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The majority of literature regarding optimized Latin hypercube sampling (OLHS) is devoted to increasing
the efficiency of these sampling strategies through the development of new algorithms based on the com-
bination of innovative space-filling criteria and specialized optimization schemes. However, little atten-
tion has been given to the impact of the initial design that is fed into the optimization algorithm, on the
efficiency of OLHS strategies. Previous studies, as well as codes developed for OLHS, have relied on one of
the following two approaches for the selection of the initial design in OLHS: (1) the use of random points
in the hypercube intervals (random LHS), and (2) the use of midpoints in the hypercube intervals (mid-
point LHS). Both approaches have been extensively used, but no attempt has been previously made to
compare the efficiency and robustness of their resulting sample designs. In this study we compare the
two approaches and show that the space-filling characteristics of OLHS designs are sensitive to the initial
design that is fed into the optimization algorithm. It is also illustrated that the space-filling characteris-
tics of OLHS designs based on midpoint LHS are significantly better those based on random LHS. The two
approaches are compared by incorporating their resulting sample designs in Monte Carlo simulation
(MCS) for uncertainty propagation analysis, and then, by employing the sample designs in the selection
of the training set for constructing non-intrusive polynomial chaos expansion (NIPCE) meta-models
which subsequently replace the original full model in MCSs. The analysis is based on two case studies
involving numerical simulation of density dependent flow and solute transport in porous media within
the context of seawater intrusion in coastal aquifers. We show that the use of midpoint LHS as the initial
design increases the efficiency and robustness of the resulting MCSs and NIPCE meta-models. The study
also illustrates that this relative improvement decreases with increasing number of sample points and
input parameter dimensions. Since the computational time and efforts for generating the sample designs
in the two approaches are identical, the use of midpoint LHS as the initial design in OLHS is thus
recommended.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

The input parameters of many analytical, numerical, geospatial
and statistical models in hydrology, hydrogeology and water
resources management are prone to uncertainty, resulting either
from their inherent stochasticity or from the lack of knowledge
about their exact values [1,2]. During the simulation process, the
uncertainty in model inputs inevitably propagates through the
model and results in uncertainty of the output quantities of
interest. Quantifying this propagated uncertainty is known as
uncertainty propagation (UP) analysis [3]. UP analysis is a key
component of uncertainty quantification and forms the basis for
predictive uncertainty analysis, global sensitivity analysis, risk
analysis and simulation–optimization under uncertainty.

There are a variety of methods for UP analysis, from which the
most commonly used method is Monte Carlo simulation (MCS) [4].
MCS is a non-intrusive, sampling-based, numerical method [5],
which involves generating a number of samples from the probabil-
ity density functions (PDFs) that characterize the uncertainty in
model inputs, running the model at the set of sampled points,
and then using the ensemble of model outcomes to approximate
the statistical characteristics and probability distribution of the
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Notations

The following symbols are used in this paper
y a random variable representing the output quantity of

interest
n a random variable
ai mode strength
wi mode function
u nonempty subset of the coordinate indices
Cu u dimensional unit cube
X ¼ f1; . . . ; hg set of coordinate indices
Y set of n points fy1; . . . ; yng
Jy s dimensional interval uniquely defined by Y
Jyu

projection of Jy on Cu

VolðJyu
Þ volume of a subset Jyu

NðYu; Jyu
Þ number of points of Yu falling in Jyu

CLD centered L2-discrepancy
Ytry the best design in each iteration of the enhanced sto-

chastic evolutionary optimization algorithm
Th acceptance threshold in the enhanced stochastic evolu-

tionary optimization algorithm
m number of components of n vector in the multivariate

case of polynomial chaos expansions
d degree of polynomial chaos expansions
q number of regression points
q fluid density
Sop specific pressure storativity
p fluid pressure
t time
e aquifer volumetric porosity
c solute concentration
k solid matrix permeability
lfluid fluid dynamic viscosity

g gravitational acceleration
Qp fluid mass sink or source
m average fluid velocity
Dm apparent molecular diffusion coefficient
I identity tensor
D mechanical dispersion tensor
c� concentration of solute in the source fluid
kH permeability of the aquifer in the Henry problem
QinH

total constant fresh-water inflow on the inland bound-
ary in the Henry problem

CINH freshwater solute concentration in the Henry problem
CSW total dissolved solids concentration of seawater in the

