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Abstract

Generating pronunciation variants of words is an important subject in speech research and is used extensively in auto-
matic speech recognition and segmentation systems. Decision trees are well known tools in modeling pronunciation over
words or sub-word units. In the case of word units and very large vocabulary, in order to train necessary decision trees, a
huge amount of speech utterances are required. This training data must contain all of the needed words in the vocabulary
with a sufficient number of repetitions for each one. Additionally, an extra corpus is needed for every word which is not
included in the original training corpus and may be added to the vocabulary in the future. To overcome these drawbacks,
we have designed generalized decision trees, which can be trained using a medium-size corpus over groups of similar words
to share information on pronunciation, instead of training a separate tree for every single word. Generalized decision trees
predict places in the word where substitution, deletion and insertion of phonemes may occur. After this step, appropriate
statistical contextual rules are applied to the permitted places, in order to specifically determine word variants. The hybrids
of generalized decision trees and contextual rules are designed in static and dynamic versions. The hybrid static pronun-
ciation models take into account word phonological structures, unigram probabilities, stress and phone context informa-
tion simultaneously, while the hybrid dynamic models consider an extra feature, speaking rate, to generate pronunciation
variants of words. Using the word variants, generated by static and dynamic models, in the lexicon of the SHENAVA Per-
sian continuous speech recognizer, relative word error rate reductions as high as 8.1% and 11.6% are obtained, respectively.
� 2008 Elsevier Ltd. All rights reserved.
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1. Introduction

Pronunciation variation is a well known phenomenon which is a result of co-articulation, assimilation,
reduction, deletion and insertion of phones. The degree, to which these phenomena occur, will vary depending
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on various factors such as rate of speech (ROS), speaking styles, speaker specifications and other factors and
mechanisms. Some of these mechanisms are categorized as inter-speaker variations while others are intra-
speaker variations. Therefore, pronouncing words in different ways makes speech recognition a difficult task
(Strik and Cucchiarini, 1999).

If words were always pronounced in the same way, automatic continuous speech recognition would have
been relatively easy. Meanwhile, for various reasons, words are normally pronounced in different manners. In
fact, the words are strung together in continuous speech and this alters their pronunciations from their isolated
form. In addition, in continuous speech, all sorts of interactions may take place between words, resulting in
various phonological processes. However, for isolated speech the situation is different. The speakers have to
pause between words, which results in the reduction of the degree of interaction between word pronunciations.
Moreover, in this case, speakers also have the tendency to articulate more carefully. Although using isolated
words makes the task of an ASR system easier, it certainly does not do the same for the speaker, since pausing
between words is highly unnatural. While many current applications still make use of isolated word recogni-
tion, the emphasis is now on spontaneous speech. Nowadays, we face a range of ASR system applications
from carefully read speech to ordinary conversational speech; and it is clear that pronunciation variation hap-
pens to a greater extent in natural speech in comparison to isolated-word speech. Since this phenomenon is
believed to be the cause of some severe errors in ASR systems, modeling pronunciation variation is seen as
an effective way to improve the performance of the current systems. During the last decade, a lot of research
has been conducted on this topic.

ASR systems usually need a lexicon containing pronunciation variants of words to describe how the entries
can be pronounced. In other words, how they can be recognized as a sequence of phones. In the literature, this
method is referred to as explicit pronunciation modeling. In the last few years, several researchers have made
efforts to develop pronunciation models comprising pronunciation variants. Experiments have shown that
introducing appropriate pronunciation variants would improve performance of ASR systems (Cremelie and
Martens, 1999; Fosler-Lussier, 1999a; Fukada et al., 1999). It is important to choose the source from which
the information on pronunciation variation will be retrieved. In this regard, a distinction can be made between
data-driven versus knowledge-based methods. In data-driven methods, the formalizations are derived directly
from the data. In general, this is done in the following manner. The hand-labeled phonetic or sometimes rec-
ognized transcription of an utterance is aligned with its corresponding phonemic transcription obtained by
concatenating the transcriptions of individual words. Alignment is done by means of a dynamic programming
algorithm. The resulting DP alignments can then be used to derive rewrite rules using statistical approaches,
decision trees, artificial neural networks, etc. Here, we will have a review on data-driven approaches consid-
ering that our proposed new hybrid model technique which is a combination of decision trees and contextual
rules is in the same category.

Generating sophisticated pronunciation dictionaries are considered as an effective way to improve the sys-
tem performance in large vocabulary continuous speech recognition (LVCSR) tasks since the past decade.
Since manual construction of the pronunciation dictionary must be carried out by expert phoneticians and
is quite expensive and time consuming, research efforts have been directed at automatic construction of pro-
nunciation dictionaries. In the early 1990s, the emergence of honetically transcribed (hand-labeled) medium-
size databases (e.g. TIMIT and Resource Management) encouraged a number of researchers to explore pro-
nunciation modeling (Wooters and Stolcke, 1994; Riley, 1991; Randolph, 1990). Although all of these
approaches were able to automatically generate pronunciation rules, hand-labeled transcriptions by expert
phoneticians were still required. To solve this problem, automatic phone transcriptions generated by a phone
recognizer, which enables one to cope with a large amount of training data, started to be used in pronuncia-
tion modeling (Humphries, 1997; Imai et al., 1995; Sloboda, 1995; Schmid et al., 1993). More recently,
LVCSR systems have started to deal with spontaneous and conversational speech, such as the Switchboard
corpus, and consequently, pronunciation modeling has become a more important issue as word pronunciation
variations happen more often here in comparison to read speech (Saraclar and Khudanpur, 2004; Fosler-Lus-
sier, 1999a).

Some researchers extracted contextual rules to model word-level phone variations using data-driven
approaches, in order to generate pronunciation variants of the words from their phonemic transcriptions
(Vazirnezhad et al., 2005a; Cremelie and Martens, 1999). Mostly, application likelihoods are assigned for such
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rules to estimate variant’s probability conditioned on occurrence of the word. Contextual rules are easy to
apply and since these models show variations in phone level, one can produce variants of every word, regard-
less of the number of its occurrences or even its existence in the training corpus. Meanwhile, this approach
suffers from a major weakness; contextual rules do not take into account word level information such as pho-
nological structure, stress, n-gram, etc. They only consider limited surrounding phones of the region in the
word that its pronunciation supposed to be predicted. To overcome this shortcoming, researchers made use
of decision trees as a way to represent information on pronunciation variation of words extracted from data,
while taking into account word level information such as ‘‘phonemic structure”. Different types of features,
such as phoneme context, speaking rate, speaker specifications, etc. have been used to train the decision trees
(Jande, 2008; Vazirnezhad et al., 2005b; Fosler-Lussier, 1999a). In Fosler-Lussier (1999a), it was shown that
the mapping of canonical phones to surface phones has a dynamic nature. Dynamic pronunciation models
based on decision trees have also been designed by Fosler-Lussier (1999a). These models use speaking rate
and n-gram information to generate pronunciation variants in a dynamic framework. It was shown that aux-
iliary factors of words such as stress, syllabification, syntactic role and prosody parameters may affect pronun-
ciation variants. Artificial neural networks have also been used to model pronunciation variation. Here, the
phoneme context was used to predict pronunciation variants of word segments (Fukada et al., 1999). More-
over, it was shown that the pitch accent can improve the prediction of pronunciation variation (Chen and
Hasegawa-Johnson, 2004). But artificial neural networks need a large amount of data to be trained as pronun-
ciation models. Also they suffer from the difficulty of over-fitting to training data and even not converging to a
global minimum. In addition to the mentioned approaches, there exist other approaches, like the approach
proposed by Hazen et al. (2005), in which a finite-state transducer was used to represent pronunciation var-
iation. It is important to note that the majority of these works have focused on finding phonetic deviations of
the phonemic segments of the words as the main approach to find the word variants. It can be difficult to
define these variants in a consistent way. It can also be difficult to extract generalized grapheme-to-phoneme
rule sets from a lexicon containing variants. In Davel and Barnard (2006) both these issues are addressed by
creating ‘‘pseudo-phonemes” associated with sets of ‘‘generation restriction rules” to model those pronunci-
ations that are consistently realized as two or more variants.

