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Abstract:    Speaker variability is an important source of speech variations which makes continuous speech recognition a difficult 
task. Adapting automatic speech recognition (ASR) models to the speaker variations is a well-known strategy to cope with the 
challenge. Almost all such techniques focus on developing adaptation solutions within the acoustic models of the ASR systems. 
Although variations of the acoustic features constitute an important portion of the inter-speaker variations, they do not cover 
variations at the phonetic level. Phonetic variations are known to form an important part of variations which are influenced by both 
micro-segmental and suprasegmental factors. Inter-speaker phonetic variations are influenced by the structure and anatomy of a 
speaker’s articulatory system and also his/her speaking style which is driven by many speaker background characteristics such as 
accent, gender, age, socioeconomic and educational class. The effect of inter-speaker variations in the feature space may cause 
explicit phone recognition errors. These errors can be compensated later by having appropriate pronunciation variants for the 
lexicon entries which consider likely phone misclassifications besides pronunciation. In this paper, we introduce speaker adaptive 
dynamic pronunciation models, which generate different lexicons for various speaker clusters and different ranges of speech rate. 
The models are hybrids of speaker adapted contextual rules and dynamic generalized decision trees, which take into account word 
phonological structures, rate of speech, unigram probabilities and stress to generate pronunciation variants of words. Employing 
the set of speaker adapted dynamic lexicons in a Farsi (Persian) continuous speech recognition task results in word error rate 
reductions of as much as 10.1% in a speaker-dependent scenario and 7.4% in a speaker-independent scenario. 
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INTRODUCTION 
 

The speech signal is highly variable. Some of 
these variations are speaker-dependent and others are 
not. Generally, any kind of variation decreases the 
performance of an automatic speech recognition 
(ASR) system, if not treated carefully. In this paper, 
we will introduce a way for compensating for some of 
these variations through creating pronunciation 
variants of the words involved in an ASR lexicon. 
This is done by employing a hybrid word pronuncia-
tion variation generator scheme which considers 
some of the phonetic deviations that occur because of 
intra-speaker variations. This phenomenon is a result 

of differences between speakers in respect to their 
voice quality, speaking style, dialect, etc. These fac-
tors cause partial deviations of acoustic features. 
These partial deviations cause systematic errors in the 
phone recognizer module and as a consequence, 
phonetic deviations occur in the recognized strings of 
phones. To the extent that the source of variability is 
systematic, this phenomenon can be described and 
modeled, which should lead to ways to handle it suc-
cessfully. 

Phonetic variations occurring because of speaker 
varieties are a well known phenomenon arising be-
cause of different mental and physical specifications 
of the speakers that affect their speech generation. 
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The degree to which this phenomenon occurs will 
vary depending on various factors including speaker 
specifications, speaking styles, and rate of speech 
(ROS) (Strik and Cucchiarini, 1999). Moreover, 
words are strung together in continuous speech and 
many sorts of interactions may take place between 
words, resulting in various phonological processes. 
This causes partial alteration in the pronunciations of 
words from their isolated form. 

In ASR systems, one way to overcome this 
problem is to develop a lexicon containing the most 
likely phonetic realizations of words to describe how 
the entries can be recognized. In the literature, this 
method is referred to as explicit phonetic variation 
modeling. A distinction should be made between 
techniques that model pronunciation, in the sense that 
words may be pronounced with various allowed 
phonetic forms, and those that model phone recog-
nizer errors resulting from partial pronunciation 
variation in acoustic features. Fig.1 shows the two 
mechanisms which cause phonetic deviations arising 
from speaker pronunciation. 

In this paper, the introduced method has the ca-
pability to model both these mechanisms of phonetic 
deviations at the level of words. This may be consid-
ered in the development of lexicons used in ASR 
systems. Our previous work (Vazirnezhad et al., 2009) 
focused on modeling the first deviation mechanism 
(Fig.1). However, in this paper, we are going to in-
troduce pronunciation models which consider both 
deviation mechanisms, simultaneously. The devel-
oped models use acoustic features of the speakers to 
predict phonetic deviations of the recognized phone 
strings, while still using the factors shown previously 
to influence pronunciation. 

Recently, researchers have developed techniques 
to automatically generate phonetic realizations of 
words corresponding to the first mechanism (Fig.1). 
Experiments have shown that using a lexicon which 
contains appropriate pronunciation variants of lexical  
 

 
 
 
 
 
 
 

entries improves the performance of ASR systems 
(Cremelie and Martens, 1999; Fosler-Lussier, 1999; 
Fukada et al., 1999). In data-driven methods, the 
hand-labeled phonetic transcriptions of the utterances 
are aligned with their corresponding phonemic tran-
scriptions obtained by concatenating the transcrip-
tions of individual words. Alignment is achieved by 
means of a dynamic programming (DP) algorithm. 
The resulting DP alignments can then be used to train 
statistical models, including decision trees, artificial 
neural networks, etc., to predict the phonetic pronun-
ciations of words. 

In the early 1990s, some medium-size databases 
(e.g., TIMIT and Resource Management) were tran-
scribed phonetically, which motivated several re-
searchers to study phonetic pronunciation variation 
(Randolph, 1990; Riley, 1991; Wooters and Stolcke, 
1994). Although these approaches were developed to 
automatically capture pronunciation rules, manual 
transcription was still required. Researchers later 
solved this problem by employing phone recognizers 
which enable one to transcribe a large corpus (Schmid 
et al., 1993; Imai et al., 1995; Sloboda, 1995; 
Humphries, 1997). Recently, large vocabulary con-
tinuous speech recognition (LVCSR) systems have 
the ability to recognize spontaneous and conversa-
tional speech, such as the Switchboard corpus. Word 
pronunciation variations occur more frequently in 
conversational speech than in read speech, as a result 
pronunciation modeling has become more important 
(Fosler-Lussier and Morgan, 1999; Saraclar and 
Khudanpur, 2004). 