Henry and radial island problems
QinIs

freshwater recharge from the island‘s surface in the ra-
dial island problem

CinIs
freshwater solute concentration in the radial island
problem

l mean values obtained from Monte Carlo simulations or
non-intrusive polynomial chaos expansions

lref means of the reference solutions
r standard deviation values obtained from Monte Carlo

simulations or non-intrusive polynomial chaos expan-
sions

rref standard deviations of the reference solutions
2 ðlÞ deviations of mean estimates from the reference solu-

tions
2 ðrÞ deviations of standard deviation estimates from the ref-

erence solutions
varð2 ðlÞÞ variance of 2 ðlÞ
varð2 ðrÞÞ variance of 2 ðrÞ
PI percent improvement in the CLD criterion
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output quantities of interest [6,7]. MCS often requires a large
ensemble of sample points to provide a reliable and stable estimate
of uncertainty [8]. This makes MCS computationally expensive
especially when the model itself is computationally demanding.
However, the number of sample points required to reach a certain
level of accuracy is highly dependent on the efficiency of the sam-
pling strategy. A more efficient sampling strategy requires fewer
sample points and hence less simulation time to achieve a specific
level of accuracy [9]. The efficiency of a sampling strategy itself
depends on the space-filling and non-collapsing characteristics of
its resulting sample designs [10,11]. Space-fillingness indicates
how evenly the sample points are spread out over the design space.
A sampling strategy with inferior space-filling characteristics
requires more sample points and hence more deterministic solves
to ensure a full coverage of the design space [12,13]. Non-collaps-
ingness insures that the design points do not coincide when pro-
jected onto a lower number of dimensions. This coincidence of
design points decreases the worth of data contained within the
resultant simulations [12,13].

1.1. Sampling methods for MCS

If we look at the timeline of studies involving UP analysis based
on MCS in hydrology, hydrogeology and water resources manage-
ment, we see that earlier studies mostly involve standard (also
known as crude or simple) MCS which rely on simple random sam-
pling (SRS). However, several studies have shown that SRS is not an
efficient sampling strategy due to its less appealing space-filling
and non-collapsing characteristics [6,13–15]. Many attempts have
been made during the past decades to introduce more efficient
sampling strategies. This has resulted in the introduction of
numerous random, quasi-random or deterministic sampling strat-
egies. A widely used example of these methods is Latin hypercube
sampling (LHS) [16]. The stratified sampling approach of LHS
ensures that the resulting sample designs are non-collapsing and
generally more space-filling than SRS [17] and thus, LHS is shown
to be more efficient compared to SRS [4,13,15,16,18,19]. There are
consequently many recent examples for the use of LHS in hydrol-
ogy, hydrogeology, and water resources science and management
literature and several codes have been developed for UP analysis
based on LHS (e.g. REPTool [20,21], PEST-LHS [22] and FEM-
WATER-LHS [23]). However, LHS does not necessarily lead to opti-
mal space-filling designs [24]. A new class of sampling strategies
has therefore been proposed in recent years aiming at improving
the space-filling characteristics of LHS designs. These so-called
optimized Latin hypercube sampling (OLHS) strategies take a LHS
design as the ‘‘initial design’’ and then iteratively optimize the
location of sample points with respect to a space-filling criterion
until a set of stopping criteria are satisfied [25]. Several studies
have illustrated the superior efficiency of OLHS designs compared
to SRS and LHS, most notably in cases where UP analysis is based
on a small to medium number of simulations (e.g. 101 to 102)
[e.g. 13,15,26,27].