In this paper, a hybrid statistical structure for automatic generation of pronunciation variants of words is
introduced. The hybrid models are composed of decision trees and contextual rules. Decision trees predict
regions in the word that are susceptible to change. Consequently, appropriate contextual rules are applied
to permissible regions, and not to other regions, to generate the pronunciation variants of the input words.
The proposed models are designed in static and dynamic types. Dynamic and static terms come from the fact
that decision trees in the dynamic models consider rate of speech in generating pronunciation variants while
the static models do not. Both dynamic and static models take into account the syllabic structure of the input
word and ask questions about phone identities, unigram statistics, and the position of the stressed syllable
simultaneously. In the final step, phonemic context information is considered by contextual rules. The decision
trees used in this architecture are similar to those exploited to model triphone pronunciations in Yu and
Schultz (2003). It should emphasized that in our proposed method, each decision tree is not assigned for just
one word as done in Fosler-Lussier (1999a), but for a group of words with similar phonological structure; so
we chose the term ‘‘generalized decision trees” for them to describe them better. However, while describing our
approach, we have occasionally used the short terms ‘‘decision tree” or ‘‘tree” instead of ‘‘generalized decision
tree” just for simplicity in several part of this paper. Using such generalized decision trees, we do not need
speech data prepared distinctively to train a model for each of the investigated words. Experimental results
show that both the static and dynamic hybrid decision trees/contextual rules (d-tree/c-rule) models can gen-
erate pronunciation variants closer to real pronunciation variants of words, in comparison to variants gener-
ated by using only contextual rules.

The remainder of this paper is organized as follows: an overview of the hybrid pronunciation models is pro-
vided in Section 2. The speech corpus ‘‘Large-FARSDAT” which is used for training and test of the models,
and ‘‘SHENAVA” Persian ASR system which is used as our experimental workbench are introduced in Sec-
tion 3. The effects of factors on phonetic pronunciation variation, which are considered in our models, are
studied in Section 4. Comprehensive details and training procedure for generalized decision trees and contex-
tual rules are detailed in Sections 5 and 6. A method to prune generated pronunciation variants is presented in
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Section 7. Two assessment methods for the proposed approaches and the corresponding results are described
in Section 8 and discussion and conclusions are considered in Sections 9 and 10, respectively.

2. Overall framework of the hybrid statistical pronunciation models

This section gives an overview of our approach to generate pronunciation variants. Technical details of var-
ious portions of the proposed model will be provided in later sections. The proposed pronunciation models are
hybrids of generalized decision trees and statistical contextual pronunciation rules. Decision tree portions are
implemented in static or dynamic forms. The static models which utilize static trees use phonological structure,
word unigram statistics and the location of the stressed syllable in the word in addition to phonemic context
information, to generate pronunciation variants. The dynamic models utilize dynamic trees which take into
account the extra feature of speech rate which varies in time. In Section 8, the improvements obtained in
the task of continuous speech recognition, due to the usage of both static and dynamic models, are compared.

Some previous works (Fosler-Lussier, 1999a) employed decision trees to find word pronunciation variants,
but they used an individual decision tree for each word, in order to only capture pronunciation variation infor-
mation of that word. For instance, the word ‘‘book” has a specific decision tree which is able to predict appro-
priate pronunciation variants of it by taking into account the specifications of surrounding words, the location
of the stressed syllable, rate of speech and predictability. Our approach is different in that instead of designing
and training an individual tree for each word, which imposes practical difficulties in providing enough training
data for all words, a generalized decision tree is designed for all words with the same phonological structure.
For further clarification, for example, the pronunciation variants of all words that have the same arrangement
of consonants (represented by C) and vowels (represented by V), like the string of ‘‘CVCVC”, are used to train
one decision tree. In this approach, the problem of sparse training data is solved, and the training database
does not need to contain all words supposed to be in the lexicon. In addition, no new extra corpus is needed
for new words. In other words, by sharing information of pronunciation variation in structurally similar
words, the size of necessary training data is decreased and the problem of facing new words is solved. We
chose the name of ‘‘generalized decision tree” instead of ‘‘decision tree”, to emphasize that in our approach
each tree is trained for a group of words with similar phonological structure, and highlight the major differ-
ences between our approach and previous works. Comprehensive details of generalized decision trees and
training algorithm are provided in Section 5.

Hybrid statistical models generate pronunciation variants of words in two main steps. First, the generalized
decision tree corresponding to the syllabic structure of the input word, predicts which phonemes in the word
can be substituted or deleted, or where an insertion can take place. Choosing the tree corresponding to the
input word is based on phonological structure or arrangements of consonants and vowels of the word. An
example is shown in Fig. 1. The input word is a Persian word with Phonemic transcription of /ket b/, which
means ‘‘book”. It is a disyllabic word with a ‘‘CVCVC” phonemic pattern. Hence, the corresponding general-
ized decision tree is ‘‘CVCVC” tree, which is trained by pronunciation patterns of the words with same syllabic
structure. The generalized decision tree asks for the specifications of consonants and vowels which are defined
by their membership to different phonetic categories, the logarithm of unigram probability of the word and
location of stressed syllable in the input word. The dynamic tree also uses speaking rate as a continuous fea-
ture. The influence of these factors on phonetic variation is discussed in Section 4. The outputs of the general-
ized decision trees are the predicted pronunciation patterns, which means the ways that pronunciation
variations can take place. Each pronunciation variation pattern defines which phonemes can be substituted,
deleted or where in the word an insertion may occur. Each of these variation patterns are tagged with a prob-
ability, which is determined by the tree. We set a cut-off threshold of probability to limit the number of
accepted variation patterns.

In the second step, contextual rules are applied to the phonemes that are candidates to be altered. The fig-
ure shows two types of contextual rules which are substitution rules and insertion rules. In substitution rules,
LFR ? LOR, where phonemic string F can be recognized as string O due to pronunciation or phone recog-
nizer errors, when it is surrounded by a left context L and a right context R. In insertion rules, LR ? LOR,
string F is empty and string O can be inserted in a LR context. The substitution rules will be applied to the
regions that are chosen by the tree for the substitution, and the insertion rules can be applied to regions that



Fig. 1. Block diagram of hybrid structure to generate pronunciation variants of words.
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insertion is permitted. More details about context-dependent rules are provided in Section 6. Finally, the sum
of probabilities of variants is normalized to unity. The resultant pronunciation variants of the words may be
introduced to the lexicon of the ASR system to improve its recognition accuracy.

3. Speech corpus and ASR experimental workbench

3.1. Large-FARSDAT – a Persian speech corpus

Persian (Farsi) is a member of the Iranian branch of the Indo-Iranian languages, a subfamily of the Indo-
European languages. It is the language of Iran, Afghanistan, Tajikistan and the Pamirs mountain region. Per-
sian, as a language spoken by Iranians, has many varieties due to cultural interactions of different nationalities
within the Persian land, now Iran. One grouping, also used in this research, consists of 10 major accent groups
namely Tehrani, Azari, Isfahani, Shomali, Yazdi, Jonubi, Khorasani, Kurdish, Lori, and Baluchi. Persian
speech is known to include around 29 phonemes consisting of 23 consonants and 6 vowels. Table 1 lists
IPA symbols of Persian phonemes along with their orthographic symbols and linguistic descriptions (Bijank-
han et al., 2003). Although Table 1 shows orthographic symbols for short vowels, which are usually not rep-
resented in written Persian, there is not a strict grapheme-to-phoneme correspondence in Persian writing
system.