Some researchers extracted contextual rules to 
model word-level phone variations using data-driven 
approaches, to generate pronunciation variants of the 
words from their phonemic transcriptions (Cremelie 
and Martens, 1999; Vazirnezhad et al., 2005a). Dif-
ferent types of features, including phoneme context, 
speaking rate, speaker specifications, etc., have been 
used to train the decision trees (Fosler-Lussier, 1999;  
 

 
 
 
 
 
 
 

Fig.1  Two mechanisms involved in phonetic deviation of the recognized phone strings arising from speaker pronunciation
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Vazirnezhad et al., 2005b; Jande, 2008). It has been 
shown that the mapping of canonical phones to sur-
face phones has a dynamic nature. Dynamic pronun-
ciation models based on decision trees have also been 
designed (Fosler-Lussier, 1999). These models use 
speaking rate and n-gram information to generate 
pronunciation variants in a dynamic framework. It has 
been shown that auxiliary factors of words such as 
stress, syllabification, syntactic role, and prosody 
parameters may affect pronunciation variants. Artifi-
cial neural networks have also been used to model 
pronunciation variation. Here, the phoneme context is 
used to predict pronunciation variants of word seg-
ments (Fukada et al., 1999). Moreover, it has been 
shown that the pitch accent can improve the predic-
tion of pronunciation variation (Chen and Hasegawa- 
Johnson, 2004). Other approaches have also been 
proposed. For example, Hazen et al.(2005) used a 
finite-state transducer to represent pronunciation 
variation. It is important to note that the majority of 
these works have focused on finding phonetic devia-
tions of the phonemic segments of the words as the 
main approach to finding the word variants. 

In this paper, the hybrid statistical structure for 
automatic generation of pronunciation variants of 
words introduced by Vazirnezhad et al.(2009) is 
modified to be able to generate lexicons adapted to 
specific clusters of speakers. In other words, we in-
volve acoustic features of each of the specific speaker 
clusters in the process of predicting phonetic devia-
tions of words. The newly configured hybrid models 
are composed of decision trees and adapted contex-
tual rules. The term ‘adapted contextual rules’ refers 
to the fact that a distinct set of contextual rules is 
extracted for each of the speaker clusters. Decision 
trees predict regions in words that are susceptible to 
phonetic change, and appropriate speaker adapted 
contextual rules are applied to the permissible regions 
to generate the pronunciation variants of words. Hy-
brid models take into account the syllabic structure of 
the word and ask questions about phone identities, 
rate of speech, unigram statistics, and the position of 
the stressed syllable, simultaneously. In the final step, 
phonemic context information is considered by con-
textual rules. It should be emphasized that in our 
proposed method, each decision tree is not assigned to 
only one word, as in Fosler-Lussier (1999), but to a 
group of words with similar phonological structures. 

Hence, to describe them better, they are called ‘gen-
eralized decision trees’. However, while describing 
our approach, we occasionally use the short term 
‘decision tree’ or ‘tree’ instead of ‘generalized deci-
sion tree’, for the sake of simplicity. By using such 
generalized decision trees, we do not need speech 
data prepared distinctively for each of the investi-
gated words to train its pronunciation model. 

The remainder of this paper is organized as fol-
lows. An overview of the hybrid models is provided 
in the next section. The speech corpus ‘Large- 
FARSDAT’, which is used in training and experi-
ments, and the ‘SHENAVA’ Farsi ASR system, which 
is used as our experimental workbench, are then in-
troduced. Consequently the speaker clustering pro-
cedure is discussed. The influence of the number of 
clusters on the intra-cluster phonetic variations and 
the tradeoff problem on this issue are then addressed. 
Speaker adapted contextual rules and approaches in 
learning them are presented in the following section. 
The next section discusses how the set of adapted 
dynamic lexicons can be used in a speech recognition 
task. Experiments, discussion and conclusions are 
considered in the last three sections. 
 
 
OVERVIEW OF THE HYBRID MODEL  
 

The proposed pronunciation models are hybrids 
of generalized decision trees and sets of speaker 
adapted contextual rules. Models use the phonologi-
cal structure of words, rate of speech, word unigram 
statistics and the location of the stressed syllable in 
lexical entries in addition to phonemic context in-
formation, to generate phonetic deviations. The 
adapted contextual rules are the sets of phonological 
rewrite rules which are extracted for each category of 
speakers separately, and which contain information 
on the speaking style of the speaker category at the 
phonetic level. 

Each generalized decision tree is designed for all 
words with the same phonological structure as de-
scribed by Vazirnezhad et al.(2009). For example, the 
pronunciation variants of all lexical entries which 
have the same arrangement of consonants (repre-
sented by C) and vowels (represented by V), like the 
string of ‘CVCVC’, are used to train the same deci-
sion tree. This approach is taken to solve the problem 
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of sparse training data, as the training database does 
not need to contain all words supposed to be in the 
lexicon. Also, no new extra corpus is needed for new 
words. In fact, by sharing information of pronuncia-
tion variation in structurally similar words, the 
amount of necessary training data is decreased and the 
problem of introducing new words is solved. We 
chose the name of ‘generalized decision tree’ instead 
of ‘decision tree’, to emphasize that in our approach 
each tree is trained for a group of words with similar 
phonological structure, and to highlight the major 
differences between our approach and those of pre-
vious studies. Comprehensive details of generalized 
decision trees and training algorithms are provided in 
Vazirnezhad et al.(2009). 

Hybrid statistical models generate phonetic de-
viations of words in two main steps (Fig.2). In the 
first step, the decision tree, corresponding to the syl-
labic structure of the input word, identifies the pho-
nemes in the word which are likely to be substituted 
or deleted, and the locations where an insertion can 
take place. Phonological structure and arrangements 
of the consonants and vowels of the input word are 
considered to choose the corresponding tree. For 
instance, the word ‘ ’, which has the phonemic 
transcription of /ket b/, meaning ‘book’ in Farsi, is a 
word with two syllables with a ‘CVCVC’ phonemic 
pattern. Hence, the corresponding generalized deci-
sion tree would be the ‘CVCVC’ tree, which is trained 
to predict pronunciation variation of the words with 
the same syllabic structure. To predict the pronuncia-
tion patterns, the generalized decision tree asks for the  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

identity of consonants and vowels defined by their 
membership to different phonetic categories, the 
speaking rate, the logarithm of unigram probability of 
the word and the location of the stressed syllable. 
Pronunciation pattern defines which phonemes are 
likely to be substituted or deleted and also determines 
where an insertion can take place. Each of the pre-
dicted pronunciation patterns is accompanied with a 
likelihood determined by the tree. We have set a 
cut-off threshold of probability to limit the number of 
accepted variation patterns. 

