The fitness function used in GA was F-Ratio discussed in Section
5.2.1. GA searches for the feature vector which represents the high-
est F-Ratio. To find the best feature vector, GA searches for the best
1, 2, 3, . . ., 34-dimentional feature sets, distinctively. This is done
by running GA for 34 times, each run is for a certain size of the fea-
ture set. As an example, for a known feature vector size, e.g. 15, GA
has been applied and it resulted in a vector with 15 features which
represented the highest F-Ratio value among other selections of 15
dimensional vectors. This procedure has been applied for other
vector sizes and finally, the F-Ratio values of the optimum feature
vectors were compared. These values are shown in Fig. 13.

Fig. 12. F-Ratio values calculated individually for the 34 features extracted from the
two-class audio segments.

Table 3
The exact F-Ratio values calculated individually for the 34 features extracted from the
two-class audio segments.

Feature F-Ratio

PMS-Petrosian 12.78
PIS-Petrosian 6.27
Mean-MFCC 1 6.16
Mean-MFCC 3 5.83
PMS-MCR 5.51
Diff-MFCC 2 4.67
Diff-MFCC 1 4.18
PMS-EDC 2.94
Diff-MFCC 3 2.68
Mean-MFCC 12 2.54
Diff-MFCC 4 2.39
Mean-MFCC 10 2.02
Diff-MFCC 5 1.77
PIS-MCR 1.35
Diff-MFCC 6 1.32
Diff-MFCC 7 0.99
Mean-MFCC 4 0.8
PIS-EDC 0.73
Mean-MFCC 6 0.71
Mean-MFCC 5 0.71
Diff-MFCC 8 0.65
Mean-MFCC 8 0.58
Diff-MFCC 9 0.45
Diff-MFCC 10 0.43
Mean-MFCC 13 0.33
Mean-MFCC 2 0.28
Diff-MFCC 11 0.28
Mean-MFCC 7 0.28
Diff-MFCC 12 0.27
Diff-MFCC 13 0.18
Mean-MFCC 9 0.14
Mean-MFCC 11 0.08
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It can be seen that F-Ratio value has a considerable growth rate
along the feature sizes of 1–15, and after that, its growth decreases
significantly. As, it is needed to keep the feature vector size small
as possible, this point has been chosen as the optimum point for
the mentioned problem. Using 15 features (instead of 34) in the
classification task reduces the computational complexity of the
whole SAD system significantly and makes it faster and more time
efficient. The best 15-dimensional feature set selected by GA con-
tains PMS-Petrosian, PMS-MCR, PMS-EDC, PIS-EDC, indices 2–5 of
max-diff-MFCC and indices 1, 2, 3, 5, 7, 8 and 9 of Mean-MFCC.
These features have been extracted from audio segments and used
as inputs for the speech/non-speech classifier introduced in the
next section.

6. SVM, the speech/non-speech classifier

In order to discriminate speech segments from non-speech
ones, SVM is employed which is known as a useful technique in
the field of statistical learning theory (Burges, 1998; Vapinik,
1998). This technique has been widely used in different signal pro-
cessing, pattern recognition and classification applications (Justino
et al., 2005; Pal and Mather, 2004). Because of its good perfor-
mance, especially in the case of two-class discrimination problems,
this technique has been selected as the classification method in
this work. Here is a brief description of the algorithm; assume that
the training data with k number of samples is represented by {xi,
yi}, i= 1, . . ., k, where x 2 Rn is an n dimensional vector and
y 2 {�1, + 1} is the class label as shown in Fig. 14. The aim is to find
a hyper-plane that separates the data with the minimum error.
This depends on finding w and b such that

yiðw � xi þ bÞ þ ni P 1 ð18Þ

where ni is the error value for ith sample of the training dataset.
The optimal separating hyper-plane is achieved by minimiza-

tion of the following criterion.

min
w;b;ni

1
2
kwk2 þ C

Xn

i¼1

ni

" #
ð19Þ

The first term in this criterion is used to set the learning capac-
ity, and the second term controls the number of misclassified
points. The regularization constant (C > 0) also determines the
trade-off between the empirical error and the complexity term.
The parameter C is chosen intuitively by the user. A large value
for C means a higher penalty of errors.

