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A three-dimensional boundary element solution for the seepage analysis in multi-domain general

anisotropic media has been developed based on the transformation approach. Using analytical

eigenvalues and eigenvectors of the hydraulic conductivity tensor, a closed-form coordinate transfor-

mation matrix has been provided to transform the quadratic form of governing equation of seepage for

the general anisotropic media to the Laplace equation. This transformation allows the analysis to be

carried out using any standard BEM codes for the potential theory on the transformed space by adding

small pre- and post-processing routines. With this transformation, any physical quantity like the total

head remains unchanged at corresponding nodes on the physical and transformed space, and the

normal gradient across the domain boundaries should also be transformed. In multi-domain problems,

compatibility equations (equality of the potential on corresponding nodes on the interface) and

equilibrium equations (conservation of the flux across the interface boundaries of adjacent domains) on

the corresponding nodes of interface between two neighbor domains are needed for boundary element

method. In the transformed space, the compatibility equation remains unchanged. However, due to the

distortion of boundaries in the mapped space and therefore misalignment of the unit outward normal

vectors along the inter-domain boundaries, the equilibrium of the normal fluxes have to be transformed

accordingly. Based on the proposed transformation, the normal to boundary flux boundary conditions

in the mapped space and the transformed equilibrium equation for interface of adjacent zones have

been given in this paper. Examples have been solved with the proposed scheme and the results were

verified with the finite element method. Excellent agreement of the results shows the veracity of the

proposed transformation and the formulas given for transformation of equilibrium equation for multi-

domain general anisotropic media.

& 2013 Elsevier Ltd. All rights reserved.
1. Introduction

The boundary element method (BEM) was developed in the
1960s as an efficient numerical technic [1]. The method then has
been used vastly for solving different problems in various fields.
The method is of the great interest because of the numerical form
of equations are written only on the domain boundaries. This
allows for discretizing the just boundaries of the domain and
there is no need for the discretization of the domain area. As
modeling and discretization of the problem is one of the most
costly parts of analyses [2], without the need of dealing with the
interior mesh, the BEM is more cost effective in mesh prepara-
tion [1]. This is specially the case when working on three-
dimensional problems when only surface boundaries are going
to be discretized. In comparison with other numerical methods
ll rights reserved.

deh).
which mandates the discretization of the whole media such as
finite element method (FEM), finite differences method (FDM) or
control-volume method (CVM), the fewer numbers of nodes and
elements in BEM not only reduces the costs of modeling and
discretization, but also decreases the size of the problem which
usually results in less computational efforts and memory storage
for solution.

Boundary element method has been successfully used to solve
Laplace equation in two- and three-dimensions [3]. As there are
no body–forces in Laplace equation, when solving it with bound-
ary element method, no domain integration is needed and all
advantages of BEM are preserved. Governing equation of seepage
in isotropic media is the Laplace equation: r2j¼ 0 in which j is
the potential head [4]. BEM solution of seepage problems in
isotropic two-dimensional problems are very well established in
the literature, for example see [5,6]. In orthotropic materials that
is a special case of anisotropy, the hydraulic conductivities are
different in x, y and z directions but the principal axes of the
hydraulic conductivities are parallel to the Cartesian system
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Nomenclature

x, y, z coordinates in original domain
xn, yn, zn coordinates in rotated domain
xnn, ynn, znn coordinates in transformed domain
j potential head
p seeping fluid pressure
r seeping fluid density
n outward normal to boundary unit vector
s, t two tangential to boundary unit vectors
@j=@n normal to boundary gradient of potential head
q flux vector
K hydraulic conductivity tensor
Kxx, Kyy, Kzz diagonal elements of the hydraulic conductivity

tensor

Kxy, Kxz, Kyz cross-diagonal elements of the hydraulic conduc-
tivity tensor

kxn
, kyn

, kzn hydraulic conductivity in principal axes directions
V1, V2, V3 three eigenvectors of hydraulic conductivity tenor
r Nabla operator: ð@=@x, @=@y, @=@zÞ

r2 horizontal gradient operator: ð@=@x, @=@yÞ

r2 Laplacian operator: @2=@x2þ@2=@y2þ@2=@z2

G Green’s function
det½� determinant operator of a matrix
I1, I2, I3 invariants of hydraulic conductivity tensor
l1, l2, l3 three eigenvalues of hydraulic conductivity tensor
R rotating transformation matrix
S stretching transformation matrix
T direct transformation matrix
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of coordinates. Governing equation in orthotropic media is
kx@

2j=@x2þky@
2j=@y2þkz@

2j=@z2 ¼ 0 [7], where kx, ky and kz

are the orthotropic hydraulic conductivities in x, y and z direc-
tions, respectively. Solution of this equation by boundary element
method has been provided by two distinct approaches [8]. The
first approach, that we here call it the fundamental solution
approach, uses the fundamental solution of the governing equa-
tion. By the use of fundamental solution and the Green’s theorem,
the boundary integral equation can be derived. This boundary
integral equation then can be discretized on the boundary for
solving the problem by the boundary element method. Using this
approach, Brebbia and Chang [7] derived 1=f4p½kxkykzðx2=kxþ

y2=kzþz2=kzÞ�
1=2g as the fundamental solution of the governing

equation and then solved it directly by BEM. Weakly singular
integral equations for Darcy’s flow in anisotropic media are given
in [9]. Rungamornrat [10] also used the fundamental solution
approach and the governing equations were established based on
a pair of weakly singular weak-form integral equations for fluid
pressure and fluid flux. More complicated set of fundamental
solutions for the problem were then used. The second approach,
that we here call it the transformation approach, uses a mathe-
matical transformation to transform the governing equation to
Laplace equation. After transformation, the problem is solved by
classical boundary element method for Laplace equation in the
transformed space. Then by an inverse transformation, the calcu-
lated results will be transformed back to the original space.
Transformation approach has also been used in [11–13] for
seepage analysis with boundary elements in two-dimensional
orthotropic materials. The transformation approach has been
used successfully for seepage applications by Laef et.al. [14] for
three-dimensional aquifers. Although the three-dimensional
aquifers were dealt with in [14], the effective dimension of an
aquifer system was reduced to two by use of the Dupuit
assumptions. Laef et.al. [14] discussed that in many practical
cases sufficiently accurate results could be obtained with less
than a full three-dimensional analysis. Based on the fact that the
horizontal dimensions of the aquifer are often much larger than
the vertical dimensions, they assumed a ‘nearly horizontal’ flow
as a good approximation. After assuming a nearly horizontal flow,
their problem was reduced to two dimensions in the horizontal
plane. They used the two-dimensional coordinate transformation
to deal with anisotropy. Although the nearly horizontal assump-
tion is a good approximation for some problems like large
aquifers, in many other civil engineering structures like dams,
sheet-piles, etc. it is not the case because the horizontal dimen-
sions are not much larger than the vertical dimensions. Thus
many problems can only be solved by a full three-dimensional
analysis. A full three-dimensional seepage analysis of orthotropic
materials by BEM has been given by Rafiezadeh and Ataie-
Ashtiani [15] using the transformation approach. In their work
they used the three-dimensional coordinate transformation for
orthotropic materials to transform the governing equation to the
Laplace equation.

For the well-posed seepage boundary value problems, the
boundary conditions are of Dirichlet type (potential is prescribed)
or Neumann type (normal to boundary potential gradient pre-
scribed (@j=@n)). In the fundamental solution approach however
the required boundary condition should be one of the two cases:
potential should be prescribed or kx@j=@xþky@j=@yþkz@j=@z

should be prescribed [7]. In the second boundary condition type,
most of the times the pre-calculation of the boundary condition
should be done.