In the second step, the set of adapted contextual 
rules, corresponding to a speaker cluster, is applied to 
the phonemes that are candidates to be altered, to 
generate the adapted lexicons. There are two types of 
contextual rules: substitution rules and insertion rules. 
Substitution rules can be represented as LFR→LOR, 
where phonemic string F can be recognized as string 
O because of explicit pronunciation or phone recog-
nizer errors, when it is surrounded by a left context, L, 
and a right context, R. Insertion rules are formalized 
as LR→LOR, where string F is empty and string O 
can be inserted in an LR context. The substitution 
rules will be applied to the regions that are chosen by 
the tree for substitution, and the insertion rules can be 
applied to the regions in which insertion is predicted. 
Finally, the probabilities of the created variants of a 
word are normalized to have a summation equal to 
unity. Applying various sets of adapted contextual 
rules results in a number of adapted lexicons for 
various speaker clusters. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.2  Block diagram of the hybrid structure used to generate phonetic deviations of lexical entries 
There are a number of adapted contextual rules, equivalent to the number of speaker clusters, whose application will 
result in a number of adapted lexicons 
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We have clustered speakers in the training dataset 
by considering their acoustic features. When a new 
speaker begins to utter words, a fast algorithm ex-
tracts the acoustic vector and identifies the speaker 
cluster to which the new speaker is most closely 
matched. The adapted lexicon, in which the adapted 
set of contextual rules related to this cluster was used 
in generating lexical entries, will then be used to de-
code utterances of the current speaker. 
 
 
LARGE-FARSDAT—FARSI SPEECH CORPUS 
 

The corpus used in this research is Large- 
FARSDAT. This is a Farsi speech database (Bijank-
han and Sheikhzadegan, 1994; Bijankhan et al., 2003). 
In this research, only half of the Large-FARSDAT 
data was used for training pronunciation models. This 
portion of Large-FARSDAT includes 50 speakers 
with a total of 25 h of speech. Large-FARSDAT 
contains only phonemic transcriptions, and is not 
phonetically labeled. To have access to the recognized 
phone strings of utterances, we applied speech utter-
ances to the phone recognizer of the SHENAVA-2 
ASR system. The procedure was explained in detail in 
Vazirnezhad et al.(2009). Comparison of aligned 
pairs of phonemic and recognized transcriptions of 
speech utterances shows that the training algorithm 
can capture phonetic deviations arising from both 
speakers’ pronunciations and errors of the 
SHENAVA-2 phone recognizer simultaneously. 

 
 

SHENAVA-2—EXPERIMENTAL WORKBENCH 
 

SHENAVA-2 is a Farsi ASR system with a vo-
cabulary containing 1200 words. The front-end sec-
tion in this system consists of a hybrid of two multi- 
layer perceptron (MLP) neural networks and a rule- 
based engine. SHENAVA-2 has a lexicon search 
based on a semi-viterbi algorithm to find the best 100 
recognized phrases. Finally, an N-best rescoring block, 
which uses hidden markov models (HMMs) of Farsi 
phones, finds the best output phrase. SHENAVA-2 is 
completely introduced in Almasganj et al.(2001). We 
use a version of the SHENAVA-2 ASR system as our 
experimental workbench in this paper, which does not 
consider any language model. 

SPEAKER CLUSTERING 
 
Mel frequency cepstral coefficients (MFCCs) 

and its derivatives are commonly used features in 
speech recognition tasks and many other speech 
processing applications (Davis and Mermelstein, 
1980; Skorik and Berthommier, 2000; Padrell et al., 
2005). A filter bank is applied to the spectrum of each 
speech frame to extract these coefficients. The center 
frequencies of the filters are linearly distributed on the 
‘Mel’ scale. The coefficients are the discrete cosine 
transform coefficients of the logarithm of the filters’ 
output energies. In this study, we have used 13 
MFCCs. The length and overlap of frames are 256 
and 128 samples, respectively (11.6 ms and 5.8 ms 
with a sampling rate of 22 050 Hz). The first deriva-
tives of MFCCs for consecutive frames in a segment 
are given by 

 
[ ] [ 1] [ ],

1 1,  1 13,
i i iMFCC n C n C n

n N i
Δ = + −

≤ ≤ − ≤ ≤
           (1) 

 
where Ci(n) is the ith coefficient of the nth frame in an 
utterance and N is the total number of frames. Con-
sequently, MFCCs and their first derivatives are av-
eraged over utterances corresponding to each speaker 
to give 26 MFCC-based components. The mean val-
ues for logarithm of energy and its derivative are the 
final components appending to produce a 28-  
dimensional feature vector for each speaker. These 
feature vectors are the basis for speaker clustering. A 
simple K-means algorithm is then used to cluster 50 
speakers in the training corpus. 
 
 
INTRA-CLUSTER PHONETIC VARIATION 
CRITERION 
 

The intra-cluster phonetic variation criterion is 
defined to measure the average level of diversity 
among speakers within clusters in terms of phonetic 
pronunciation habits. This criterion is variable owing 
to variation in the number of clusters. Where there are 
fewer clusters, there will be more diversity among 
speakers within clusters and therefore the intra-cluster 
variation criterion will be higher. The approach in this 
paper is to build adapted lexicons, specified to certain 
clusters of speakers, to represent phonetic  
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pronunciation habits for speakers belonging to each 
of the clusters. Therefore, to train distinctive adapted 
lexicons, it is desirable to have the least possible 
variation within a cluster, or the highest similarity 
among speakers in the cluster. 