Table 1
IPA symbols and the equivalent alphabets of Persian phonemes

IPA symbol Orthographic symbols Phonetic description

i High front vowel

e Mid front vowel

a Low Stint vowel

u High back vowel

o Mid back vowel

Low back vowel

b Voiced bilabial plosive

p Unvoiced bilabial plosive

d Voiced dental plosive

t Unvoiced dental plosive

g Voiced velar plosive

k Unvoiced velar plosive

G Voiced uvular plosive

Glottal stop

Voiced alveopalatal affricate

Unvoiced alveopalatal affricate

v Voiced labiodental fricative

f Unvoiced labiodental fricative

Z Voiced alveolar fricative

s Unvoiced alveolar fricative

Voiced alveopalatal fricative
R

Unvoiced alveopalatal fricative

Unvoiced uvular fricative

h Unvoiced glottal fricative

m Bilabial nasal

n Alveolar nasal

r Alveolar trill

l Alveolar lateral

j Palatal glide
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Large-FARSDAT is a Persian speech database, created by ‘‘Research center of intelligent signal process-
ing” (RCISP) (Bijankhan and Sheikhzadegan, 1994). Large-FARSDAT includes 100 speakers selected with
respect to age, gender and educational level, from one of the 10 frequent dialects of Persian in Iran. Each
speaker has read thousands of words from various kinds of newspapers in an office room. The material covers
a variety of fields such as politics, economics, culture, sports, etc. Since one of the main contributions of our
research work is that the proposed pronunciation models can be trained with a much smaller amount of data
in comparison with similar works, we used the minimum required data, i.e. half of Large-FARSDAT data, for
training hybrid pronunciation models. This portion of Large-FARSDAT includes speech material from 50 out
of 100 speakers in the corpus which is equivalent to a total of 25 h of speech material in duration. These 50
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speakers are selected in a way to have maximum diversity of speakers regarding their age, gender and dialect.
Large-FARSDAT contains a single phonemic transcription for each uttered word; the corpus does not con-
tain any phonetic transcriptions for the speech utterances. In order to train the pronunciation models, first, we
used the phone recognizer module of the SHENAVA ASR system to decode speech utterances as recognized
phone strings. This phone recognizer has been found to operate with an acceptable level of performance on
similar tasks (Almasganj et al., 2001). In the next step, recognized phone transcriptions of the words (tran-
scribed automatically by phone recognizer) were aligned with the phonemic transcriptions (originated from
the corpus). In this way, we modeled variations due to both pronunciation and phone recognizer errors, simul-
taneously. Although the factors that affect these two sources of variation are different, we believe our
approach can face both these variation sources. Alignment of the phonemic transcriptions of the words to
their recognized phonetic transcription is carried out by a dynamic programming algorithm (DTW) that min-
imizes the alignment distance. Substitution cost is dependent on simple distinctive features that differ from the
baseline phoneme to the recognized phone. The distinctive features differentiate vowels from consonants and
voiced from unvoiced phonemes. An example of the alignment is given below. The alignment is shown for
phonemic and recognized phonetic transcriptions of a Persian word with phonemic transcription
/ket b neh/, which means ‘‘library”.
=k e t b n e h=

=p e t # f n e #=
The first row includes the phonemic transcription and the second row the recognized phonetic string. Sym-
bol ‘‘#” stands for deletion/insertion. Unvoiced plosive substitution (/k/ with /p/), deletion of voiced bilabial
plosive (/b/ to ‘‘#”), substitution of unvoiced fricative consonant (/x/ to /f /) and unvoiced glottal fricative
deletion (/h/ to ‘‘#”) occurred in this example. Here, it is possible to consider the effects of two variation
sources separately. It is reasonable to assume that the substitution of /k/ with /p/ is a phone recognizer fault,
while deletion of /h/ is a real pronunciation variation which is produced by the speaker.
3.2. SHENAVA – Persian ASR system

SHENAVA is a Persian ASR system, developed in RCISP research center as the output of a primary phase
of a big project which aims to develop a professional Persian ASR system. We used a version of SHENAVA
with a 1200-word vocabulary as our experimental workbench in this work. Phoneme recognition is performed
by a hybrid structure of two MLP neural networks which phonetically classify frames of an input speech signal
and a rule-based engine to extract phones due to the classified frames. After the lexicon search and applying a
semi-viterbi algorithm to find the best 100 recognized phrases, an N-best rescoring block, which uses HMM
models of Persian phones, finds the best output phrase (Almasganj et al., 2001).

As mentioned, Large-FARSDAT only contains phonemic transcriptions of utterances; and speech material
is not labeled with phonetic transcriptions. Hence we used the SHENAVA phone recognizer to have access to
recognized phone strings of utterances instead of phonetic transcriptions. By comparing aligned pairs of pho-
nemic and recognized transcriptions of speech utterances, the training algorithm captures differences due to
speakers’ pronunciations and errors of the SHENAVA phone recognizer. Considering errors of the phone rec-
ognizer in pronunciation models improves accuracy rate of the SHENAVA ASR system while using model-
generated variants in its lexicon, since the variants are generated by considering phone recognizer errors. We
used a version of the SHENAVA ASR system as our experimental workbench in this paper. The version of
SHENAVA used in our experiments did not employ any language model to decrease its output word error rate.
4. Factors affecting pronunciation variations of words

Here the influences of factors which are considered in the hybrid pronunciation models are studied. The
influence of the syllabic structure of words, the location of the stressed syllable, phonetic context and the rate
of speech on pronunciation variation is well known in Persian and many other languages and is emphasized in
literature (Ladefoged, 2006; Adda Decker et al., 2005; Milanian and Hosseini, 2002; Haghshenas, 1995). Many
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researchers exploited such features to model pronunciation variations (Chen and Hasegawa-Johnson, 2004;
Cremelie and Martens, 1999; Fosler-Lussier, 1999b; Fukada et al., 1999). A phoneme may be deleted or
substituted in pronunciation if it appears in a certain context. Stressed syllables are pronounced with higher
energy and lower rate of speech. Therefore, phoneme deletions and variations happen less in them. Research-
ers have considered word predictability as another important factor affecting pronunciation variation (Juraf-
sky et al., 2001). In the following subsections, the effects of rate of speech, word predictability, location of
syllable in the word and word stress on pronunciation variations will be discussed quantitatively. The database
used in the following studies is the same subset of Large-FARSDAT which is used for training pronunciation
models and contains speech material from 50 speakers with 25-h duration.
4.1. Rate of speech

‘‘Rate of speech” (ROS) is usually measured in terms of the number of linguistic units pronounced in 1 s. In
this paper, ROS is considered as the number of syllables pronounced in 1 s. The corpus has time labels for all
word units; it means that both the start and the end time of a word are accessible from the label files. In addi-
tion the phoneme recognizer determines time boundaries of each recognized vowel and also each recognized
syllable. We calculated the rate of each word by considering its duration plus the durations of its two neigh-
boring words from each side, ROS is calculated by dividing the overall duration by the total number of syl-
lables counted in these five words. This value is considered as an estimate of the rate of speech for the middle
word. This technique will effectively normalize the effect of phonetic syllable length on rate measurement with
a smoothing effect. Fig. 2 shows a histogram of ROS, in syllables per second, for all words in Large-FARS-
DAT. The histogram is fairly similar to a Gaussian probability distribution and can thus be approximated by
this function with a relatively small error. The estimated parameters of this function are: l = 5.34 (syl/s) and
r = 1.59 (syl/s). To analyze the effect of ROS on pronunciation variation, we divided our database into three
portions according to the rates of speech production: low-rate, medium-rate and high-rate. This is done in
accordance with the mean and standard deviation of ROS. The low-rate portion consists of utterances which
are uttered in a rate lower than the average minus one standard deviation; the medium-rate portion consists of
those with a rate between average minus one standard deviation to average plus one standard deviation and
the high rate portion consists of the remaining utterances.
Fig. 2. Histogram of ROS in syl/s and the estimated Gaussian pdf.



Fig. 3. The percentages of various kinds of phone conversions in different groups of ROS, comparing standard phonemic and recognized
phone strings of words.
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Large-FARSDAT utterances are produced in the form of read speech. Thus, speakers usually speak with a
medium rate. However, it seems that there are a noticeable number of speakers who inherently utter faster or
slower than the normal cases. It could be seen in Fig. 2, that 68.4% of the whole database is in medium rate of
speech, in this partitioning. After alignment of phonemic and recognized phone strings of words and compar-
ing the aligned strings, Fig. 3 depicts statistics of various kinds of phone conversions in each of the three por-
tions of the speech corpus. The difference between aligned transcriptions can be a result of pronunciation or a
fault in the phone recognition engine. In this figure, the percentages of phone matching, substitution, deletion
and insertion, in each portion of the database, are shown. Black bars represent the percentages of phones that
are the same in both aligned phonemic and recognized phone strings or percentages of identically aligned
phones; from now on phone match. The dark grey bars represent the percentages of phone substitutions,
the light grey bars represent the percentages of phone deletions and the white bars show the phone insertion
percentages.