In the transformation approach, Dirichlet boundary condition
remains unchanged while the Neumann boundary condition
should also be transformed. The transformations of these Neu-
mann boundary conditions are straight-forward and can easily be
computed. The transformations are given for two-dimensions by
Laef et.al.[14] and Liggett and Liu [5] for general anisotropic
media. In three-dimensions, such transformations for orthotropic
media are given by Rafiezadeh and Ataie-Ashtiani [15]. In multi-
domain problems, corresponding nodes on the interface between
neighboring domains should satisfy the compatibility and equili-
brium equations. Compatibility equations oblige the equality of
the potential on adjacent nodes and equilibrium conditions
conserve the flowing normal flux between the two neighboring
domains. For any seepage analysis in multi-domain media by
BEM, the compatibility and equilibrium equations should be
undertaken in the model. When the domains are anisotropic
and the transformation approach is used, these equations should
also be transformed. The compatibility equation remains
unchanged after transformation however, the distortion of
boundaries leads to misalignment of the unit outward normal
vectors along the interfaces of neighboring domains, the equili-
brium of normal fluid fluxes needs to be transformed accordingly.
ðkð1Þxx kð1Þyy Þ

1=2
ð@j=@nÞð1Þ ¼ ðkð2Þxx kð2Þyy Þ

1=2
ð@j=@nÞð2Þ has been used as the

equilibrium equation in [11–13] which is an approximation based
on the concept of equivalent hydraulic conductivity in two-
dimensional orthotropic domains. Laef et.al. [14] derived the
exact transformation of equilibrium equation in two dimensions.
Rafiezadeh and Ataie-Ashtiani [15] derived the exact equilibrium
condition for three-dimensional orthotropic media.

More general anisotropic media often occur when dealing with
applied seepage problems in engineering. Large hydraulic struc-
tures like dams are usually built on the rivers flowing in young
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geological areas. The foundations of dams are usually made from
layers of folded deposited sediments. Sedimentary deposits are
often anisotropic with flow occurring more readily along the
plane of deposition than across it [16]. When such layers are
folded, the principal axes of hydraulic conductivity do not remain
horizontal or vertical and so the media cannot be assumed as
orthotropic media and cases of general anisotropy happen. Under-
ground water supply projects are also the similar case while
pumping out the water are often happened through wells that are
drilled into folded aquifers. In such media that are not ortho-
tropic, the conductivity tensor is not diagonal and the cross-
diagonal elements do not vanish. In this case of general aniso-
tropy the governing equation of seepage will be kxx@

2j=@x2þ

kyy@
2j=@y2þkzz@

2j=@z2þ2kxy@
2j=@x@yþ2kyz@

2j=@y@zþ2kxz@
2j=

@x@z¼ 0.
Although this equation of seepage has been numerously solved

by the finite element method, reports of solution by boundary
element method are very sparse in the literature. A fundamental
solution approach has been used to solve the anisotropic potential
problems with indirect BEM by Zhang et.al. [17]. A comparison of
boundary element method formulations for steady state aniso-
tropic heat conduction in two dimensions based on the funda-
mental solution has been given by Mera et.al. [8]. Fundamental
solution for the general anisotropic Laplacian operator has been
given by [18,19]. Solution of this equation by the fundamental
solution approach has recently been presented by [19] for
applications in heat conduction problems. The presented funda-
mental solution for the equation is 1/{4p[x2(kyy kzz�kyz

2 )þy2

(kxx kzz�kxz
2 )þz2(kxxkyy�kxy

2 )þ2xy(kxykzz�kxz kyz)þ2yz(kxxkyz�kxy

kxz)þ2xz(kxykyz�kxzkyy)]1/2}. Although they derived the funda-
mental solution for the three-dimensional general anisotropic
Laplacian operator, their work was about two-dimensional aniso-
tropic Poisson problems.

An engineer may decide to use (i) the principal directions as
the coordinate axes (instead of the usual horizontal and vertical)
of choice in describing the 3D geometry of the model, (ii) make
use of the principal permeability in transforming the geometry
into an equivalent isotropic medium (stretching transformation)
and (iii) solve the problem, the results will match with the use of
the proposed direct transformation. The transformations for this
method of solution are detailed in [15]. However use of the direct
transformation encapsulates the pre-processing and post-
processing tasks of the engineer into the closed-form formula-
tions of the direct transformation. Especially, when dealing with
multi-domain problems that each domain has a different con-
ductivity tensor, multiple coordinate axes should be defined (a
coordinate system per each domain) and this makes the tasks
heavier and following the direct transformation procedure can
reduce the required efforts significantly.

Using the transformation approach in BEM context, combina-
tion of a rotation with a stretching of coordinates has been used
by Liggett and Liu [5] to transform the two-dimensional general
anisotropic governing equation to the Laplace equation. Transfor-
mation of the flux boundary conditions is also presented in their
work for two dimensions. Shiah and Tan [20] used a different
coordinate transformation to transform the governing equation to
the Laplace equation in two dimensions. They derived this
transformation from the method of characteristics. Hsieh and
Ma [21] introduced a linear coordinate transformation method to
solve the heat conduction on a thin layer of anisotropic medium
subjected to arbitrary thermal loadings applied inside the domain
or on the boundary surfaces. Ma and Chang [22] studied the two-
dimensional steady-state thermal conduction problems in the
anisotropic multi-layered media. They have used the linear
coordinate transformation to simplify the governing equation
without complicating the boundary and interface conditions.
Shiah and Tan [23] extended their earlier two-dimensional work
to three-dimensional anisotropic field problems. To calculate the
normal to boundary gradient in the distorted model they pro-
vided a formula in terms of @j=@x, @j=@y and @j=@z on the
physical domain. After solving the distorted model, for inverse
transformation and calculating the @j=@n on the physical domain,
they provided another formula in terms of @j=@x̂, @j=@Ẑ and
@j=@n̂ on the distorted model. In the proposed formula, the
potential gradient @j=@n̂ is directly obtained from the solution
of the boundary integral equation for the distorted domain, while
the other two potential gradients @j=@x̂ and @j=@Ẑ can be
computed using the standard numerical interpolation scheme
involving the shape functions. Their work was for single-domain
problems and they have not provided the transformation of the
compatibility and equilibrium conditions. In their work, they only
concentrated on single domain media and mentioned that addi-
tional conditions that invoke equilibrium and compatibility of the
potential gradient and the potential, respectively, at the interface
boundaries must be specified and because of the distortion of the
domain in the mapped plane, they are relatively more compli-
cated in form when compared to the isotropic case and so this
issue was outside the scope of the their study and thus was not
addressed in their paper [23]. Shiah et.al. [24] then provided the
complete transformations for heat flux boundary conditions for
the linear coordinate transformations provided in [20,23] for 2D
and 3D cases respectively. They also derived the transformed
compatibility and equilibrium conditions needed for the standard
multi-domain BEM for heat conduction problems.