In theory, training a lexicon for every single 
speaker would be an ideal approach but it is hardly 
practical as it is inefficient to provide sufficient 
training data for each of the speakers, and moreover 
this approach may work only for speaker-dependent 
systems. The alternative idea examined in this paper 
is to build lexicons over clusters of speakers rather 
than for each individual speaker. In this approach, 
finding the optimum number of clusters is an impor-
tant issue; the optimum number of clusters should 
result in an acceptably low intra-cluster variation 
criterion and should also allow sufficient training 
material for each cluster. Thus, finding a reasonable 
number of clusters is a trade-off problem between the 
requirements of low intra-cluster variation and suffi-
cient training data. Determining a reasonable number 
of clusters and training adapted lexicons over result-
ing clusters lead to a lower word error rate (WER) as 
shown by experiments. In the following subsections, 
the intra-cluster variation criterion is first defined; 
next, the evolution of this parameter against the 
number of clusters is studied; finally, the trade-off 
problem, which plays the main role in determining a 
reasonable number of clusters, is discussed. 

 
Algorithm for computation of the intra-cluster 
phonetic variation criterion 

In this subsection, the intra-cluster phonetic 
variation criterion is defined. This criterion is a 
measure of the average speakers’ diversity within 
clusters in the sense of phonetic deviations. The cri-
terion is defined based on phone confusion matrices 
of speakers, and measures the diversity of speakers by 
quantifying patterns of phonetic deviations from 
standard pronunciation. 

For each of the speakers in the training corpus, a 
confusion matrix is calculated by comparing the 
aligned standard phones and recognized phones cor-
responding to the utterances for the speaker. There are 
29 phonemes in Farsi; considering deletion and in-
sertion, the phone confusion matrix will be 30×30 in 
size. Therefore, the phone confusion matrix for every 
 

speaker consists of probabilities of pronouncing 
phonemes in standard pronunciations as alternative 
phones. These matrices are transformed to 900- 
component vectors by concatenating the rows of the 
confusion matrix. We call this vector the ‘confusion 
vector’. The intra-cluster variation criterion can be 
calculated after clustering speakers by the given 
number of clusters. Four steps in the computation of 
the intra-cluster variation criterion are mentioned 
here. 

In the first two steps, the components in the 
confusion vectors that have a significant amount of 
speaker-dependent variability are identified to be 
used in the computations. Components with low 
variance across speakers are not believed to be 
speaker-dependent, and are not involved in the algo-
rithm. Discarded components include those cells 
which correspond to rare substitutions, for example, 
the component corresponding to the substitution of /a/ 
to /s/. The probability values for these components 
are almost always close to zero and hence their vari-
ances will be also zero. The first two steps are as 
follows: 

1. 900 variances are calculated corresponding to 
each of the 900 components in the speakers’ confu-
sion vectors, over all of the speakers in the whole 
training dataset. 

2. Variances are compared against a certain 
threshold, Tvar. Only the components with variances 
above Tvar are used in the remaining computations. 

In Step 3, the average value for variances within 
clusters is calculated for the given clusters. In Step 4, 
this value is normalized to the value of the same pa-
rameter when the number of clusters is 1; this is ac-
tually equivalent to not clustering. 

3. The sum of variances of the surviving com-
ponents of the confusion vectors is calculated in each 
cluster and these sums are then averaged over selected 
components and over clusters. This is shown in Eq.(2), 
where the average value for variances for a given 
number of clusters, K, and a given number of selected 
components, N, is called APPD(K), in which APPD 
stands for ‘average phonetic pronunciation diversity’. 

 

( )
{ }

{ } { }
1 1 1 { }

1 1( ) [ ] .
kMK N

kn kn
k n m k

APPD K x m
K N M
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= −
× ∑∑∑  

(2) 
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In Eq.(2), k is the index for the cluster, K is the 
number of clusters, n is the index for component in 
the confusion vectors, N is the number of selected 
components, m is the speaker index within a certain 
cluster, and M{k} is the number of speakers within a 
certain cluster that is dependent on the chosen cluster, 
k. x{kn}[m] is the value of the nth component in the 
confusion vector for a certain speaker within cluster k 
for the mth speaker or confusion vector. μ{kn} is the 
average value of the nth component of the confusion 
vector over speakers in cluster k.  

4. Finally, the intra-cluster variation criterion is 
normalized by dividing APPD(K) by the distortion 
ceiling, APPD(1), which is the intra-cluster distortion 
obtained if all speakers are in the same cluster, as 
shown in Eq.(3): 

 
( ) .
(1)

APPD KCriterion
APPD

=                     (3) 

 
Based on Eq.(3), the intra-cluster variation cri-

terion is dependent on the number of clusters, K. 
APPD(1) is the average phonetic pronunciation di-
versity when K=1. The intra-cluster variation crite-
rion should be low to support the training of cluster- 
specific lexicons. 

 
Influence of the number of clusters on the intra- 
cluster variation criterion 

To investigate the influence of the number of 
speaker clusters on the intra-cluster phonetic variation 
criterion, 50 speakers in the training data were clus-
tered using their acoustic feature vectors. The clus-
tering was done using the conventional K-means 
algorithm. The number of clusters was varied from 50 
to 1, i.e., from one cluster per speaker to no clustering. 
Fig.3 shows how the proposed intra-cluster variation 
criterion evolves as the number of clusters is changed. 

The threshold Tvar used in this experiment was 
set to be 0.0001. Tvar is chosen experimentally to 
capture components from the confusion vectors 
which are believed to be speaker-dependent. These 
components have high variance across speakers. Most 
of the components which correspond to phone sub-
stitutions independent of speaker variability are dis-
carded and are not included in computations. Dis-
carded components include mostly those elements 
which correspond to rare phone substitutions with 

very low probability values (almost 0) in confusion 
matrices. Using this threshold, about 200 components 
from the confusion vectors are chosen to be used in 
the computation of the intra-cluster phonetic variation  
criterion. 

 
 
 
 
 
 
 
 
 
 
 

 
 

These observations can be used in assessing the 
usability of various numbers of clusters, K. Increasing 
the number of clusters has the positive effect of de-
creasing the intra-cluster phonetic variation. However, 
having more clusters is not necessarily a good choice, 
because it means that the training data will be divided 
among more clusters. Sometimes, this leads to insuf-
ficient data for some clusters, which may result in an 
improperly trained lexicon for those clusters. More-
over, having more clusters means more lexicons, 
which is computationally costly. In addition to these 
two main disadvantages, having a high number of 
speaker clusters during a real-time speech recognition 
task creates difficulties in finding the nearest cluster 
for the speaker and in using the most appropriate 
lexicon in recognition.  