When it is not possible to have a linear hyper-plane, which sep-
arates the training data, the technique can be extended to nonlin-
ear decision surfaces. Such a procedure can be considered as the
mapping of input data to a higher-dimensional feature space, using
some non-linear functions. The transformation into a higher-
dimensional space can be achieved by a kernel and makes outlier
data points to be classified linearly. There are several kernel func-
tions introduced in the literature such as polynomial, Radial Basis
Function (RBF), Multi-layer Perceptron (MLP), spline and Fourier
series. In this work, two kinds of kernels i.e. linear and polynomial
are used in order to classify the speech and non-speech segments.
Polynomial kernel of SVM is defined as follows.

Kðx; x0Þ ¼ ðGammahx; x0i þ Coeff Þd ð20Þ

where ‘‘Gamma” and ‘‘Coeff” are two constant values and d is the
polynomial degree. In this equation, the two dimensional input vec-
tor (x,x0) is mapped into a higher dimensional feature space, where
two classes can be separated linearly.

7. Experimental results

7.1. Experiments on the segmentation block stage

Experiments have been conducted on the Farsi and English
speech signals separately. Farsi test set consists of about 30% of
FARSDAT speech corpus described in Section 3.1. Two criteria,
tHR0 and tHR1 (described in Section 3.4), are exploited to evaluate
the performance of the segmentation block. These values for the
clean test data are calculated 96.64% and 93.11%, respectively. This
test is repeated for the test signals with additive white noise in dif-
ferent levels of SNR. The results are brought in Table 4.

Similar experiments, using the system trained only over Farsi
database, are conducted on the English utterances. The specifica-
tion of the English test set was described in Section 3.1. Here, the
core test of 24 speakers of TIMIT database in the clean and noisy
conditions has been used. The results are brought in Table 5.

7.2. Experiments on the speech/non-speech classifier stage

When an audio signal is fed into the first-stage (segmentation
block) of the SAD system, the output will be a number of audio seg-
ments which must be then classified into speech/non-speech seg-
ments. To implement the training process, 1325 speech segments
extracted from FARSDAT database, besides 667 non-speech seg-
ments of different kinds described in Section 3.2 have been used.
The test set consists of 537 speech and 282 non-speech segments
(without any overlap with the train set). The 15-dimensional fea-

Fig. 13. The best F-Ratio values obtained by GA for different numbers of feature set
dimensions.

Fig. 14. SVM aim is to find a hyper-plane that separates the data classes with the
minimum error.
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ture vectors, based on the optimized feature set discussed in Sec-
tion 5.2.2, are extracted for the segments.

For the linear SVM, constant C is selected experimentally equal
to 50. To find a proper value for this constant, we examined HR0
and HR1 values over different values of C. By changing C from 1
to 50, HR0 and HR1 values increased, but they decreased for C val-
ues more than 50 (this may be due to over fitting).

First, SVM classifier has been trained by feature vectors ex-
tracted from the clean segments. Due to applying this classifier
to the clean test set, HR0 and HR1 values are obtained 100% and
99.92%, respectively. This performance is degraded by adding back-
ground noise to the test set. For additive white noise with SNR val-
ues of 10, 5 and 0 dB, HR1 reduces to 66%, 55% and 47%,
respectively. In these conditions, no considerable change in HR0
value is seen.

In order to increase the efficiency of the classifier in presence of
background noise, linear SVM is trained with a noisy train set. For
this purpose, different noise types including white, pink, babble
and factory are added to the training dataset, with different SNR
values of 10, 5 and 0 dB. This noisy database is then added to the
clean train dataset. In this manner, a new mixed train set is pre-
pared. By renewing the train phase of the SVM classifier, new test
results obtained for HR0 and HR1, which are brought in Table 6.