To the best of authors’ knowledge, no BEM solution for the
fully anisotropic seepage problems has been given in multi-
domain three-dimensional media yet. The main objective of this
study is to develop a BEM solution for seepage in three-
dimensional multi-domain general anisotropic media. As men-
tioned before, despite the obvious importance of three-
dimensional boundary element method implementations, most of
the BEM developments in seepage analysis have been done in two
dimensions. In this study we apply the transformation approach in
three dimensions. We provide a direct transformation to map the
general anisotropic governing equation of seepage to the familiar
Laplace equation. By using analytical closed-form eigenvectors of
the hydraulic conductivity tensor, the transformation matrix that
rotates the system of coordinates to the principal axes of the
hydraulic conductivities is derived analytically. This first step
transforms the quadratic form of the governing equation to the
canonic form. A further coordinate stretching transformation can
be used to transform the canonic form to the Laplace equation [15].
By combining these two transformations into one transformation, a
single-step closed-form transformation has been provided that can
directly transform the quadratic governing equation to the Laplace
equation. Using this transformation, the potential boundary con-
ditions remain unchanged, but the flux boundary conditions
should be transformed accordingly. Transformation of the flux
boundary conditions is derived analytically. We show that when
using the specific provided transformation, the transformed nor-
mal to boundary flux boundary condition in the distorted domain
is a function of normal to boundary flux in the physical domain
only and neither tangential fluxes nor @j=@x, @j=@y or @j=@z are
needed in physical or distorted models for transform (physical to
distorted) and inverse-transform (distorted to physical) and this is
an advantage of this transformation in comparison with the
transformation proposed in [23]. For providing a complete BEM
solution to the multi-domain problems, the new compatibility
conditions (Equality of the potential on adjacent nodes on neighbor
domains) and equilibrium conditions (conservation of the flowing
flux) should also be transformed. Compatibility conditions remain
unchanged in the transformed domain, but the equilibrium
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condition will change. To extend our previous study in orthotropic
media [15], the transformed equilibrium equation is provided in
this paper for the general anisotropic case. To verify our formula-
tions and the proposed BEM solution for the single- and multi-
domain three-dimensional general anisotropic problems, three
numerical examples will be presented. The formulation detailed
in [15] is a special case of the formulations that are presented in
this paper. If a media with a horizontal and vertical principal
hydraulic coordinates exists or using the aligned principal hydrau-
lic conductivities as the coordinate axes for geometry definition
(i.e. the off-diagonal terms will be zero) the proposed formulations
will reduce to the ones presented in [15]. The examples are solved
with BEM with the transformations proposed and are verified with
comparison to the FEM results. The examples were chosen to
address the most important cases of general anisotropic problems
in real seepage applications in civil engineering practice which are
wells and dam-sites.
Fig. 1. (a) Original coordinates, (b) rotated coordinates, (c) rotated then stretched

coordinates.
2. Governing equation

We can define the specific discharge q (or seepage velocity) as
the volume flow rate per unit total area (pores plus particles)
normal to the flow. Assuming that the averaged flow field
can be considered as a continuum and applying the principle of
mass conservation and assuming saturated flows and neglecting
fluid and soil compressibility, we can derive the following
equation [5]:

rq¼ 0 ð1Þ

Darcy’s law says

q¼�Krj ð2Þ

in which j is the potential head which is defined by j¼ p=rgþz

in which p is the fluid pressure, r is the density of fluid, g is the
gravity and K is the permeability or hydraulic conductivity tensor
defined as follows:

K¼

kxx kxy kxz

kxy kyy kyz

kxz kyz kzz

2
64

3
75 ð3Þ

The cross-permeability, i.e. the off-diagonal term in the
hydraulic conductivity tensor are symmetric. A simple interpreta-
tion of the off-diagonal terms is that kxy, for example, is the
hydraulic conductivity value determining the specific discharge in
the x-direction due to a hydraulic gradient directed along the
y-coordinate axis [25]. To determine the hydraulic conductivity
tensor in three dimensions by in-situ tests, one may use aquifer
pumping test or packer test data based on the assumption that
the groundwater is flowing through a geologic continuum [26,27].
Estimation of three-dimensional hydraulic conductivity tensor
through a single well packer test and discrete fracture fluid flow
modeling is also applicable for a fractured rock mass [28].

Combining Eqs. (1) and (2) we may have:

rðKrjÞ ¼ 0 ð4Þ

Assuming homogeneity of hydraulic conductivity tensor, by
expanding Eq. (4) and substituting K from Eq. (3), one can find the
governing equation for seepage in general anisotropic media as
following:

kxx
@2j
@x2
þkyy

@2j
@y2
þkzz

@2j
@z2
þ2kxy

@2j
@x@y

þ2kyz
@2j
@y@z

þ2kxz
@2j
@x@z

¼ 0

ð5Þ
3. Domain transformation

We want to seek a coordinate transformation to transform the
governing Eq. (5) to a standard Laplace equation. The governing
equation has a quadratic form and can be transformed to canonic
form by the following transformation [29]:

xn

yn

zn

8><
>:

9>=
>;¼

fV1g
T

fV2g
T

fV3g
T

2
64

3
75

x

y

z

8><
>:

9>=
>; ð6Þ

In which fV1g, fV2g and fV3g are the eigenvectors of the hydraulic
conductivity tensor. The above coordinate transformation will
transform the governing equation to the following canonical
form:

kxn

@2j
@x2

n

þkyn

@2j
@y2

n

þkzn

@2j
@z2

n

¼ 0 ð7Þ

In which kxn
, kyn

and kzn are the principal hydraulic conductivities.
This transformation is a rotating transform which rotates the
coordinate system to a new one that the axes are parallel to the
principal axes of the conductivity tensor.

To transform Eq. (7) to the Laplace equation a further coordi-
nate transformation in the following form is applied:

xnn ¼ xnðkzn=kxn
Þ
1=2

ð8Þ

ynn ¼ ynðkzn=kyn
Þ
1=2

ð9Þ

znn ¼ zn ð10Þ

This second transformation is a stretching transformation that
stretches xn, yn and zn coordinates to xnn, ynn and znncoordinates. In
the transformed coordinates, the governing equation will be:

@2j
@x2

nn

þ
@2j
@y2

nn

þ
@2j
@z2

nn

¼ 0 ð11Þ

Rotating and stretching transformations of coordinate axes are
shown schematically in Fig. 1. To obtain a transformation that
directly transforms our governing equation to Laplace equation
we firstly use the analytical eigenvectors and eigenvalues of the
conductivity tensor [30].

The Cartesian hydraulic conductivity tensor K has three
principal invariants, fI1,I2,I3g, which are related to the eigenvalues,
flg and defined by the characteristic equation [31]

det½K�lI3�3� ¼ ðl�l1Þðl�l2Þðl�l3Þ ¼ l3
�I1l

2
þ I2l�I3 ¼ 0 ð12Þ

where I3�3 is the 3�3 identity matrix. From the equation above
the three invariants are given by [31]

I1 ¼ kxxþkyyþkzz ð13Þ
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I2 ¼ kxxkyyþkyykzzþkzzkxx�k2
xy�k2

yz�k2
xz ð14Þ

I3 ¼ kxxkyykzzþ2kxykyzkxz�ðkxxk2
yzþkyyk2

xzþkzzk2
xyÞ ð15Þ

The analytical solution presented here is specific to the
positive-definite and symmetric Cartesian tensors that are com-
monly encountered in many applications including seepage,
diffusion and heat conduction.