 
Number of clusters and the trade-off between 
intra-cluster phonetic variations and training data 
requirements 

The approach introduced in this paper is to train 
distinctive lexicons specified to certain clusters of 
speakers. Training a distinctive lexicon for a cluster is 
based only on the portion of training data from 
speakers belonging to that cluster. To have lexicons 
representing specific groups of speakers, low intra- 
cluster variation is required, so that lexicons may be 
trained more specifically. Thus, the number of clus-
ters should not be too low, because in this case diverse 
speakers will be put in the same cluster and this would 
significantly increase the intra-cluster variation. 

Fig.3  Evolution of the intra-cluster variation criterion vs 
the number of speaker clusters 
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Training a separate lexicon for each of the 
speakers may be better in terms of specificity, but 
having insufficient training data for every single 
speaker makes this approach impractical. Moreover, 
this method works only for speaker-dependent sys-
tems with a closed set of speakers. Therefore, the 
number of clusters should also not be very high be-
cause it would require the training data to be divided 
into a large number of clusters. Hence the portion of 
the training data for each cluster would be smaller and 
insufficient to train a proper lexicon.  

Therefore, there is a trade-off problem in 
choosing a reasonable number of clusters. The trade- 
off is between specificity of lexicons and sufficiency 
of the portion of training data assigned to every 
cluster. Specificity of lexicons can be obtained by 
having lower intra-cluster variation which is achiev-
able having more clusters, but sufficient training data 
can be obtained more easily with fewer clusters. 

Fig.3 depicts how intra-cluster phonetic varia-
tion evolves as a function of the number of clusters. 
Decreasing numbers of clusters increase the intra- 
cluster variation criterion. However, the rate of in-
crease for the criterion is lower when clusters de-
crease from 50 towards 10 than when clusters de-
crease from 10 to 1. Thus, decreasing the number of 
clusters from 50 to 10 increases the criterion to only 
less than one-third of its highest value, while de-
creasing clusters to lower than 10 considerably in-
creases the intra-cluster variation criterion. It is rea-
sonable to conclude that with fewer than 10 clusters, 
diverse speakers will be put into the same clusters, 
which is a drawback in terms of specificity in training 
lexicons. It appears that 10 clusters would be a good 
compromise in the trade-off between intra-cluster 
phonetic variation and sufficiency of training data for 
each cluster. In the EXPERIMENTAL EVALUA-
TION section, a set of ASR experiments is conducted 
to examine the influence of the number of clusters 
over the whole process of training adapted lexicons 
and using them in a complete speech recognition task. 
The experiments validate the prediction of 10 clusters 
as a suitable number of clusters. Of course, this 
number applies to the present situation in which there 
are 50 speakers in the database. In a different situation, 
i.e., another speech database with a different number 
of speakers, another number of clusters may be found 
to be a better choice. 

APPROACHES TO LEARNING SPEAKER 
ADAPTED CONTEXTUAL RULES 

 
Speaker adapted contextual rules are the second 

module of the hybrid architecture introduced in this 
paper and are used to produce a phonetic realization 
of words. Our approach is to use rules which best 
describe the most frequent pronunciation mechanisms 
in sets of speakers with similar confusion vectors. For 
each speaker cluster, a separate set of adapted con-
textual rules is derived considering the portion of 
training data which is uttered by the speakers be-
longing to that cluster. Two approaches are designed 
to find sets of adapted contextual rules. In the first 
approach, contextual rules for a cluster are obtained 
by modifying the contextual rules derived from the 
whole corpus, in a manner to conform to the specifi-
cations of the speakers of that cluster. This is done by 
considering the phone confusion matrix of the cluster. 
In the second approach, for each speaker cluster, 
contextual rules have been extracted independently 
from the data corresponding to the training material 
from speakers in that cluster and not from the whole 
corpus. Before describing the approaches employed 
in adapting rules to clusters, we will explain in the 
following subsection the more general algorithm used 
to extract contextual rules, how these contextual rules 
are formed, the motivation for their use and how 
many of these rules are available. 

 
Contextual rules 

Contextual rules are a set of context-dependent 
rewrite rules which are defined in the form of LFR→ 
LOR, in which L and R represent left and right single 
phone contexts of the focus string F, respectively. F 
represents the phonemic string and can be recognized 
as O owing to pronunciation or the phone recognizer 
error. F and O can be more than a single phone, and F 
can also be an empty string, in which case the rule 
becomes an insertion rule in the form of LR→LOR. 
The combination of LFR is called the condition of the 
rule because it involves the contextual condition of 
applying the rule, i.e., the existence of the string LFR 
in the phonemic transcription of the word.  

The main idea of learning the rules and applying 
them to dictated regions (marked by generalized de-
cision trees) is the same as the method described by 
Cremelie and Martens (1999). Contextual rules 
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represent the important context-sensitive pronuncia-
tion mechanisms which are variable between various 
groups of speakers. The learning algorithm compares 
the aligned phonemic string and the recognized string 
of phones. When a difference between aligned phone 
strings is detected, a rule will be derived; i.e., the 
context and focus F will be extracted from phonemic 
transcription and the output O from the recognized 
string. The overall number of times that the condition 
of a specific rule has occurred in the phonemic tran-
scriptions of the training database is counted. This 
number is called the coverage of the rule and repre-
sents how many times a specific rule could occur in 
the whole database, regardless of whether or not it has 
happened. We can then calculate the application like-
lihood of each rule pAL which is used in pruning sta-
tistically unimportant rules. The application likeli-
hood of a rule is the probability of occurrence of the 
pronunciation event that the rule is describing, when 
the conditions of the application are met. Pronuncia-
tion rules with low application likelihood are not 
statistically significant and such rules are better to be 
pruned and not to be used in generating pronunciation 
variants (Vazirnezhad et al., 2009). The following 
equation defines the application likelihood for the ith 
rule ri in which count2(ri) is the number of times the 
rule has occurred and count1(ri) is the coverage of ri: 
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The rule LFR→LOR with application likelihood 

of pAL means that in the context of L and R the phone 
string F can be recognized as O with a probability of 
pAL. Thus, it is better that the lexicon takes account of 
such a deviation to achieve a better match with the 
recognized phone string.  