According to Fig. 3, the highest similarity or maximum match between the aligned phonemic and recog-
nized phone strings is obtained for the medium ROS (between 3.75 and 6.93 syl/s). Furthermore, this ROS
shows the lowest deletion rate. For the ROS higher than 6.93 syl/s, deletion is highly increased. In high
ROS, speakers use shorter pronunciation variants of words. The performance of the phone recognizer is also
decreased in high ROS, which results in an increase in the phone deletion rate. In the literature, it is shown that
the word error rate will increase due to an increase in ROS (Fosler-Lussier and Morgan, 1999).

A detailed analysis of Fig. 3 reveals the importance of the ROS parameter in generating a dynamic lexicon
for ASR systems. In a dynamic lexicon, variants of the words will be modified when the rate of the input
speech is changed. In such a lexicon, for high rates of speech, shorter variants will generally experience higher
probabilities than longer ones. In medium rates of speech, the number of word variants will decrease, because
words are generally produced and recognized closer to their phonemic versions. Here, the probability of the
reference forms will increase. Modeling and applying the effects of speech rate, on phonetic versions of words
included in the lexicon of an ASR system, seems to decrease the word error rate.

Phone pronunciation entropy, sometimes called phone variation entropy, could also be used as another
metric to investigate the effect of speech rate on phonetic pronunciation variation (Fosler-Lussier, 1999a). This
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metric measures the degree of variation in pronunciation. By comparing aligned phonemic and recognized
strings, the level of conversions or substitutions of phones are considered to calculate phones’ pronunciation
entropy. If phone a can be potentially pronounced or recognized as one of the phones in set X, phone pronun-
ciation entropy will be defined as
Table
Averag

Phone

All ph
Vowel
Plosive
Fricati
Liquid
Glotta
HðaÞ ¼
X
x2X

pða! xÞ log pða! xÞ; ð1Þ
in which X represents the set of language phonemes, x a member of this set and a the inspected phoneme.
p(a ? x) is the probability of pronouncing a as x. The defined Entropy can be used as a measure for the level
of phonetic pronunciation variation. This measurement will increase when the inspected linguistic unit (here
phoneme) is pronounced or recognized in more different ways. Therefore, the pronunciation entropy of a
phone can be interpreted in this way: phone pronunciation entropy is minimum when it has only one pronun-
ciation variant. In this case, entropy will be zero. As an example, if a phoneme nun can be pronounced as
phones nun, nan, nen and non with probabilities of p(u ? u), p(u ? a), p(u ? e) and p(u ? o), respectively,
its pronunciation entropy will be:X
HðuÞ ¼
x2fu;a;e;og

pðu! xÞ log pðu! xÞ: ð2Þ
p(u ? x) is the probability of pronouncing nunas nxn and can be calculated by the following equation:
pðu! xÞ ¼ Nðu! xÞ
NðuÞ ; ð3Þ
where N(u ? x) is the frequency of pronouncing nunas nxn, and N(u) is the overall frequency of nunin the
phonemic transcription of the processed utterances. Table 2 shows the averages of phone variation entropies
over different groups of Persian phones, derived for three ROS ranges. Apparently, the measured average
entropies vary by changing the ROS in different manners for various groups of phones. The lowest overall
entropy when considering all of the phones are obtained for the rates of speech between 3.75 and 6.93 syl/
s, thus it can be concluded that phones have lowest pronunciation variability in medium rate when considering
all of them at the same time in the study. This could not necessarily be concluded when considering each phone
group separately as shown in Table 2. According to Table 2, for the vowels, entropy increases as a result of an
increase in ROS. Entropies in plosives are less affected by ROS and fricatives are almost not affected by ROS.
The Liquids, Nasals and glottal group show lowest entropy in the medium ROS which means lowest pronun-
ciation variation when considering these kinds of phones in the study.

The results reported in this table could be a subject of further study in phonetics. However, here, we only
follow the effectiveness of ROS on the level of pronunciation variation in different phone groups. We con-
ducted the previous experiments by dividing the used speech corpus into three main regions of ROS just to
prove that the ROS is an important factor which effectively varies pronunciations of words. But the general-
ized decision trees in dynamic versions of hybrid pronunciation models, which are introduced in this paper,
consider ROS as a continuous feature without any partitioning or quantization.

4.2. Word unigrams

It is already shown that the word predictability influences speaker pronunciations (Fosler-Lussier, 1999a;
Jurafsky et al., 2001). Words with high n-gram probabilities are easier for listeners to recognize, because their
2
e entropies of various groups of Persian phones for different ROS ranges

group ROS < 3.75 3.75 < ROS < 6.93 6.93 < ROS

ones 1.58 1.54 1.66
s 0.51 0.80 1.24
s 2.21 2.13 2.09
ves 1.40 1.42 1.44
s, Nasals 1.78 1.42 1.43
ls 2.03 1.88 2.42
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predictabilities are high. To pronounce these words, speakers naturally use shorter pronunciation variants and
pronounce them faster. In contrast, specific words with low predictabilities usually are pronounced slower
than normal and phonetically closer to their reference or phonemic forms. This compensates for the unpre-
dictability of this group of words and helps listeners to recognize them better. This speech phenomenon is
an intrinsic and language independent reality. As a different view, when the meaning in a sentence is carried
mainly by a word or a few specific words, they will be carefully pronounced in a lower rate of speech, and
speakers use word variants near to their reference forms to transform the information carefully. In contrast,
to produce unimportant words, speakers use short variants and high rates of speech. Here, to analyze the
influence of words’ predictabilities on their pronunciations, word unigram statistics are employed as a measure
of word predictability. To handle this analysis we divided the database into frequent and infrequent parts.
These parts consisted of words with more than and less than 100 samples in the used database, respectively.
This threshold is chosen heuristically and results in almost identical numbers of occurrences for frequent
words and infrequent words in the database. Using this threshold, 78,205 occurrences of frequent words
and 70,002 occurrences of infrequent words are observed. This threshold is chosen also by considering the size
of the database. Moreover, to control and normalize the effects of ROS in our experiments, we carried out our
experiments individually on the parts of the database which are selected by their ROS levels. Fig. 4 shows the
word phonetic conversions for the parts of the database which are selected by the ROS and unigram statistics,
found by comparing aligned phonemic and recognized phone strings of words. The percentages of phonetic
mappings are shown in this figure for the frequent and infrequent words in the medium and high rates of
speech.

It can be seen that the percentage of phone match for the infrequent words is higher than the same percent-
age for the frequent words in both rates of speech. Furthermore, the percentages of phone deletions are rel-
atively high for the frequent words, which support the claim that by increasing unigram statistics of words,
speakers use shorter length pronunciation variants. It can also be concluded that the probability of pronoun-
cing words in their standard phonemic forms is lower for frequent words, in contrast to infrequent words. The
results reported here are obtained where the phone recognizer performance is not directly affected by unigram
statistics of words.
Fig. 4. Percentages of different types of phone conversions for the frequent and infrequent words in the medium and high ROS, while
comparing standard phonemic and recognized phone strings of words.



Fig. 5. Effect of ‘‘syllable location” on different type of phone conversions, while comparing standard phonemic and recognized phone
strings of words.
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Although in this analysis we defined frequent and infrequent words based on their numbers of occurrence,
the generalized decision trees in hybrid pronunciation models use the logarithm of unigram probabilities as a
continuous attribute of each word without any primary partitioning of data into frequent and infrequent
words.

4.3. Syllable locations

The next issue to address is the influence of syllable location in the word on phonetic pronunciation var-
iation. In Fig. 5, the percentages of phone match, substitution, deletion and insertion in the initial syllables,
the middle syllables and the final syllables of the words available in the database are displayed. Our speech
database consists of 36,680 monosyllabic words, 36,159 disyllabic words and 75,368 words with three or more
syllables. Inflected forms of words and foreign names are included in these counts and treated as word units in
this analysis. We did not use monosyllabic words just in this study because they can be treated as an initial,
middle or final syllable. Therefore, only the words with two or more syllables were analyzed. For disyllabic
words, first syllables were treated as initial syllables and second syllables as finals. The percentage of various
phone conversions are extracted by comparing phonemic and recognized phone strings of words.

Fig. 5 reveals that the phone deletion rate is highest among the final syllables of words while phone match
between phonemic and recognized phone strings of words is highest among the initial and lowest among the
final syllables. These results indicate the possible usefulness of the syllable location in the pronunciation mod-
eling of words.