We then define the following additional auxiliary variables [30]:

v¼ ðI1=3Þ2�I2=3 ð16Þ

s¼ ðI1=3Þ3�I1I2=6þ I3=2 ð17Þ

y¼
1

3
cos�1 s

v3=2

� �
ð18Þ

As these three variables are functions of I1,I2 and I3 only, they are
also rotationally invariant parameters. The three eigenvalues of the
conductivity tensor which are the principal hydraulic conductivities
of the media then can be calculated as following [30]:

kxn
¼ l1 ¼

I1

3
þ2

ffiffiffi
v
p

cosy ð19Þ

kyn
¼ l2 ¼

I1

3
�2

ffiffiffi
v
p

cos yþ
p
3

� �
ð20Þ

kzn ¼ l3 ¼ I1�kxn
�kyn

ð21Þ

After the three eigenvalues have been computed, the three
eigenvectors fV1g, fV2g and fV3g can be calculated from the
following equations [30]:

½K�fV1g ¼ kxn
fV1g ð22Þ

½K�fV2g ¼ kyn
fV2g ð23Þ

½K�fV3g ¼ kzn fV3g ð24Þ

Solving the above equations for eigenvectors gives the analy-
tical eigenvectors as the following:

fV1g ¼ V1x V1y V1z

n oT
ð25Þ

fV2g ¼ V2x V2y V2z

n oT
ð26Þ

fV3g ¼ V3x V3y V3z

n oT
ð27Þ

in which

V1x ¼ ½kxykyz�Bxkxz�½kyzkxz�Cxkxy� ð28Þ

V1y ¼ ½kyzkxz�Cxkxy�½kxzkxy�Axkyz� ð29Þ

V1z ¼ ½kxzkxy�Axkyz�½kxykyz�Bxkxz� ð30Þ

V2x ¼ ½kxykyz�Bykxz�½kyzkxz�Cykxy� ð31Þ

V2y ¼ ½kyzkxz�Cykxy�½kxzkxy�Aykyz� ð32Þ

V2z ¼ ½kxzkxy�Aykyz�½kxykyz�Bykxz� ð33Þ

V3x ¼ ½kxykyz�Bzkxz�½kyzkxz�Czkxy� ð34Þ

V3y ¼ ½kyzkxz�Czkxy�½kxzkxy�Azkyz� ð35Þ

V3z ¼ ½kxzkxy�Azkyz�½kxykyz�Bzkxz� ð36Þ

Ax ¼ kxx�kxn
ð37Þ

Ay ¼ kxx�kyn
ð38Þ
Az ¼ kxx�kzn ð39Þ

Bx ¼ kyy�kxn
ð40Þ

By ¼ kyy�kyn
ð41Þ

Bz ¼ kyy�kzn ð42Þ

Cx ¼ kzz�kxn
ð43Þ

Cy ¼ kzz�kyn
ð44Þ

Cz ¼ kzz�kzn ð45Þ

Due to Eq. (6), the rotation transformation matrix R which
rotates the coordinate axes parallel to the principal axes of the
hydraulic conductivity tensor then will be equal to:

R¼

V1x V1y V1z

V2x V2y V2z

V3x V3y V3z

2
64

3
75 ð46Þ

And thus we will have

xn

yn

zn

8><
>:

9>=
>;¼R

x

y

z

8><
>:

9>=
>; ð47Þ

If we write the stretching transformation that is given in Eqs.
(8)–(10) in the matrix form, we will have

xnn

ynn

znn

8><
>:

9>=
>;¼ S

xn

yn

zn

8><
>:

9>=
>; ð48Þ

in which S, the stretching transformation matrix is defined by

S¼

ðkzn=kxn
Þ

1
2 0 0

0 ðkzn=kyn
Þ

1
2 0

0 0 1

2
664

3
775 ð49Þ

Transformation matrix T is then defined as the following:

T¼ S� R ð50Þ

Combining Eqs. (47), (48) and (50) one may have:

xnn

ynn

znn

8><
>:

9>=
>;¼ T

x

y

z

8><
>:

9>=
>; ð51Þ

in which T can be calculated by substituting (46) and (49) in (50):

T¼

ðkzn=kxn
Þ

1
2V1x ðkzn=kxn

Þ
1
2V1y ðkzn=kxn

Þ
1
2V1z

ðkzn=kyn
Þ

1
2V2x ðkzn=kyn

Þ
1
2V2y ðkzn=kyn

Þ
1
2V2z

V3x V3y V3z

2
664

3
775 ð52Þ

Transformation (51) is a direct transformation that transforms
the governing Eq. (5) to the Laplace Eq. (11).
4. Transformation of Neumann boundary condition

When the transformation in Eq. (51) is used, the domain will
be transformed to a distorted one. To solve the problem on the
transformed domain, we have to know the boundary conditions
on the transformed domain boundary, thus we should also
transform the boundary conditions accordingly. We usually have
two types of boundary conditions, the Dirichlet boundary condi-
tions and the Neumann boundary conditions. The Dirichlet
boundary condition will remain unchanged when the coordinate
transformation (51) is used because the physical quantity of
potential head is independent form the geometry and remain
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unchanged at corresponding points on the physical and trans-
formed domains. But because of the distortion in the domain, the
normal to boundary vectors will change and thus the potential
gradient across the boundaries will change accordingly. Thus the
Neumann boundary conditions should be transformed and the
appropriate @j=@nnn should be calculated.

As mentioned in the previous section the transformation T is in
fact the combination of two successive rotation R and stretching S
transformations which are defined in Eqs. (47) and (48) respec-
tively. When the domain is rotated, no distortion happens in the
domain and potential normal gradients remain unchanged, i.e.

@j=@n¼ @j=@nn ð53Þ

But when the coordinate stretching transformation acts, the
domain will be distorted the normal to boundary unit vectors
change and thus the potential normal gradients will change as
well, i.e.

@j=@nna@j=@nnn ð54Þ

To calculate the transformed value of the Neumann boundary
conditions in terms of values of the Neumann boundary condi-
tions in the original domain, consider

a¼ ðkzn=kxn
Þ
1=2

ð55Þ

b¼ ðkzn=kyn
Þ
1=2

ð56Þ

Using Eqs. (8)–(10) and the chain rule in differentiation we
will have

@j
@xn

¼ a @j
@xnn

ð57Þ

@j
@yn

¼ b
@j
@ynn

ð58Þ

@j
@zn
¼

@j
@znn

ð59Þ

We also have

@j
@xnn

¼
@j
@nnn

nxnn
þ
@j
@snn

sxnn
þ
@j
@tnn

txnn

@j
@ynn

¼
@j
@nnn

nynn
þ
@j
@snn

synn
þ
@j
@tnn

tynn

@j
@znn
¼

@j
@nnn

nznnþ
@j
@snn

sznnþ
@j
@tnn

tznn ð60Þ

where

nxnn
¼ nnn:i, nynn

¼ nnn:j, nznn ¼ nnn:k

sxnn
¼ snn:i, synn

¼ snn:j, sznn ¼ snn:k

txnn
¼ tnn:i, synn

¼ tnn:j, sznn ¼ tnn:k ð61Þ

and n is the unit normal to boundary vector and s and t are the
two tangential unit vectors of the boundary. We also have

@j
@nn

¼
@j
@xn

nxn
þ
@j
@yn

nyn
þ
@j
@zn

nzn ð62Þ

Using Eqs. (57)–(59) in Eq. (62) we will have

@j
@nn

¼ a @j
@xnn

nxn
þb

@j
@ynn

nyn
þ
@j
@znn

nzn ð63Þ

Substituting @j=@xnn, @j=@ynn and @j=@znn from Eq. (60) into
Eq. (63) and rearranging will give