The algorithm for learning contextual rules re-
sulted to 9325 statistically meaningful rules from the 
whole corpus. The procedure is the same as in our 
previous works and has been described in more detail 
in Vazirnezhad et al.(2005b). So far, we have derived 
contextual rules which are not yet adapted to the 
speakers’ clusters. The main purpose of this research 
is to build lexicons which represent speakers’ pro-
nunciation habits. Contextual rules form an important 
block of the hybrid pronunciation model in which the 
adaptation takes place. In the following two subsec-

tions, we will explain two approaches employed for 
adapting contextual rules to the specifications of 
speakers’ clusters. The adapted set of rules can be 
used as the second module of the hybrid model after 
adaptation. In a different approach, cluster-specific 
rules can be learned separately, for use in hybrid 
models. 

 
First approach—adaptation of contextual rules 
from the whole training data 

After clustering speakers according to their 
confusion vectors, a confusion matrix can be calcu-
lated and assigned to each cluster of speakers, using 
the training material related to the speakers in the 
cluster. This is done by considering aligned phonemic 
and recognized phone strings of the corresponding 
utterances out of the training data related to the cluster. 
In this approach, the contextual rules derived from the 
whole training data are modified based on the phone 
confusion matrix of a cluster, to obtain an adapted list 
of contextual rules for that cluster of speakers. This is 
done by pruning and strengthening of the rules con-
sidering the confusion matrix of the speaker cluster. 

The approach in revising the initial set of rules is 
as follows. Regarding the rule LFR→O, and consid-
ering the cluster phone confusion matrix, if the 
probability of recognizing F as O in that matrix was 
greater than 0.9, the rule will be converted to the 
general rule F→O, which says F can be recognized as 
O in any context or independent of context. If the 
probability of recognizing F as O in that matrix was 
less than 0.05, the rule will be deleted from the list. 
The upper and lower threshold values are set such as 
to achieve a reasonable and significant number of 
modifications. With these thresholds, for a given 
cluster an average of around 20% of rules are subject 
to the modifications. 

The adaptation process consists of two modifi-
cation processes: one is to strengthen likely-to- 
happen rules while the other is to delete unlikely rules 
in a given cluster of speakers. The philosophy behind 
these modifications is to use the information on the 
pronunciation habits of speakers in the cluster in 
adapting rules based on the phone confusion matrix 
which statistically represents the phonetic deviation 
patterns. Strengthening the rules which are likely to 
happen is done by generalizing them to any context or 
making them context-independent, so they will be 
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applied more frequently in the lexicon generation 
process. Deleting unlikely rules in a given cluster of 
speakers is again based on the corresponding phone 
confusion matrix. The aim of deleting rules which are 
not common in the cluster, besides adaptation, is to 
decrease confusability in the lexicon. These modifi-
cations are designed based on the fact that Farsi 
speakers’ pronunciation habits include mainly explicit 
phone conversions among certain types of speakers 
owing to regional dialects, socio-economic level and 
educational class (Haghshenas, 1996). 

 
Second approach—learning cluster-specific con-
textual rules 

In this approach, for each of the clusters, a 
separate set of rules is derived from data corre-
sponding to speakers in the cluster. The algorithm for 
learning rules is exactly the same as the general pro-
cedure already described. The advantage of this ap-
proach is that it learns contextual rules directly from 
data related to the target speakers rather than from the 
modification of general rules derived from the whole 
corpus. The drawback of this approach is that having 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

a large number of clusters, the amount of available 
training data for each cluster will be insufficient as 
there is not enough coverage of all phonetic contexts. 
As a result, some rules representing important pro-
nunciation mechanisms will not be learned.  

 
Using adapted contextual rules in generating 
adapted dynamic lexicons 

In this subsection, using an example, we explain 
how the sets of adapted contextual rules are employed 
in creating the lexicons needed in an ASR system. 
The numbers of clusters and sets of adapted contex-
tual rules are the same. To generate lexicons con-
taining phonetic deviations, we use hybrids of gener-
alized decision trees and speaker adapted contextual 
rules as described in Section 2. In the example de-
picted in Fig.4, we have considered five ranges of rate 
of speech and therefore the speaker-adapted lexicons 
must appear in five groups corresponding to these 
rates. Fig.4 shows the procedure for generating dy-
namic adapted lexicons. According to Fig.4, in the 
case of introducing five ranges of speech rates and 
three speaker clusters, we would have 15 lexicons in 
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Fig.4  A case of generating sets of dynamic adapted lexicons in which lexicons are generated for five ranges of speech
rates and three speaker clusters 
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the set of dynamic adapted lexicons. We have con-
ducted experiments on ASR using adapted lexicons 
and the results are reported in the EXPERIMENTAL 
EVALUATION section. The lexicons generated for 
various ranges of speech rates and speaker clusters are 
pruned to reduce confusability among different words. 
The pruning procedure, which reduces confusability 
inside the lexicons, is the same as that introduced by 
Vazirnezhad et al.(2009). 

 
 

SELECTING THE ACTIVE LEXICON  
 
If the utterance of an unknown speaker is going 

to be recognized, the first step is to estimate his/her 
rate of speech. This rate estimator is simply a speech 
activity detector which determines the duration of the 
speech parts inside the input signal, in addition to an 
autocorrelation function which is applied to the 
speech parts. Its clear peaks show the vowels placed 
inside the speech signal. Because in Farsi every vowel 
is the core of a syllable and the numbers of vowels 
and syllables are the same, the rate of speech can be 
calculated simply in the number of syllables per  
second. 