4.4. Word stress

Word stress is another factor which affects pronunciation and performance of phone recognizers. Higher
energy and duration are featured in stressed syllables, which result in better performance of phone recognizer
engines. To study the effect of stress on phonetic pronunciation variations, we, once again used percentages of
phone match, substitution, deletion and insertions by comparing the aligned standard phonemic and recog-
nized phone strings of words. Just in this analysis and not throughout the whole paper, in order to cancel



Fig. 6. Percentages of phone conversions in stressed syllable and un-stressed syllables.
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the effect of syllable location factor, we used only middle syllables. Middle syllables used in this study originate
from 75,368 words with three or more syllables in the database. Fig. 6 displays the results obtained. As can be
seen, phone matching rate is higher and phone deletion rate is lower for stressed syllables in comparison to
unstressed ones.

According to these results, we concluded that the word stress has an overall effect on phonetic pronunci-
ation variation and also the performance of the phone recognizer. The generalized decision trees of our
proposed hybrid pronunciation models utilize the word stress in predicting the pronunciation variants of
words.
5. Generalized decision trees and training algorithm

In this section, generalized decision trees as the main part of hybrid statistical pronunciation models are
discussed in detail. In our approach, words in the training database are partitioned into different groups based
on the numbers and structures of their syllables. Syllable structure in Persian is limited to only three patterns,
‘‘CV”, ‘‘CVC” and ‘‘CVCC”. As a result, 3 groups of monosyllabic words, 9 groups of disyllabic words and 27
groups of trisyllabic words exist in Persian. A separate decision tree is trained for each of these groups. For
example, the words /ket b/ and /med d/ (means ‘‘book” and ‘‘pencil”, respectively) are used to train the
same specialized ‘‘CVCVC” tree. In the following sub-sections, we will introduce and explain the features of
words which are used by generalized decision trees, the encoding process of uttered words’ pronunciation pat-
tern as vectors to be used in training, a vector quantization method to quantize word’s pronunciation vectors
in order to reduce the variations in data before training, and finally the training algorithm of generalized deci-
sion trees and splitting criteria.



Table 3
Phonetic categories of vowels and consonants, their IPA symbol and assigned unordered category numbers

Category IPA symbol Phonetic description

1 , a, o Low back, low front, mid back vowel
2 e, i Mid front, high from vowel
3 u High back vowel
4 b, d, G, F, g Voiced plosive
5 p, t, k, � Unvoiced plosive
6 s,

R
, x, f Unvoiced fricative

7 Z, , v Voiced fricative
8 m, n, l, r Nasals, Liquids
9 , h Glottals

10 j Palatal glide
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5.1. Features of words considered by generalized decision trees

As the first module of hybrid pronunciation models, generalized decision trees are trained and then used to
predict pronunciation patterns based on several category-based, discrete and continuous features of words.
The effects of some of these features on pronunciations are discussed in Section 4. The category-based features
are defined as the membership of each of a word’s phonemes in one of the 10 phonetic categories. The location
of the stressed syllable in the word is used as a discrete feature. The logarithm of a word’s unigram probability
is the common continuous feature between static and dynamic trees. Dynamic trees, moreover, take into
account the rate of speech as another continuous feature.

Phonetic categories of phonemes in the word are considered as input features in the trees during training
and testing. In this work, 10 phonetic categories of Persian phonemes are introduced, as shown in Table 3.
This categorization tends to put phones with similar conversion behavior into the same group, i.e. phonemes
which have similar manners and tendencies in substitution, deletion and insertion. We considered both linguis-
tic characteristics and the confusion matrix extracted after phone recognition process in this categorization
simultaneously. The confusion matrix is derived by comparing aligned phonemic and recognized strings.
The phoneme recognizer, for this purpose, is the same phoneme recognizer used in conducting experiments
and preparing training data, i.e. the SHENAVA phoneme recognizer module. Therefore, the selected catego-
ries of vowels with similar conversion behaviors are: {/, a, o}, {e, i} and {u}. The assigned unordered category
numbers for these groups are 1, 2 and 3, respectively, as shown in Table 3. Phonetic categories of Persian con-
sonants are defined mainly based on their phonetic similarities and differences. We have also paid attention to
their behavior in the recognition process. For example, it is observed that consonant /y/ has a tendency to be
recognized as vowel /i/. Due to this special behavior it is inserted in a separate category. /]/ and /h/ are both
glottal; they are inserted in the same category because they are very likely to be deleted in Persian continuous
speech. Table 3 also shows seven categories of the consonants and their phonetic descriptions along with
assigned unordered category numbers, which are 7–10.

For an input word, the corresponding generalized decision tree considers phone arrangement in the word, by
asking about memberships of the consonants and the vowels, placed in various locations of the word, to dif-
ferent categories in order to predict the pronunciation pattern. As an example, the feature vector of the word
/ket/b/ with stress on its second syllable, which is uttered in a rate of 6.3 syl/s and its logarithm unigram prob-
ability is �3.45, will be [5 2 5 1 4 2 6.3�3.45], where the first five attributes define membership of each phone to
different phonetic categories and are treated as unordered category-based features during training and predic-
tion by trees, the 6th feature shows the location of stressed syllable and 7th and 8th features are continuous
features of rate and logarithm of unigram probability, respectively. It is clear that the lengths of feature vectors
differ for various words with different phonemic lengths. This may raise the question of how these vectors with
various lengths could be used to train trees? As described earlier, in our approach, a specific tree is trained for
each of the word groups with similar number and structure of syllables (which have also same phonemic
lengths). Hence the feature vectors which are used to train each tree have the same lengths.
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5.2. Encoding process of pronunciation patterns

Pronunciation pattern Code vector, assigned to each uttered word, represents mapping between aligned
phonemic and recognized strings of the uttered word and shows occurrences of substitution, deletion and
insertion in the utterance. The vectors have a length of 4N + 1, where N is the phonemic length of the words.
They are composed of zeros and ones that indicate identically aligned phones, substitutions, deletions and
insertions. Each phoneme of a word has three corresponding cells in the code vector. The first cell will be
set to one, if the phone is identically aligned and otherwise to zero; the second bit represents substitution
and the third bit deletion. Phone insertions are defined by extra cells accommodated between the sets of three
cells mentioned above. As an example, consider word /ket/b/ which is recognized as /]et/#/ (the first conso-
nant is substituted and the last consonant is deleted) in the utterance. The assigned code vector for this uttered
word will have a length of 4 � 5 + 1 and will be defined as:
0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 0 1 0

i m s d i m s d i m s d i m s d i m s d i
where i, m, s and d specify cells in vector which are related to phone match, substitution, deletion and inser-
tion, respectively.

5.3. Vector quantization of pronunciation pattern: a way to deal with data insufficiency

The large variety of pronunciation patterns and limited occurrence of each one in the database is a chal-
lenge in training trees. To solve this problem and keep one of the main contributions of our approach, which
is training models by a medium-size corpus, we employed vector quantization (VQ) to reduce the diversity of
pronunciation patterns. Quantization vectors are then used in training and prediction.

As described earlier, data is partitioned according to various word groups, based on the number and struc-
ture of the syllables. The K-means algorithm is applied to each of these partitions to quantize various pronun-
ciation patterns’ code vectors. In this way, for each partition of data, we could quantize pronunciations and
collect them in groups containing ones which are similar, based on their least squared distance error. Unique
labels are assigned to each of the patterns in a cluster. These labels are just unique names for each quantization
vector and can be chosen in any way, but there should be a one to one correspondence between labels and
quantization vectors. Labels are attached to corresponding uttered words and are used as prediction outputs
in the training phase. As a result, generalized decision trees predict labels of likely pronunciation patterns
based on the features of input words. The pronunciation pattern related to the predicted label will be decoded
and will be used as a framework for generating pronunciation variants by applying appropriate contextual
rules in the final step of the procedure.