@j
@nn

¼
@j
@nnn

anxn
nxnn
þbnyn

nynn
þnznnznn

� �
þ
@j
@snn

anxn
sxnn
þbnyn

synn
þnznsznn

� �
þ
@j
@tnn

anxn
txnn
þbnyn

tynn
þnzn tznn

� �
ð64Þ
From definition of stretching transformation we have

sxn

szn

¼ a sxnn

sznn

,
txn

tzn

¼ a txnn

tznn

,
nzn

nxn

¼ a nznn

nxnn

syn

szn

¼ b
synn

sznn

,
tyn

tzn

¼ b
tynn

tznn

,
nzn

nyn

¼ b
nznn

nynn

ð65Þ

Using (65), we may have

anxn
sxnn
þbnyn

synn
þnzn sznn ¼ sznn anxn

sxnn
=sznnþbnyn

synn
=sznnþnzn

� �
¼ sznn nxn

sxn
=sznþnyn

syn
=sznþnzn

� �
¼

sznn

szn

nn:sn ð66Þ

From the normality of nn and sn, we then may have

anxn
sxnn
þbnyn

synn
þnzn sznn ¼ 0 ð67Þ

Similarly from the normality of nn to tn we have

anxn
txnn
þbnyn

tynn
þnzn tznn ¼ 0 ð68Þ

Using Eqs. (67) and (68) in Eq. (64), Eq. (64) will be simplified to

@j
@nn

¼ C
@j
@nnn

ð69Þ

in which

C ¼ anxn
nxnn
þbnyn

nynn
þnznnznn ð70Þ

Substituting values of nxn
and nyn

from Eq. (65) into Eq. (69) we
will have

C ¼ nzn=nznn ð71Þ

Since nn and nnn are unit vectors we have

nzn ¼ 1þ
nxn

nzn

� �2

þ
nyn

nzn

� �2
" #�1=2

nznn ¼ 1þ
nxnn

nznn

� �2

þ
nynn

nznn

� �2
" #�1=2

ð72Þ

Using Eq. (65) in Eq. (72) and doing some algebraic manipula-
tions will give

C ¼
nxnn

a

� �2

þ
nynn

b

� �2

þn2
znn

" #�1=2

ð73Þ

Using Eqs. (69) and (73) in Eq. (53) we then finally have the
formula for transformation of Neumann boundary condition as
follows:

@j
@n
¼

nxnn

a

� �2

þ
nynn

b

� �2

þn2
znn

" #�1=2
@j
@nnn

Replacing a and b from Eqs. (55) and (56) will lead to

@j
@n
¼

kxn

kzn

n2
xnn
þ

kyn

kzn

n2
ynn
þn2

znn

	 
�1=2
@j
@nnn

ð74Þ

Eq. (74) gives us the transform and inverse transform of
Neumann boundary conditions. It means that for using the direct
transformation given in Eqs. (51) and (52) to transform the
governing Eq. (5) to the Laplace Eq. (11), any Neumann boundary
conditions @j=@n that are prescribed on the original domain
should be transformed to @j=@nnn in the transformed domain by
using Eq. (74). Thus it is clear that a preprocessing of the
Neumann boundary conditions is needed. After solution of the
Laplace equation in the transformed domain, any computed
values of @j=@nnn should again be transformed to the original
domain to find the @j=@n again with using Eq. (74). It means that
a post processing for computed normal gradients is required after
the Laplace equation has been solved.
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5. BEM treatment of the transformed domain

The governing equation to be solved is given in Eq. (5) on the
original domain O with boundary G. In the previous section we
showed that we can use the transformation (51) to reach the
transformed governing Eq. (11) in the transformed domain Onn

with transformed boundary Gnn. As it is very well established in
the BEM literature for the Laplace equation, we then will have [3]

cijiþ

Z
Gnn

G
@j
@nnn

dG¼
Z
Gnn

j @G

@nnn

dG ð75Þ

Here G is named as the Green’s Function of and is equal to
1=4prnn when the region is three-dimensional and the governing
equation is the Laplace Equation and rnn is the distance from any
point i to the integration point on the transformed boundary. ci is
between 0 and 1 and is equal to 1 if the point QUOTE i is inside
the boundary, 1/2 if point QUOTE i is on a smooth boundary and is
equal to zero when point QUOTE i is outside the boundary. If
point QUOTE i is on a non-smooth part of the boundary (a
boundary corner), ciis equal to the special angle of the corner
divided by 4p. The spatial angle _ is defined as the surface area of
the sector of the unit sphere that is centered at the corner point
x0 and lies inside the domain. The potential in any point in the
domain can be calculated by Eq. (75), if both potential j and its
normal to boundary gradient @j=@nnn is given on the whole of the
boundary. In well-posed problems, usually only one is prescribed
by the boundary conditions. If j is prescribed it can directly
be used in (75) but if @j=@n is prescribed, @j=@nnn can be
pre-calculated simply by Eq. (74). For calculating the potential
anywhere in the domain, we need to calculate the unknown
information on the boundary first i.e. we should calculate @j=@nnn

on parts of the boundary that j is prescribed and calculate on
remaining parts of the boundary in which @j=@nnn is prescribed.
To do this by BEM, we first discretize the boundary Gnn to a finite
number of surficial elements (in three-dimensional domains)
each of finite number of nodes. Appropriate shape functions are
defined for elements to enable us to interpolate the values of j
and @j=@n inside the element in terms of the nodal values. One
can write Eq. (75) for each node on the boundary Gnn. This will
result in a set of simultaneous linear equations that can be solved
for unknowns on the boundary. Completing the data on the
boundary, one then can calculate the potential in any point in
the domain by use of Eq. (75). If any @j=@n is needed to be
calculated on parts of the boundary in which j is prescribed, after
calculating the , the calculated value can be used in Eq. (74) as the
inverse transform of the Neumann boundary condition to calculate
the . To see the detail formulations for the method, the reader is
referenced to the previous publication of the authors [15]. A BEM
code that was previously developed by authors for orthotropic
media is developed for solving general anisotropic problems [15].
The evolution of the code includes the implementation of the
presented direct transformation, transformed Neumann boundary
conditions and transformed equilibrium equation. The code is
called SEEPBEM3D. To have more information about the BEM
treatment of the problem in the code, please refer to Rafiezadeh and
Ataie-Ashtiani [15].
6. Transformation of equilibrium equation

When the physical model includes more than one type of
material with different properties, usually the whole media is
divided into sub-domains or sub-regions or zones in a manner
that each domain is homogeneous by itself. Now consider a media
made from m sub-domains that the sub-domains are homoge-
neous but have different hydraulic conductivity tensors KðmÞ.
The sub-domains are connected with each other by interfaces
between domains. Boundary conditions are provided for the
boundary of the media but there is no information on the
interfaces between sub-domains. Domain k and domain l are
neighbor domains and domains k and l have nðkÞ and nðlÞ nodes
respectively and there are nI nodes on the interface between
them. Eq. (75) can be written for each nðkÞ and nðlÞ nodes of
domains k and l respectively, but as there is no data on the nI

nodes on the interface, two unknowns (j and @j=@nnn) for each
node are added to the system of equations. To be able to solve the
system of equations properly, two additional equations should be
added to the system. These two equations are named compat-
ibility and equilibrium equations.

Compatibility equation rules for continuity of the potential in
the media and means that a physical point on the interface should
have only one value for the potential, so for any point on the
interface we will have

jðkÞ ¼jðlÞ ð76Þ

which the superscripts denote the domain index. Because after
transformation, the potentials do not change, the Eq. (76) can
directly be used after transformation of each domain.