The second step is to find the appropriate 
speaker cluster. For this purpose, for each cluster, a 
codebook of acoustic feature vectors (MFCC+deltas) 
is generated. The codebook of each cluster is deter-
mined by applying a K-means algorithm to the set of 
extracted vectors from each individual frame of the 
speech material corresponding to the speakers of that 
cluster. An unknown speaker is assigned to a cluster 
by first calculating the distance of the new speaker 
vectors to each of the vectors stated in the codebook 
of a cluster. Finally, the cluster which has the mini-
mum overall distance to the unknown speaker is 
chosen as the cluster corresponding most closely to 
the unknown speaker. 

After finding the appropriate speaker cluster and 
determining the rate of input speech, the most ap-
propriate adapted lexicon will be chosen from the set 
of dynamic adapted lexicons and will be used in the 
speech recognition process. Fig.5 shows how the set 
of dynamic adapted lexicons is used in the process of 
speech recognition. The best lexicon is chosen based 
on the utterance rate and the speaker cluster closest to 
the unknown speaker. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig.5 shows the entire process of employing the 
dynamic adaptive lexicon in an ASR process. In a real 
time application, choosing the best lexicon needs at 
least several seconds of input speech to measure the 
rate of speech and determine the speaker cluster best 
matched to the input speaker. 
 
 
EXPERIMENTAL EVALUATION 

 
The evaluation was conducted on a speech rec-

ognition task employing the sets of adapted lexicons 
for speaker clusters. The test set used in the experi-
ments was completely separate from the training data 
and was chosen from the held out data. The experi-
mental workbench was the SHENAVA-2 speech 
recognizer. The experiments were conducted in two 
main scenarios: a speaker-dependent task and a 
speaker-independent task. In the speaker-dependent 
task, the speakers in the test data were the same as 
speakers in the training data, while in the speaker- 
independent task, the speakers in the test data were 
not among the speakers in the training data. The fol-
lowing two subsections discuss experiments in 
speaker-dependent and speaker-independent scenar-
ios respectively. 

Fig.5  The procedure for finding the most appropriate 
lexicon from the set of adapted dynamic lexicons to be 
used in the speech recognition task 
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Experiments in a speaker-dependent scenario 
The first set of experiments was conducted in a 

speaker-dependent scenario. This means that the 
speakers used in the clustering and generating 
adapted lexicons were the same as those used in the 
test data. Although the speakers in training and testing 
were the same, the speech material in the test set 
consisted of held out data, in terms of spoken utter-
ances, which were not used in the training procedure. 

Fig.6 depicts WERs obtained in experiments for 
the speaker-dependent scenario. Each point in Fig.6 
demonstrates the WER obtained in the ASR task by 
using a set of adapted lexicons trained over a certain 
number of speaker clusters. In these experiments, the 
effect of the number of clusters was examined over 
the whole process of constructing adapted lexicons 
and employing them in the ASR task. 

The solid line in Fig.6 shows the results obtained 
after applying the first approach for adapting con-
textual rules. The adaptation algorithm in this case 
considers the phone confusion matrix in the modifi-
cation of contextual rules. The dashed line in Fig.6 
shows the results obtained after applying the second 
technique for extracting adapted contextual rules. 
This approach uses the speech material from the same 
cluster for learning cluster-specific rules. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
Fig.6 shows that the best result is obtained when 

the second approach in adaptation is used. The 
minimum WER of 44.1% is equivalent to an absolute 
WER reduction of as much as 10.1% in comparison to 
the baseline system. The baseline system uses a 
lexicon containing only the phonemic strings of 

words. Using the first approach results in a minimum 
WER of 46.1%. The best results are obtained when 10 
clusters are considered in generating adapted  
lexicons. 

The experiments described in this subsection 
were conducted on the same speakers of the training 
database. In this case, the lexicon should be adapted 
to speakers whose pronunciation behaviors are al-
ready learned. The set of experiments in this subsec-
tion proves the effectiveness of the approach in 
adapting lexicons to known speakers. However, as in 
many ASR applications, the test speakers are not 
known a priori. In the next subsection, we have 
evaluated the system by running experiments with 
different speakers for training and testing. 

 
Experiments in a speaker-independent scenario 

The second set of experiments was conducted in 
a speaker-independent scenario. In these experiments 
the speakers in the test set were different from the 
speakers in the training procedure. There are 50 
speakers in the whole corpus. As the corpus is not 
huge in terms of the number of speakers, a five fold 
cross-validation algorithm was used to obtain statis-
tically significant results. This means that in each test, 
utterances from 40 speakers were used in clustering 
and creating adapted lexicons, and speech material 
from 10 held-out speakers was used for evaluating the 
constructed adapted lexicons. In this way we have 
investigated whether or not the proposed method 
generalizes to speaker-independent recognition. 

Fig.7 shows the results for the speaker- 
independent scenario. The solid line shows results 
obtained by the first approach and the dashed line 
shows those obtained using the second approach to 
adaptation. Each point corresponds to tests for a cer-
tain number of clusters. For each point in Fig.7, a five 
fold cross-validation was conducted and thus five 
WER values were obtained for each point.  

In the speaker-independent scenario, the first 
approach in adapting rules showed a slightly better 
result (Fig.7). The minimum WER was 46.8%, which 
is equivalent to a 7.4% improvement in terms of ab-
solute WER in comparison to the baseline system. 
The minimum WER obtained by employing the sec-
ond approach was 47.1%. The best results in both 
approaches were obtained when the number of clus-
ters was 10. 

Fig.6  Word error rates (WERs) obtained in the speaker-
dependent scenario 
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Comparison of results 

Table 1 summarizes the best results obtained 
using various pronunciation models. Dynamic and 
static hybrid models are state-of-the-art models, in 
terms of architecture and components, and were ex-
plained comprehensively by Vazirnezhad et al.(2009). 
Adaptive models introduced in this paper have the 
same architecture as dynamic hybrid models. More-
over, adaptive models benefit from having sets of 
adapted contextual rules for each cluster rather than a 
static set of rules for any speaker. 

 
 
 
 

 
 
 
 
 
 
 
 
 
 

 
Table 1 shows that as more factors influencing 

phonetic deviations are introduced to the models, 
better results are obtained. Using adapted lexicons 
generated from the framework of clustering speakers 
significantly improved the accuracy of the recogni-

tion process in the speaker-dependent scenario. Ad-
aptation was also effective in the speaker-independent 
scenario, but to a lesser extent. 
 