Here, the vector quantization process is further described by giving an example. For words with CVCVC
structure, 11,356 uttered samples are available in the database. This is one of the most common structures
among Persian words. Words with CVCVC structure are pronounced in 380 pronunciation patterns. Hence
on average, there exist almost 30 uttered words for each of these pronunciation patterns. We quantized these
380 pronunciation vectors into 114 quantization vectors to have an average of almost 100 samples for each of
the quantization vectors. The number of bins for all other disyllabic and trisyllabic groups of words is set in
the same way to have almost 100 samples (uttered words) around each quantization vector. For monosyllabic
words there are enough samples available for each of the observed pronunciation patterns. As a result, for
monosyllabic words, no vector quantization is carried out. Fig. 7 is an example of vector quantization for
the CVCVC group. The left side of the figure shows pronunciation patterns in groups containing similar pat-
terns, and the number of the uttered words. Different cells in the vectors of each group are shown in dark grey.
The corresponding quantization levels are shown on the right side. Unique labels related to these quantization
vectors are assigned to corresponding uttered words to be used as prediction outputs in the training phase
while the inputs in training will be the features derived from uttered words described in Section 5.1.

To design an M-level codebook for a group of words with similar syllabic structures, it is necessary to par-
tition 4N + 1 dimensional space (where N is phonemic length in this group as discussed in Section 5.2) into M



Fig. 7. An example of vector quantization for words with CVCVC syllabic structure.
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cells and associate a quantized vector with each cell. The criterion for optimization of the vector quantizer is to
minimize the overall average distortion over all M-levels of the VQ. The overall average distortion can be
defined by
D ¼ E½dðx; zÞ� ¼
XM

i¼1

pðx 2 CiÞE½dðx; ziÞjx 2 Ci� ¼
XM

i¼1

pðx 2 CiÞ
Z

x2Ci

dðx; ziÞpðxjx 2 CiÞdx ¼
XM

i¼1

Di; ð4Þ
where the integral is taken over all components of vector x(x is a variation pattern vector), p(x 2 Ci) denotes
the prior probability of codeword zi, p(x|x 2 Ci) denotes the multidimensional probability density function of
x in cell Ci and Di is the average distortion in cell Ci. An iterative algorithm which guarantees a minimum of
the average distortion measure exists and works well in practice (Kovesi et al., 2001). By applying this VQ
technique to the set of pronunciation patterns of a specific group of words (which are used to train a tree)
and finding their centroids, each of the patterns will be evaluated by exhaustively computing its distance from
each of the centroids. Then, the label of the nearest neighbor quantization vector is used to encode that pat-
tern. In this way, we solve the difficulty of training trees due to diversity of pronunciation patterns and insuf-
ficiency of samples for each pattern by using quantization patterns instead. As a result, a medium-size
database could be used to train trees in hybrid pronunciation models accepting a minimal loss of information
on pronunciation variation due to the nature of quantization in information reduction. We accept this min-
imal loss of information in a trade off to gain the advantage of being able to train the models using a medium-
size corpus which contains a very limited number of occurrences for some actual patterns.

5.4. Generalized decision tree training algorithm: splitting criteria and prediction process

We exploited a training algorithm which tries to reduce the sum of the entropies of terminal nodes of deci-
sion trees while training. The total entropy should not be very low, to avoid over-fitting the models to the
training data. A splitting criterion is used for this purpose, i.e. when the number of samples or input/output
training pairs (feature vectors and labels of patterns’ pairs of uttered words) in the node is greater than a cer-
tain threshold, the node can be further split, and on the contrary, when the number of samples is less than the
threshold, the node becomes a terminal node. The threshold is experimentally set to 200, in order to have a
meaningful decision in each terminal node. Questions in the decision tree training framework are chosen auto-
matically by the training algorithm based on the set of input features which are introduced in Section 5.1 to
partition data samples of a node. The training task is to find the best question for any node split which is



Fig. 8. First four levels of CVCVC dynamic generalized decision tree used in the first stage of the hybrid model.
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equivalent to splitting the node in a way to obtain leaf nodes that are as pure as possible, in terms of class
distribution (classes here are labels of quantization pronunciation patterns). The training algorithm will be
discussed shortly. Let Y be the random variable of classification decision. We could define the weighted
entropy for any node t as follows
HtðY Þ ¼ HtðY ÞpðtÞ ¼ �
X

i

pðijtÞ log pðijtÞpðtÞ; ð5Þ
where p(i|t) is the probability of data samples in node t belonging to class i and p(t) is the prior probability of
visiting node t (equivalent to the ratio of number of data samples in node t and the total number of training
data samples). With this weighted entropy definition, the splitting criterion is equivalent to finding the ques-
tion which gives the greatest entropy reduction, where the entropy reduction for a question q to split a node t

into leaves l and r can be defined as
DH tðqÞ ¼ H tðY Þ � ðH lðY Þ þ H rðY ÞÞ ¼ HtðY Þ � H tðY jqÞ ð6Þ

The reduction in entropy is also the mutual information between Y (classification or identifying the quantiza-
tion pronunciation pattern) and question q (which is based on input features). The task then becomes evalu-
ating the entropy reduction DH q for each potential question, based on input features, and picking the question
with the greatest entropy reduction, that is,
q� ¼ arg max
q
ðDHtðqÞÞ: ð7Þ
Fig. 8 shows the first four levels of dynamic generalized decision tree trained for words with CVCVC structure.
Showing more branches is avoided for the sake of saving space. Fig. 8 presents a real example –, numbers in
the figure are actual values that appeared in the trained CVCVC tree.

As the prediction procedure runs, the decision tree asks for phone identities, the location of the stressed
syllable, word unigrams and the rate of speech (in dynamic trees). Finally, the most probable labels of pro-
nunciation patterns are defined in the terminal nodes as the outputs of the prediction process. Then, the
most likely pronunciation pattern will be known as a framework to generate pronunciation variants. Each
pronunciation pattern defines which phonemes can be substituted, deleted or where an insertion can occur.
We discussed the effects of factors such as rate of speech, unigram, syllable location and stress on pronun-
ciation variation in Section 4. Therefore, it should be clear why the idea of predicting pronunciation pat-
terns using generalized decision trees works. We have used these features of spoken words besides
information about phone categories, in every location of the word, to predict pronunciation patterns.
The mutual information between the input features and the output, which are labels of pronunciation pat-
terns, is discussed. A word clustering idea and a vector quantization technique is used to face the problem
of the medium-size of the training data in the framework of generalized decision trees. We cannot train
generalized decision trees for words with more than three syllables because in Persian, words with the same
structures and more than three syllables are too rare. Hence, we applied only contextual rules to such
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multi-syllabic words in order to generate their variants. As the words with more than three syllables play a
small role in Persian language, treating these cases in a conventional way has a minor effect on the overall
performance.

6. Contextual rules

The contextual rules constitute another important building block in the suggested hybrid pronunciation
models. After defining appropriate pronunciation patterns as a framework for generating pronunciation vari-
ants of the word by generalized decision trees, contextual rules can be applied to the permitted regions of sub-
stitution and insertion by taking into account the context of these regions. They are a set of context-dependent
rewrite rules which are defined in the form of LFR ? LOR, in which L and R represent left and right single
phone contexts of the focus string F. F represents the phonemic string and can be recognized as O due to pro-
nunciation or phone recognizer error. F and O can be more than a single phone, and F also can be an empty
string in which case the rule becomes an insertion rule in the form of LR ? LOR. The combination of LFR is
called the condition of the rule because it involves the contextual condition of applying the rule i.e. existence of
the string LFR in the phonemic transcription of the word.