To examine a more complex SVM over our favorite task, a SVM
with polynomial kernel is trained by the mixed noisy train set. The
polynomial parameters of d, Gamma and Coeff values (in Eq. (20))
are experimentally selected 4, 2 and 25, respectively. The test re-
sults are brought in Table 7.

To show the language independency of the approach, SVM clas-
sifier (trained only by Farsi train set) is examined over an English
database consisting of 2541 speech segments from TIMIT database
(taken from the 24 speaker test core discussed in Section 3.1), plus
950 non-speech segments (from those introduced in Section 3.2).
The obtained results are brought in Table 8.

7.3. Speech recognition experiments

To evaluate the performance of the proposed SAD in a speech
recognition task, we have measured the WRR in an ASR system
with and without using the proposed SAD. For this purpose, HTK
toolbox is employed; which could be configured as a HMM based
ASR system. The baseline system doesn’t have any word language
model. The feature set used in the ASR system consists of 39 MFCC-
based parameters (MFCCs plus their delta and delta-delta coeffi-
cients). 6-state, 16-mixture left-to-right diagonal covariance
HMMs have been employed to model traditional phonemes, plus
a 3-state silence model and a single-state short pause model. The
frame rate is 10 ms, with a frame length of about 23 ms. The test
set is the 24 speaker core test of TIMIT which 950 non-speech seg-
ments are added inside the silences intervals. Of course, different
stationary noises could be added to this mixed signal, to have more
general distorted conditions for the test set. Table 9 presents the
WRR values obtained by applying the clean and some noisy ver-
sions of the test set to the ASR system.

As shown in Table 9, in all cases, there is about 5–9% improve-
ment in speech recognition accuracy. For clean test set, WER has
been decreased from 32% to 22.8% which shows a relative WER
reduction improvement of as high as 28%.

Table 4
tHR0 and tHR1 calculated for the segmentation block of the SAD system, applied to
the Farsi test signal, for different levels of additive noise.

Noise type SNR (dB) tHR0 (%) tHRI (%)

Clean signal – 96.64 93.11
White 10 91.32 94.67

5 85.20 93.89
0 76.47 90.54

Pink 10 87.20 93.60
5 81.37 91.52
0 73.99 88.31

Babble 10 84.03 93.83
5 77.81 79.79
0 74.28 68.20

Factory 10 87.80 94.14
5 78.75 93.22
0 74.45 83.86

Table 5
tHR0 and tHR1 calculated for the segmentation block of the SAD system, applied to
English utterances, for different levels of additive noise.

Noise type SNR (dB) tHR0 (%) tHRI (%)

Clean signal – 94 96
White 10 91 93.2

5 89.2 88.3
0 81.4 83

Pink 10 92 93.4
5 88.2 83
0 82.4 79.8

Babble 10 91 92.4
5 86.1 86.3
0 77.3 80.4

Factory 10 90 92
5 84 84.1
0 73.4 77.3

Table 6
HR0 and HR1 for the linear SVM classifier (train and test on Farsi).

Noise type SNR (dB) tHR0 (%) tHRI (%)

Clean signal – 99.47 95.39

White 10 95 86
5 94 83
0 91 83

Pink 10 96 84
5 96 77
0 96 71

Babble 10 98 76
5 97 70
0 97 62

Factory 10 97 90
5 97 83
0 97 83

Table 7
HR0 and HR1 for the SVM classifier with polynomial kernel (train and test on Farsi).