 
DISCUSSION 

 
The idea behind the adaptation approach intro-

duced in this paper is that the speaker behavior in 
pronunciation can be predicted based on speaker 
acoustics—talkers with particular acoustic charac-
teristics usually tend to produce predictable pronun-
ciation patterns, and generate similar patterns of ASR 
phone recognition errors (Saraclar and Khudanpur, 
2004). There are some well-known pronunciation 
patterns among speakers with the same accent or style 
of speech in Farsi who can be classified well in the 
acoustic feature space (Haghshenas, 1996). Rate of 
speech is another factor which affects both acoustic 
and spectral features, as well as pronunciation at the 
phonetic level (Zheng and Franco, 2003).  

Speaker adapted lexicons have been shown to be 
effective in both speaker-dependent and speaker- 
independent scenarios. In the speaker-dependent 
scenario, speakers in the test set are the same as 
speakers involved in the training algorithm. In this 
case, the pronunciation habits of the test speakers are 
already learned by the models. Therefore, a greater 
improvement is expected from the adaptation, and 
this was confirmed by experiments. In the speaker- 
independent scenario, speakers in the test set are dif-
ferent from those used for training and the pronun-
ciation model is supposed to predict the pronunciation 
patterns and phonetic deviations based on speaker 
acoustic features. Although the improvement in the 
speaker-independent scenario was less than that in the 
speaker-dependent scenario, the results were still 
significantly better than those obtained using dynamic 
models without adaptation. 

Two approaches were employed in this study to 
extract cluster adapted contextual rules. The first 
approach is an adaptation technique and the second is 
an algorithm for learning cluster-specific rules from 
data corresponding to the cluster. For the speaker- 
dependent scenario, the second approach is more 
effective than the first. This can be explained con-
sidering the fact that in the speaker-dependent sce-
nario the speakers in the test are the same as those 

Fig.7  Word error rates (WERs) from using sets of 
adapted lexicons in the speaker-independent scenario 
For each point, a five fold cross-validation was conducted. 
The mean values are depicted by squares, and the bars rep-
resent standard deviations for the five WER values obtained 
for each point 
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Table 1  Word error rate reduction (WERR) and relative 
WERR obtained using various models in generating 
lexicons 

Absolute 
WERR (%)

Relative  
WERR (%) 

Models employed to generate 
phonetic deviations of lexical 
entries SD SI SD SI 
Adaptive models by the 1st    
  adaptation approach   8.1 7.4 14.9 13.7

Adaptive models by the 2nd   
  adaptation approach 10.1 7.1 18.6 13.1

Dynamic hybrid models 6.3 11.6 
Static hybrid models 4.4   8.1 
Contextual rules 2.9   5.4 

SD: speaker dependent; SI: speaker independent
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used in training. In this case, using cluster-specific 
rules which contain the exact pronunciation habits of 
the test speaker is more effective. While for the 
speaker-independent scenario, the first adaptation 
approach shows slightly better results. This is because 
the first adaptation approach is a smoother adaptation 
technique and works better for new test speakers not 
seen previously in the training procedure. Further-
more, in the speaker-independent scenario using 
cluster-specific rules, there is no advantage from 
having exactly the same pronunciation habits for the 
new test speaker.  

Experiments in all cases showed that the best 
results are obtained when the number of clusters is 10. 
This is in agreement with the observations using the 
variation criterion which show that the intra-cluster 
phonetic variation changes slowly when the number 
of clusters reduces from 50 towards 10, but after this 
point the rate abruptly increases. Fewer clusters have 
many advantages in terms of computational load. 
Furthermore, finding the matching cluster for the test 
speaker is much easier when fewer clusters exist. 
Moreover, as the number of clusters increases, the 
portion of the training data for each cluster decreases, 
causing difficulties in the procedure for extracting 
valid and significant contextual rules. As a result, the 
adapted lexicons lose their validity owing to insuffi-
cient training data. This is especially a drawback for 
the second approach which learns cluster-specific 
rules. In Figs.6 and 7, the results for the second ap-
proach represented by dashed lines show large dete-
riorations when the number of clusters is high. This is 
because the sets of adapted contextual rules are ex-
tracted from insufficient data. Note that the optimum 
number of clusters is obtained for the database em-
ployed and may be different in another situation. 

According to Table 1, modelling the speaker 
variability in the lexicon from the framework of 
generating adapted lexicons leads to meaningful im-
provements in both speaker-dependent and speaker- 
independent scenarios. The results were significant 
enough to prove that lexicon adaptation is a worth-
while approach in the development of ASR systems. 

 
 

CONCLUSION 
 
In this paper, a state-of-the-art approach in gen-

erating phonetic deviations of lexicon entries is in-

troduced. The models effectively consider the syllabic 
structure of a word, rate of speech, unigram prob-
ability of a word, stress and syllable position in the 
word, phonemic context and speaker specifications in 
the process of generating lexicons. Moreover, infor-
mation on speaker specifications is injected into 
models through a speaker clustering scheme. These 
models dynamically consider the rate of speech and 
speaker characteristics simultaneously to generate 
lexicons containing phonetic deviations of words. 
Modelling speaker variability at the level of the 
lexicon is a novel approach in ASR systems. The 
developed dynamic adapted hybrid models are com-
posed of generalized decision trees and sets of 
adapted contextual rules. Each of these modules has 
the ability to be trained with a moderate amount of 
training data. As a result, dynamic adapted models 
can be trained with a medium-size corpus such as 
Large-FARSDAT. In experiments conducted in a 
speaker-dependent scenario, a WER reduction of as 
much as 3.8% was obtained in comparison to the 
dynamic hybrid models. This is equivalent to an ab-
solute WER reduction of 10.1% in comparison to the 
baseline lexicon containing only phonemic strings of 
lexical entries. The more general experiments con-
ducted in the speaker-independent scenario showed 
an improvement of as much as 1.1% and 7.4% in 
comparison to the usage of lexicons generated by 
dynamic hybrid models and the baseline lexicon, 
respectively. 
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