The main idea of learning the rules and applying them to dictated regions (marked by generalized deci-
sion trees) is the same as the method described in Cremelie and Martens (1999). However, the main idea
and the differences with our implementation will be discussed shortly. The same 25 h medium-size training
database which was described earlier is used for the extraction of contextual rules. The learning algorithm
compares aligned phonemic string and the recognized string of phones. When a difference between aligned
phone strings is detected, a rule will be derived, i.e. the context and focus F will be extracted from pho-
nemic transcription and the output O from the recognized string. The overall number of times that the
condition of a specific rule has occurred in the phonemic transcriptions of the training database is counted;
this number is called the coverage of the rule which means how many times a specific rule could occur in
the whole database. We can then calculate the application likelihood of each rule pAL which is used in
pruning statistically unimportant rules. The application likelihood of a rule is defined as the probability
of pronouncing or recognizing the string F as O when its condition is satisfied, i.e. LFR string exists. When
the likelihood of a rule is very low, it means that the rule is statistically unimportant. The likelihood is
calculated by dividing the number of times a specific rule has been derived from the training database
by the number of times it could have occurred, regardless of whether it has occurred or not (i.e. the cov-
erage of that rule). The definition of application likelihood for ith rule ri can be expressed and calculated
by the following equations, where count2(ri) is the number of times ri has occurred in the training data-
base, and count1(ri) is the coverage of ri:
pALðriÞ ¼ pðOjLFR; riÞ ¼
count2ðriÞ
count1ðriÞ

: ð8Þ
A large set of 47,273 different rules are derived from the rule generation stage. The large size of this set is
due to the fact that for each detected unique pronunciation variation (irrespective of whether it occurred
frequently or not) a rule is derived. Hence, we used a rule pruning phase to remove rules which are not
sensible from a statistical point of view and to select the rules that represent relevant pronunciation var-
iation mechanisms. The pruning stage is accomplished by considering the application likelihood of each
rule i.e. rules with less than 0.1 likelihood are pruned to achieve a number of 98,325 statistically meaning-
ful rules; the used threshold is chosen experimentally. The approach is completely detailed in Vazirnezhad
et al. (2005a).

A difference of our work in rule learning algorithm in comparison with Cremelie and Martens (1999) will be
shortly summarized here. In the rule learning approach introduced in Vazirnezhad et al. (2005a), and of course
in this work, we modified the algorithm to match with the nature of Persian language. We defined another rule
format in our work which makes it possible to capture some frequent types of pronunciation variations in Per-
sian language which cannot be captured by the simple LFR ? LOR format. Upon these new rule formats, for
example, if there is a triple-phone set, including one of the group of {/m/, /n/, /l/, /r/} consonants, surrounded
by two similar vowels, this group of phones will be most probably pronounced as just one vowel.
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The rules described so far, are derived automatically from the training database. As a direct result of data-
base size, it is sensible that the database does not have coverage for all possible phone arrangements and the
final set of data derived rules may be deficient due to the fact that all sorts of Persian phone variations are not
seen in the database and are not captured by the rules’ learning algorithm. We later added some knowledge-
based rules to solve this issue. Knowledge-based rules are a small proportion in comparison with data derived
rules and have a minor effect on the whole performance of the system. However, they are useful and we keep
them in the system. Knowledge-based rules are designed to give a generality to some data derived rules by
taking into account Persian linguistic facts. They solve a small part of the problem described above due to
data insufficiency matter. As an example, in Persian, when a voiced plosive precedes by any consonant, it
is very likely that the vowel /e/ be inserted between them (Haghshenas, 1995). We add this knowledge-based
general rule to the set of specific rules, from the same framework, which were derived from data such as inser-
tion rules: tg? teg or nG ? neG. As described above, regarding the database size, all possible arrangements
of a voiced plosive preceding by a consonant are not seen in the training database and as a consequence all
rules in this framework are not extracted. To solve this issue we add the above mentioned general knowledge-
based rule (i.e. vowel /e/ can be inserted between a consonant and a voiced plosive) to solve the issue of lack of
coverage due to data insufficiency.

Utilizing only contextual rules in order to generate pronunciation variants have some drawbacks. The
main disadvantage of the contextual rules as a sole tool for pronunciation variation modeling is that these
rules involve only contextual information and do not consider word-level information, such as words’ syl-
labic structure, stress pattern, unigram and rate of speech. However, the hybrid of generalized decision tree
and contextual rules benefits from the advantages of contextual rules without suffering from its
weaknesses.

7. A measure of confusability to discard confusable lexicon entries

Adding all variants of the words to the lexicon of an ASR system does not always decrease the word error
rate (WER). Which variants must be included in the lexicon and which ones must be excluded is an important
problem that remains to be solved. Some variants improve the system performance and others cause degra-
dation. It is difficult to determine which one will decrease the WER. However, it has been shown that confus-
able variants will degrade the performance of an ASR system. Confusable variants are those which are
homophones to other words’ variants or only differ in just confusable phonemes. In fact, in designing an
ASR lexicon, it is difficult to judge beforehand which variants contribute to describing the variances of the
corpus at the level of pronunciation and also are not confusable, and is often postponed until all of the vari-
ants are generated. After generating all variants, the confusable ones will be rejected through a lexicon pruning
phase (Wester, 2003).

Sloboda and Waibel (1996) chose to reduce confusability by eliminating learned pronunciations that
exactly match entries for other words. We propose a softer measure, which introduces a metric to judge
the confusability of individual word variants. We introduced a technique in calculating the confusability
scores at the word level in order to be able to discard highly confusable entries from the lexicon. We
name this measurement ‘‘Confusability Count” in this study. The confusability count of a pronunciation
variant is defined as the number of times it is more similar to variants of other words in comparison with
its phonemic transcription, i.e. the number of times its alignment distances with other words’ entries is
smaller in comparison with the alignment distance with its phonemic form itself. For example, the word
/ket b/ has a model generated variant /keb b/ whose distance to its phonemic form is 1, the calculated
confusability count for this variant is 2 because its alignment distances with other words’ entries in two
cases is smaller than 1. These two cases are related to variants related to word /kab b/ (which means
roast meat).

A variant of a word is discarded from the lexicon when its confusability count is more than a threshold
Tprune. In this way, we can reject variants that are almost homophones to already existing lexicon entries.
We conducted a set of experiments using different values of Tprune to find out the effect of the pruning thresh-
old on the size of the lexicon, the number of survived variants per word and consequently on the performance
of ASR system. The results are detailed in the following section.
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8. Experiments

Two sets of experiments were conducted to evaluate the performance of our approach. First, we com-
pared the performance of various pronunciation models, by measuring the overall similarity between gen-
erated variants of each model to actual variants that occurred in the test set. The test set in this experiment
consists of 1 h speech material from the held out speech utterances of Large-FARSDAT. This test set is
completely separate from the training set. The performance of each model is measured by first generating
variants of each word, which is available in the test set and consequently aligning generated variants of the
word with corresponding recognized strings in the test set. The process is done for all existing words in the
test set and distances between aligned pairs were normalized to the phonetic lengths of the aligned strings.
The alignment was carried out using the standard DP algorithm of NIST (Black, 1999). Eq. (9) shows how
the distances between aligned strings were calculated. Eq. (10) gives a way of normalizing the distance to
the length of two aligned strings:
Table
Averag

Pronu

Dynam
Static
Contex
Phone
dist ¼ N sub þ Ndel þ N ins; ð9Þ

normalized dist ¼ dist

N corr þ N sub þ N del þ N ins

; ð10Þ
Ncorr, Nsub, Ndel, Nins are the numbers of phone match, substitution, deletion and insertion in aligned pairs. In
this set of experiments, the lower normalized distances introduce the closer generated variants to actual
recognized ones, and in turn, show the better performances for the models. Averaged normalized distances
for hybrid models, contextual rules and phonemic transcriptions are calculated by conducting separate exper-
iments. The results are summarized in Table 4. Results in the contextual rules row in Table 4 relate to the
experiment which uses only contextual rules in generating variants to calculate average normalized alignment
distance between generated variants and actual variants of words. The phonemic transcription pronunciation
4
e normalized distance between aligned model variants and recognized variants for all words in the lexicon

nciation model Average normalized distance

ic hybrid statistical 0.43
hybrid statistical 0.45
tual rules 0.47

mic transcription 0.52

Fig. 9. Average number of pronunciation variants per word for different values of threshold Tprune.
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model in Table 4 refers to the experiment in which we have used the phonemic transcriptions to align with
actual variants. Table 4 reveals that variants generated by hybrids of decision trees and contextual rules
are closer to the actual variants, over the test set. Among hybrid models, dynamic ones have better perfor-
mance by considering the rate of speech while generating pronunciation variants.

In the second set of experiments, we construct lexicons using hybrid static and dynamic pronunciation
models. Lexicons are then pruned in the same way described in Section 7, using different values of Tprune. This,
in turn, produces lexicons with different numbers of variants per word. Fig. 9 shows how the average number
of pronunciation variants per word evolves as a function of threshold Tprune for dynamic and static lexicons.
The dashed line represents dynamic lexicons and the solid line static lexicons.