The equilibrium equation calls for conservation of flowing
mass between the domains, i.e. the normal to interface flowing
mass that exits from one domain should enter to the adjacent
domain, i.e.

qðkÞ:nðkÞ ¼ �qðlÞ:nðlÞ ð77Þ

Applying Darcy’s law we may have:

kðkÞe @jðkÞ=@nðkÞ ¼ �kðlÞe @j
ðlÞ=@nðlÞ ð78Þ

which subscript e states for the equivalent hydraulic conductivity
and the superscripts denote the domain index.

The transformation T that is calculated from Eq. (50) was a
combination of a rotating transformation q and stretching trans-
formation. In the rotating transformation, the coordinate axes
rotate to be parallel to the principal axes of the hydraulic
conductivity, i.e. kxn

, kyn
and kzn and therefore no deformation of

domains’ geometries occurs. However, in the stretching transfor-
mation the x- and y-coordinates are stretched in a manner that
the equivalent hydraulic conductivities in the new stretched
domain is equivalent to kzn and thus the governing equation is
transformed to the Laplace equation and so the equivalent
hydraulic conductivity in the transformed media is kzn . Thus the
equilibrium Eq. (78) will become

kðkÞzn
@jðkÞ=@nðkÞ ¼ �kðlÞzn

@jðlÞ=@nðlÞ ð79Þ

Substituting the transformed values of the normal gradients
from Eq. (74) into Eq. (78) we then have

kðkÞzn

kðkÞxn

kðkÞzn

nðkÞ
2

xnn
þ

kðkÞyn

kðkÞzn

nðkÞ
2

ynn
þnðkÞ

2

znn

" #�1=2

@jðkÞ

@nnn
ðkÞ

¼ kðkÞzn

kðkÞxn

kðkÞzn

nðkÞ
2

xnn
þ

kðkÞyn

kðkÞzn

nðkÞ
2

ynn
þnðkÞ

2

znn

" #�1=2

@jðkÞ

@nnn
ðkÞ

ð80Þ

Eq. (80) is the transformed equilibrium equation. Using the
two compatibility Eq. (76) and equilibrium Eq. (80), two addi-
tional equations for each node on the interface is provided and
the simultaneous global system of equations can be solved.
Assembling the system of equation of each sub-domain into a
global system of equations can then be performed as it is done in
any other standard multi-domain BEM and therefore is not
covered here, but one can refer to Rafiezadeh and Ataie-Ashtiani
[15] for more explanations Fig. 2 provides a schematic for visual
comprehension of the transformations. A model containing four



Fig. 2. (a) Physical model containing four sub-domains, (b) distorted (trans-

formed) model after transformation. (For interpretation of the references to color

in this figure, the reader is referred to the web version of this article.)
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sub-domains (blue, red, green and yellow) is shown in this
schematic. Typical nodes on the interfaces between domains are
also depicted. A is a node on the interface between blue and red, B
is a node on the interface between red and yellow, C is a node on
the interface between blue and green and D is a node on the
interface between green and yellow subdomains. Each subdomain
has a different hydraulic conductivity tensor. As shown in the
depiction, because of different permeability tensor each subdo-
main undergoes a different transformation and distortion. The
distorted subdomains may have gaps and overlaps. These gaps
and overlaps do not have any effect in the solution of the problem
as system of equations for each subdomain is independent from
the other ones. Compatibility and equilibrium conditions for the
nodes on the interfaces can then make connections between the
system of equations of each domain and make the global system
of equations. For example for node C, the compatibility equation
is jðbÞ ¼jðgÞ and the equilibrium equation is

kðbÞzn

kðbÞxn

kðbÞzn

nðbÞ
2

xnn
þ

kðbÞyn

kðbÞzn

nðbÞ
2

ynn
þnðbÞ

2

znn

" #�1=2

@jðbÞ

@nnn
ðbÞ
¼ kðgÞzn

kðgÞxn

kðgÞzn

nðgÞ
2

xnn
þ

kðgÞyn

kðgÞzn

nðgÞ
2

ynn
þnðgÞ

2

znn

" #�1=2
@jðgÞ

@nnn
ðgÞ

Similar equations can be written for any nodes on the inter-
faces between two zones. In case when multiple zones with
distinct hydraulic conductivities are joined together and share
one point as intersection point (for example the nodes on the line
connecting the four subdomains in the depiction), a singularity
happens at the intersection point. From a practical point of view,
in most calculations the intersection point is simply avoided, but
additional nodes are taken on each of the inter-zonal boundaries
close to the intersection. The results may not be entirely accurate
very close to the intersection but are usually more than accurate
enough for practical purposes [5].
7. Interior solutions

Solution of the Laplace equation of the transformed domain
may give us the potential and its gradients in any point in the
domain, i.e. we may have j, @j=@xnn, @j=@ynn and @j=@znn.
Potential is the same on the distorted and the physical domains,
but we need an inverse transformation for the gradients to have
@j=@x, @j=@y and @j=@z on the physical domain. Using the chain
rule, we have

@j
@x
¼

@j
@xnn

@xnn

@x
þ
@j
@ynn

@ynn

@x
þ
@j
@znn

@znn
@x

@j
@y
¼

@j
@xnn

@xnn

@y
þ
@j
@ynn

@ynn

@y
þ
@j
@znn

@znn
@y

@j
@z
¼

@j
@xnn

@xnn

@z
þ
@j
@ynn

@ynn

@z
þ
@j
@znn

@znn
@z

ð81Þ

From Eqs. (51) and (52) we have

@xnn

@x
¼ ðkzn=kxn

Þ
1
2V1x

@xnn

@y
¼ ðkzn=kxn

Þ
1
2V1y

@xnn

@z
¼ ðkzn=kxn

Þ
1
2V1z

@ynn

@x
¼ ðkzn=kyn

Þ
1
2V2x

@ynn

@y
¼ ðkzn=kyn

Þ
1
2V2y

@ynn

@z
¼ ðkzn=kyn

Þ
1
2V2z

@znn
@x
¼ V3x

@znn
@y
¼ V3y

@znn
@z
¼ V3z ð82Þ

Substituting the derivatives from Eq. (82) into Eq. (81), we will
have

@j
@x
¼ ðkzn=kxn

Þ
1
2V1x

@j
@xnn

þðkzn=kyn
Þ

1
2V2x

@j
@ynn

þV3x
@j
@znn

@j
@y
¼ ðkzn=kxn

Þ
1
2V1y

@j
@xnn

þðkzn=kyn
Þ

1
2V2y

@j
@ynn

þV3y
@j
@znn

@j
@z
¼ ðkzn=kxn

Þ
1
2V1z

@j
@xnn

þðkzn=kyn
Þ

1
2V2z

@j
@ynn

þV3z
@j
@znn

ð83Þ

Eq. (83) present the inverse transformation for calculating the
gradients in the interior points of the physical domain in terms of
the values of the gradients in the transformed domain which were
calculated by BEM. Writing Eq. (83) in the matrix notation, we
have

q¼ TT qnn ð84Þ
8. Verification examples

To examine the present formulations for the domain transfor-
mation, Neumann boundary condition transformation and the
transformed equilibrium equation, three examples are consid-
ered. All of the examples include general anisotropic cases. The
examples are solved by SEEPBEM3D and the results are compared
with FEM simulation results using the ANSYS software. To solve a
seepage problem in a general anisotropic media with this finite
element software we have used the analogy between seepage and



Table 1
Boundary conditions of example 1.