Noise type SNR (dB) tHR0 (%) tHRI (%)

Clean signal – 99.47 95.39
White 10 95 87

5 94 86
0 92 83

Pink 10 96 87
5 95 84
0 93 79

Babble 10 95 79
5 96 77
0 95 74

Factory 10 96 91
5 97 90
0 97 90
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8. Discussions

In this paper, a two-stage SAD is introduced. It is shown that
this approach can be considered as a language independent tech-
nique. As mentioned in the previous sections, A Farsi speech data-
base is used to extract speech segments for determining the
system parameters and training of the classifiers. The first-stage
of the system is a segmentation block that rejects those parts of
signal which can easily be indentified as non-speech, based on en-
ergy and duration of the audio segments. Experiments conducted
on English speech signal, Table 5, have shown the language inde-
pendency of the system. The first row of Table 5 shows the seg-
mentation results which are almost identical to the first row of
Table 4 for Farsi. This is also true for the noisy conditions as well.
Outputs of the segmentation block are audio segments which must
be classified as speech or non-speech. The final classification pro-
cess is done by a SVM classifier, fed by an optimal subset of feature
vectors. A SVM classifier has been trained over features extracted
from Farsi speech and some non-speech segments of various kinds.
The optimal reduced feature set consists of features, such as PMS-
Petrosian, and some MFCC-based features. Of course, there are
many common phones and sub-phones in Farsi and English and
these languages are not inherently different in a sense of phonol-
ogy. The comparison of the results shown in Tables 7 (for Farsi)
and 8 (for English) show the efficiency of the system for both lan-
guages. So, we can proclaim that the overall developed system is
language independent to some extent and could be used for other
languages as well. The final test in Section 7.3 conducted on Eng-
lish utterances, shows excellent results and can boost up the per-
formance of the ASR system.

In SAD systems, performance degradation in presence of back-
ground noise is an unresolved problem. To make the proposed
SAD system robust against background noise, an adaptive energy
threshold is employed in the first stage of the system Tables 4
and 5 show acceptable performance of the segmentation block,
in presence of background noises. In the second stage (speech/
non-speech classifier), some noisy speech segments have been

added to the original train set, to make the classifier more robust
against noisy signal. Tables 6–8 show the corresponding results
of the noisy speech/non-speech segments classification, over Farsi.
It is shown that in high energy background noise, the SVM classi-
fier with a complicated kernel like ‘‘polynomial kernel” is more ro-
bust to background noise than the linear SVM. But, in high SNRs,
linear SVM, with a lower complexity, could have an acceptable
performance.

9. Conclusions

In this research, a two-stage speech activity detector is pro-
posed consisting of two distinct cascaded systems. First, a segmen-
tation block based on a FSM machine, which operates on the
energy and duration of the audio segments, rejects pauses of the
input signal and passes speech and non-speech audio segments
to the next stage. This preprocessing unit benefits from an adaptive
energy threshold to overcome background noises which vary
slowly in time. The second stage of the system is consisted of a
SVM classifier which considers a feature vector for every segment
to identify whether or not the segment is speech. An extensive
investigation had been conducted on two new fractal features
which are shown to be excellent discriminators for speech/non-
speech classification. A GA is employed to reduce the feature set
from 34 to 15 in order to reduce complexity and redundancy. Final-
ly, conducting different experiments on Farsi and English test sets,
it has been shown that our approach is to some extent language
independent. The robustness of the system against background
noises was shown to be acceptable. The proposed SAD was em-
ployed in conjunction with an English HMM-based ASR system,
which resulted in an improvement of 28% in relative WER
reduction.
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Table 8
HR0 and HR1 results for the SVM classifier with polynomial kernel (train by Farsi and
test with English).

Noise type SNR (dB) tHR0 (%) tHRI (%)

Clean signal – 99.6 95.3
White 10 96.8 88.2

5 93.6 85.3
0 92.4 84.5

Pink 10 95.7 86
5 93.6 85.9
0 94 81.3

Babble 10 92.2 78.2
5 93 75.7
0 91.7 75

Factory 10 98.2 92
5 96 89.1
0 93.5 86.9

Table 9
WRR values using SAD at the input of the ASR system.

Signal WRR with SAD WRR without

Clean 77.2 68
White-10 dB 71.4 63.2
Pink-10 dB 66.8 60.4
Babble-10 dB 65.6 58.7
Factory-10 dB 64.3 59.5
Volvo-10 dB 66.3 58.9
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