After generating lexicons with different numbers of variants per word using different Tprune values, we use
them in a series of recognition experiments on the test set. The experiments evaluate how the word recognition
accuracy is improved utilizing hybrid static and dynamic model generated lexicons with different numbers of
variants per word. We employed generated lexicons in the SHENAVA Persian ASR system. The baseline
SHENAVA dictionary contains only the phonemic transcription for every word. Therefore, the baseline dic-
tionary contains 1200 phonemic entries for the 1200 words it contains. The version of SHENAVA used in our
experiments did not employ any language model to decrease its output word error rate. We did not use a lan-
guage model because we wanted to study the effectiveness of each of the plugged in lexicons without having an
interacting system, here the language model. Language models compensate for the errors from their preceding
modules. However, using a language model makes it difficult to understand the level of effectiveness of each
lexicon. The reason is that the compensatory effect of the language model is highly nonlinear and it shows
Fig. 10. Word error rates on the test set for different values of threshold Tprune. The baseline performance on test set is 54.2%.

Table 5
Reduction in the WER of the ASR system due to the employment of modified lexicon against original lexicon containing only reference
forms of words

Pronunciation model Absolute WERR (%) Relative WERR (%)

Dynamic hybrid statistical 6.3 11.6
Sialic hybrid statistical 4.4 8.1
Contextual rules 2.9 5.4
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different levels of error compensation while working with different lexicons. These experiments were conducted
on a set of 100 utterances, taken from the remaining held out part of Large-FARSDAT which is completely
separate from the training set. The absolute WER for the baseline system, which utilizes the lexicon with only
phonemic version of the words, is 54.2%. The word error rates obtained via plugging dynamic and static lex-
icons into our recognizer are shown in Fig. 10. Each point in Fig. 10 corresponds to a Tprune value which can
be read from Fig. 9.

Fig. 10 shows the minimum WERs obtained by using lexicons containing 2.48 and 2.61 words per variant
for static and dynamic cases, respectively. In both cases, the pruned lexicons are obtained by Tprune = 2. Table
5 summarizes the best results obtained by hybrid static and dynamic models. WER reductions are reported in
terms of absolute word error rate reduction (WERR) and relative WERR (against the baseline system). The
best result obtained from our previous work (Vazirnezhad et al., 2005a) by using only contextual rules is also
inserted in Table 5.

Table 5 reveals that hybrid dynamic pronunciation models make the best improvements in ASR. This is
due to the capacity of these models to consider the structural and word level information, while static
versions do not take into account the rate of speech which is an important factor in pronunciation var-
iation. An important point in our work is the fact that the hybrid models are designed, at the level of
building blocks, to efficiently deal with data insufficiency. Generalized decision trees and contextual rules
are trained with a medium-size training set of only 25 h. We have designed a hybrid of generalized deci-
sion trees and contextual rules which benefits from advantages of each of its building blocks. It should
also be noted that contextual rules are able to model co-articulation phenomena efficiently but they are
not basically sensitive to any word level information, while generalized decision trees in the hybrid
approach compensate for this drawback too. Although the reported improvements are obtained using a
Persian ASR system, a comparison between the obtained results and those reported in similar research
performed on English and other languages, some of which are reported in the next section, confirms
the efficiency of our approach in dealing with any medium-size training set.

9. Discussions

Performing quantitative comparison between various researches on pronunciation modeling is rather dif-
ficult as these studies are carried out in domains of various languages and are evaluated on different tasks
and circumstances using different recognition engines. However, we believe that it would be useful to review
the results of some valuable research in this field to clearly demonstrate the place of the present research and
its specific contributions among other works.

Fukada et al. (1999) trained a neural network to generate multiple pronunciations of words. Spontane-
ous dialogues from a total of 230 speakers (100 males and 130 females) were used for pronunciation and
acoustic model training. Canonical pronunciations with quintphone context and their corresponding real-
ized pronunciations (about 120,000 samples in total) were used as inputs and outputs for the pronuncia-
tion network training. They achieved 3.4% WER improvement for a simple dictionary at the baseline of
34.5% WER. They also reported a 2.6% WER improvement for their expert dictionary at the baseline of
29.0% WER.

Cremelie and Martens (1999) introduced a method that relied on a pronunciation rule formalism that
respects a hierarchy within a set of rules and imposes a number of constraints under the form of negative rules.
They produced pronunciation variants of each word by applying these rules wherever applicable, with regard
to phonemic context. Their experiments showed that the introduction of such variants in a segment-based rec-
ognizer significantly improves the recognition accuracy. On TIMIT, which is a medium-size read speech cor-
pus containing 6300 sentences, an absolute word error rate reduction of 1.41% at a baseline of 8.39% was
obtained.

Fosler-Lussier (1999a) used decision trees to capture phonetic pronunciation variations of words and syl-
lables in spontaneous speech. He built models for syllables and words which could dynamically change the
pronunciations used in the speech recognizer based on the extended context, including surrounding words,
phones, speaking rate, etc. Implementation of the new pronunciation models automatically derived from data
using the ICSI speech recognition system showed a 4–5% relative improvement on the Broadcast News rec-
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ognition task. When the full 200 h training set was used, word trees gained 0.3–0.6% over the baseline
(depending on the test set) compared to 0–0.5% gain for the syllable trees.

An absolute WER reduction of as high as 6.3% at the baseline of 54.2% WER is obtained in our work
as the best result, which is equivalent to a relative WER reduction of 11.6%. This is a noticeable result
among reported results in similar works. This result is obtained while we used a medium-size speech cor-
pus of 25 h read speech as our training set. Our work is comparable to the work of Fosler-Lussier (1999a)
from the point of view that in both of the works, pronunciation variation is modeled on the word level.
Meanwhile, we have focused on the issue of designing models which could be trained with a far smaller
corpus. This is done by implementing the idea of sharing the information on pronunciation of words with
the same syllabic structures and making generalizations over pronunciation models. The other important
advantage of our work is that in case of adding new words to the lexicon, that do not exist in the training
set, we do not need an extra training corpus which must contain enough realizations of the new words,
because the already trained models are sufficient to generate pronunciation variants of all the new words.
We quantitatively evaluated the effects of some factors such as rate of speech, word predictability, syllable
location and stress on pronunciation variation, and employed them effectively in modeling pronunciation
variations. We introduced hybrid pronunciation models in two static and dynamic versions. Dynamic ver-
sions use information on rate of speech to dynamically update the lexicon entries in an adaptation to this
factor. Results show that employing rate of speech in generating the lexicon entries, effectively improves
the performance of ASR in comparison with the static version.

10. Conclusions

In this paper, we introduced a novel technique to combine decision trees and contextual rules in the
framework of hybrid statistical models to generate word pronunciation variants. Hybrid statistical models
consider the word structure, word level features and also co-articulation phenomena, simultaneously. The
idea of generalized decision trees effectively handles blurred phone identities commonly found in conversa-
tional speech, instead of making a hard separation of phones. Results show that the pronunciation variants
which are generated by these hybrid statistical models are closer to recognized variants in comparison with
variants which are produced only by contextual rules. Hybrid models are combinations of contextual rules
and generalized decision trees and benefit from the advantages of both. The hybrid models solve the draw-
back of contextual rules, which work regardless of word level information such as phonological structure
of the word and stress. The word level constraints are marked by generalized decision trees, and then con-
textual rules will be applied only on marked regions. Pronunciation models which are designed at the word
level often need a very large training corpus with sufficient number of realizations of each word. However,
in our approach, the hybrid architecture is designed, in the level of its building blocks, to avoid the need
for a large corpus. This was carried out by the idea of generalization over trees, quantization of code vec-
tors of pronunciation patterns to decrease the large variety of patterns and classification of phonemes and
exploiting the class of a phoneme instead of the phoneme itself in prediction process by trees. In this man-
ner, hybrid models are able to be trained by a medium-sized corpus. Introducing variants, generated by the
hybrid models, to the lexicon of an ASR system, SHENAVA, led to a relative WER reduction of as high
as 11.6% which is a noticeable result. This shows the capacity of the generalized decision trees in employ-
ing word-level information to model pronunciation variation of words, while keeping the capability of
using only a medium-size speech corpus to be trained. Moreover, the trained models respond to all input
words and we do not need to be concerned about future new entries of the lexicon in the possible new
tasks.
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