Face Boundary condition

Aquifer top ðz¼ 10 mÞ @j=@n¼ 0

Aquifer bottom ðz¼ 0Þ @j=@n¼ 0

Aquifer out ring ðx2þy2 ¼ 1002
Þ j¼ 30 m

Well wall ðx2þy2 ¼ 1Þ j¼ 15 m

Fig. 4. BEM mesh for example 1.
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heat conduction. The governing equation of seepage and heat
transfer in a general anisotropic media is analogous. In the
governing equation of heat conduction, the tensor of thermal
conduction replaces the hydraulic conductivity in seepage and the
temperature replaces the potential head.

The first example studies the head distribution around a
constant-head pumping well drilled in an anisotropic media and
is a single-domain problem. This example shows the accuracy of
the direct transformation. In the second example, a pumping well
in a two-layer anisotropic media is considered. The aquifer has
two domains to check the accuracy of the transformed Neumann
and equilibrium equations. The third example is to model the
seepage through foundation of a gravity dam placed in a V-shaped
valley folded from an anisotropic layer of sedimentations. This
example contains two general anisotropic domains.

8.1. Well in anisotropic media

A well of 1.0 m radius is drilled into a confined aquifer of 10 m
depth. The aquifer is made of a layer of anisotropic materials. The
hydraulic conductivity of the aquifer is defined by a fully
populated tensor

K ¼

7:8206 0:3990 2:1061

0:3990 6:6206 0:6364

2:1061 0:6364 9:8588

2
64

3
75� 10�5 m=sec

The aquifer is assumed to be a cylinder of 100 m radius that
the well is drilled in its axis. The sketch of the model is given in
Fig. 3. Total head of the aquifer is 30 m and in the well the
potential head is equal to 15 m. The aquifer is a confined one and
no flow is possible from top and bottom borders of the aquifer.
Based on the definition of the problem, boundary conditions for
the model are given in Table 1.

To model the geometry with BEM, the boundaries are dis-
cretized by triangular linear elements. A BEM mesh of the model
is given in Fig. 4. The BEM mesh includes one domain, 1024 nodes
and 2048 elements. After applying the direct domain transforma-
tion to the problem, the geometry of the model will distort and
the distorted BEM mesh of the problem after transformation in
Fig. 3. Sketch of model in example 1.

Fig. 5. Distorted model mesh (red) after transformation and original model mesh

(blue). (For interpretation of the references to color in this figure legend, the

reader is referred to the web version of this article.)

Fig. 6. Potential head along y-axis on the bottom of aquifer.
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which the Laplace equation governs is shown in Fig. 5. The
distorted model was solved with standard BEM for Laplace
equation. To verify the accuracy and correctness of the proposed
transformation, the problem was also solved by the finite element
method. The calculated potential head of the aquifer on the
bottom boundary along the line x-axis (y¼0) is plotted in Fig. 6.
In this figure one can compare the calculated results of BEM with
FEM. The FEM model includes 363,165 nodes and 326,940
hexahedral elements. Excellent agreement of the results of BEM
and FEM shows the veracity of the proposed transformation. To
show the effect of the cross-diagonal terms of the hydraulic
Fig. 7. Comparison of normal to boundary gradients at the well wall (x2
þy2
¼1)

on z¼5 m in orthotropic and general anisotropic cases.

Fig. 8. Sketch of model of example 2.
conductivity tensor, the model also has been run in orthotropic
case in which the cross-diagonal terms of the conductivity tensor
have been set to zero. A comparison of the normal to boundary
gradients at the well wall on mid-height of the well is shown in
Fig. 7 for the general anisotropic and orthotropic cases.

8.2. Well in layered anisotropic media

A well of 1.0 m radius is considered in a confined aquifer of
15 m depth. The aquifer is a layered aquifer with two layers of
Table 2
Boundary conditions of example 2.

Face Boundary condition

Top layer

Aquifer top ðz¼ 15 mÞ @j=@n¼ 0

Layer bottom ðz¼ 10 mÞ Interface conditions

Aquifer out ring ðx2þy2 ¼ 1002
Þ j¼ 30 m

Well wall ðx2þy2 ¼ 1Þ j¼ 15 m

Bottom layer

Layer top ðz¼ 10 mÞ Interface conditions

Aquifer bottom ðz¼ 0Þ @j=@n¼ 0

Aquifer out ring ðx2þy2 ¼ 1002
Þ j¼ 30 m

Well wall ðx2þy2 ¼ 1Þ j¼ 15 m

Fig. 9. BEM mesh of example 2.

Fig. 10. Distorted mesh of the model (red) with original model mesh (bue). (For

interpretation of the references to color in this figure legend, the reader is referred

to the web version of this article.)
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different hydraulic conductivities. Both of layers are anisotropic.
The top layer is of 5 m depth and the bottom layer has 10 m
depth. The hydraulic conductivity tensor of the top layer is

Ktop ¼

30 3 2

3 33 6

2 6 10

2
64

3
75� 10�5 m=sec
Fig. 11. Potential head along y¼0 on the interface between two layers.

Fig. 12. Potential head along x¼0 on the interface between two layers.

Fig. 13. Comparison of normal to boundary gradients at the well wall (x2
þy2
The hydraulic conductivity tensor of the bottom layer is

Kbottom ¼

7 0:4 2

0:4 6 2

2 2 9

2
64

3
75� 10�5 m=sec

The aquifer is assumed to be a cylinder of 100 m radius that
the well is drilled in its axis. The sketch of the model is given in
Fig. 8. Total head of the aquifer is 30 m and in the well the
potential head is equal to 15 m. The aquifer is a confined one and
no flow is possible from top and bottom borders of the aquifer.
Based on the definition of the problem, boundary conditions for
the model are given in Table 2.

To model the geometry with BEM, the boundaries are dis-
cretized by triangular linear elements. A BEM mesh of the model
is given in Fig. 9. The BEM mesh includes two domains (top and
bottom domains), 5056 nodes and 10,112 elements. After apply-
ing the direct domain transformation to the problem, the geo-
metry of the model will distort and the distorted BEM mesh of the
problem after transformation in which the Laplace equation
governs is shown in Fig. 10. As it is clear in the figure, because
of different hydraulic conductivity tensors of the two domains,
the after-transformation distortion of the domains are also
different. The distorted model was solved with standard BEM
for Laplace equation. To verify the accuracy and correctness of the
proposed transformation, the problem was also solved by the
finite element method. The calculated potential heads of the
aquifer interface of the two domains along the line x-axis (y¼0)
and y-axis (x¼0) are plotted in Fig. 11 and Fig. 12, respectively. In
these figures one can compare the calculated results of BEM with
FEM. The FEM model includes 528,144 nodes and 163,460
hexahedral elements. Again, the excellent agreement of the BEM
and FEM results shows the veracity of the proposed transforma-
tion and the formulas given for transformation of equilibrium
equation for multi-domain general anisotropic media.. To show
the effect of the cross-diagonal terms of the hydraulic conductiv-
ity tensors, the model also has been run in orthotropic case in
which the cross-diagonal terms of both conductivity tensors have
been set to zero. A comparison of the normal to boundary
gradients at the well wall on different elevations of the well is
shown in Fig. 13 for the general anisotropic and orthotropic cases.
¼1) on different elevations in orthotropic and general anisotropic cases.
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8.3. Dam on a V-shaped anisotropic valley

In third example, the seepage flow across the foundation and
banks of a gravity dam is solved. It has been shown in [32] that
when seepage through dam foundation happens and when the
banks of the river are permeable, two-dimensional approximation
is not a good approximation and three-dimensional analysis
should be performed. A three-dimensional sketch of the problem
is shown in Fig. 14. The gravity dam is founded on a V-shaped
valley. The foundation is made from a folded sedimentary layer of
rock that is situated on a horizontal thick layer of igneous rock.
The sedimentary layer is permeable and anisotropic, while the
igneous rock is almost impermeable and is assumed as the bedrock.
Fig. 14. Three-dimensional sketch of example 3.

Fig. 15. Sketch of mo
The hinge line of the geological fold is parallel to the river axis and
the inter-limb angle of the fold is about 531. Height of dam is 100 m
and the dam crest length is 100 m. Datum is taken at the bedrock
and the thickness of the foundation on the river axis is equal to
50 m. Standing at the river axis and looking at downstream, the
block of the sedimentary rock at the left is called the left-side
foundation and the block of the sedimentary rock at the right is
called the right-side foundation. A sketch of the problem is given in
Fig. 15. Because the sedimentary rock layer is folded, the elements
of the hydraulic conductivity tensor in the left-side and right-side
foundations are not equal and thus there is a double-domain
seepage media for modeling. The hydraulic conductivity tensor of
the left-side foundation is

Klef t ¼

20 0:01 0:01

0:01 2:8 �3:6

0:01 �3:6 8:2

2
64

3
75� 10�5 m=sec

And the hydraulic conductivity tensor of the right-side foun-
dation is

Kright ¼

20 0:01 0:01

0:01 2:8 3:6

0:01 3:6 8:2

2
64

3
75� 10�5 m=sec

Length of the foundation in the model has been taken 400 m.
Water pressure head of the river is 150 m in the upstream and
50 m in the downstream. Based on the definition of the problem,
boundary conditions for the model are given in Table 3.

To model the geometry with BEM, the boundaries are dis-
cretized by triangular linear elements. A BEM mesh of the model
is given in Fig. 16. The BEM mesh includes two domains (top and
bottom domains), 4020 nodes and 8032 elements. After applying
the direct domain transformation to the problem, the geometry of
the model will distort and the distorted BEM mesh of the problem
after transformation in which the Laplace equation governs is
shown in Fig. 17. As it is clear in the figure, because of different
del in example 3.



Table 3
Boundary conditions of example 3.

Face Boundary

condition

Left-side foundation

Upstream end (x¼�200 m) j¼ 150 m

Downstream end (x¼200 m) j¼ 50 m

River axis plane (y¼0) Interface

conditions

Left end (y¼�150 m) @j=@n¼ 0

Upstream river bed (zþ2y¼50 m),

(�200 moxo�20 m)

j¼ 150 m

Downstream river bed (zþ2y¼50 m), (20 moxo200 m) j¼ 50 m

Below dam (zþ2y¼50 m), (�20 moxo20 m) @j=@n¼ 0

Bed rock (z¼0) @j=@n¼ 0

Right-side foundation

Upstream end (x¼�200 m) j¼ 150 m

Downstream end (x¼200 m) j¼ 50 m

River axis plane (y¼0) Interface

conditions

Right end (y¼150 m) @j=@n¼ 0

Upstream river bed (z�2y¼50 m),

(�200 moxo�20 m)

j¼ 150 m

Downstream river bed (z�2y¼50 m), (20 moxo200 m) j¼ 50 m

Below dam (z�2y¼50 m), (�20 moxo20 m) @j=@n¼ 0

Bed rock (z¼0) @j=@n¼ 0

Fig. 16. BEM mesh of example 3.

Fig. 17. Distorted mesh (red) with the original mesh (blue). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 18. Potential head along y¼0 on the bed rock.

Fig. 19. Potential head along y¼0, z¼25 m.

Fig. 20. Potential head along y¼150 m on the bed rock.
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Fig. 22. Comparison of gradients in general anisotropic and orthotropic cases on

y¼75 m, z¼50 m.
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hydraulic conductivity tensors of the two domains, the after-
transformation distortion of the domains are also different. The
distorted model was solved with standard BEM for Laplace
equation. To verify the accuracy and correctness of the proposed
transformation, the problem was also solved by the finite element
method. The FEM model includes 229,955 nodes and 107,520
hexahedral elements. The calculated potential heads along the x-
axis (y¼0) on the bed rock is plotted in Fig. 18. A comparison of
the potential head by FEM and BEM on the line y¼0, z¼25 on the
interface between the two domains is depicted in Fig. 19. In
Fig. 20 the calculated potential head along the line y¼150, z¼0 is
given. Once again, excellent agreement of the BEM and FEM
solutions is observed. Contours of the potential head on the bed
rock and the interface between the two domains in the river axis
are shown in Fig. 21 for two cases of anisotropic and orthotropic
materials. In the orthotropic case we have set the cross-
permeability terms zero to give a comparison on the results of
the two cases and the importance of cross-diagonal terms in the
conductivity tensor. A comparison of gradients has also been
shown in Fig. 22 along a horizontal line on z¼75 m and z¼50 m.
Fig. 21. Potential head contours (a) on bed rock (z¼0) anisotropic, (b) on bed-rock

(z�0) orthotropic, (c) on the river axis plane (y¼0) anisotropic, (d) on the river

axis plane (y¼0) orthotropic, (e) Legend.
9. Conclusions

General anisotropic materials are very common when dealing
with seepage problems especially on dam-sites where dams are
founded on rivers in valleys and supplying water from aquifers by
means of digging wells. Heterogeneities are also very common
because usually dam-sites and aquifers are made of sedimentary
materials which are deposited in layers of different hydraulic
properties. These heterogeneities are usually dealt by different
sub-domains of different hydraulic properties. The authors had
previously developed a BEM solution for seepage analysis in a
specific class of anisotropic problems (i.e. orthotropic problems)
which the cross-diagonal elements of the hydraulic conductivity
tensors vanish. This paper is an extension to the previous work
and generalizes the problem to the general anisotropic materials.
Using the analytical eigenvalues and eigenvectors and combining
with the stretching transformation which had been presented in
[15], a new transformation has been developed in this paper that
transforms the general anisotropic governing equation to the
Laplace equation. Using this transformation needs also transform-
ing the flux boundary conditions and equilibrium equations and
thus the formulas for transforming the Neumann boundary
conditions and equilibrium equations have been provided in this
paper, accordingly.

Advantages of the present model can be mentioned as
following:
�
 The study of round-off error is crucial when solving a linear
system of equations, since it may pollute and even destroy the
solution of the problem[33]. The accumulation of round-off
errors in models with relatively large number of nodes in
finite-element models versus relatively few nodes in
boundary-element models is an advantage for BEM solutions.
Previous researches have shown that matrix inversion and
processes, and algebraic computations are prone to accumula-
tion of round-off errors when there are heavy meshes and the
matrix sizes are very large [34–37].

�
 The transformation approach presented will transform the

governing equation to the Laplace equation, and thus any
BEM code for potential problems can be simply used.

�
 The transformation method only needs some very simple

coding due to preprocessing of the geometry and Neumann
boundary conditions and post processing the solved flux
results, so not much effort is needed to expand a standard
BEM code for Laplace equation to the general anisotropic
seepage analysis code.
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�
 Developing the inter-zonal equilibrium equations in three-
dimensions lets the true coupling of the neighbor anisotropic
domains in multi-domain problems.

We have solved several examples of general anisotropic multi-
domain seepage problems that are frequently arisen in the
engineering practice. We have verified our results with 3D FEM
models and showed that the results are accurate. Examples can
illustrate the simplicity of the model and the accuracy of the
proposed scheme.
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