Several OLHS strategies have been proposed in the literature,
which differ according to their optimization algorithm and the
space-filling criterion used as the objective function. Rajabi and
Ataie-Ashtiani [15] compared nine OLHS strategies including
improved Latin hypercube sampling (IHS) [28]; optimum Latin
hypercube (OLH) sampling [29–31]; genetic optimum Latin hyper-
cube (GOLH) sampling [26,31]; three sampling strategies based on
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the enhanced stochastic evolutionary (ESE) optimization algorithm
[27] namely up-ESE which employs the up space-filling criterion,
CLD-ESE which utilizes the centered L2-discrepancy (CLD) space-
filling criterion, and SLD-ESE which uses the star L2-discrepancy
(SLD) space-filling criterion; and three sampling strategies based
on the simulated annealing (SA) optimization algorithm [26,27]
namely up-SA which employs the up criterion, CLD-SA which uses
the CLD criterion, and SLD-SA which utilizes the SLD criterion. They
applied these strategies to two test cases involving the numerical
simulation of seawater intrusion (SWI) and concluded that the
CLD-ESE strategy is the most efficient amongst the evaluated strat-
egies. Further increase in the efficiency of OLHS strategies is cur-
rently the subject of much research.

1.2. Meta-modeling in MCS

Beside the use of more efficient sampling strategies, MCS can
also be accelerated through meta-modeling approaches which
involve developing data-driven, physics-free and computationally
cheap approximations of the model response [32]. The meta-mod-
els then replace the original model in MCS and thereby reduce the
computational burden of MCS up to several orders of magnitude
depending on the computational time of the original full model
[33]. Meta-modeling approaches include the use of radial basis
functions (RBFS), neural networks (NNs), support vector machines
(SVMs), non-intrusive polynomial chaos expansions (NIPCEs),
Gaussian process emulators (GPEs) etc. No matter which of these
methods is selected, they all require a training set of simulator
runs, which is selected through deterministic or random sampling
methods. The number of model simulations required for the gener-
ation of an adequate training set is often immensely smaller than
the number of model simulations required for the case in which
MCS based on the original model is used. Nevertheless, generating
the required training set could still be computationally problem-
atic when dealing with models with extremely high computational
demand.

When the selection of the training set is based on random sam-
pling, we are faced with a kind of design of experiment problem in
which: (1) the training set of points should be chosen so that no
prediction is too far from a training point. Thus, the training points
should be spread over the input space in which the predictions will
be made. (2) We also want this to be true when we project the
points into lower dimensions. These considerations imply that
the sample design should be space-filling and non-collapsing.
Increasing the number of sample points could potentially lead to
a more space-filling design. However, this increase involves more
deterministic simulations and the computational cost will also
increase. Hence, we are faced with the same problem as in the case
of MCS, a situation in which a limited number of sample points are
computationally affordable and we want a sample design that
results in the most accurate estimation of uncertainties through
the incorporation of meta-modeling methods in MCS. This gives
rise to the importance of sampling efficiency in the generation of
the training set for the construction of meta-models, which has
been a common topic of research within the meta-modeling com-
munity, see for example [9,33–35]. The appealing space-filling and
non-collapsing characteristics of OLHS designs imply that OLHS
strategies can effectively provide more efficient training sets for
the construction of meta-models.

1.3. Study objectives

The majority of previous studies regarding OLHS are dedicated
to increasing the efficiency of these sampling strategies through
the development of new algorithms based on the combination
of innovative space-filling criteria and optimization schemes.
However, little attention has been paid to the impact of the initial
design that is fed into the optimization algorithm, on the efficiency
of the resulting sample designs. A review of literature shows that
in previous studies, the nature of the initial design in OLHS strate-
gies is often either ambiguous or implicitly described. Nonetheless,
we can infer from the available literature that two approaches have
been previously used for the selection of the initial design in OLHS
strategies. The first approach is the use of random points in the
hypercube intervals which we denote here as random LHS. The sec-
ond approach is to employ midpoints in the hypercube intervals,
here referred to as midpoint LHS. The scientific literature has some-
what favored the use of midpoint LHS. Examples include [26] for
OLHS strategies based on the SA optimization algorithm, [27] for
OLHS strategies based on the ESE optimization algorithm, and
[31] for OLH and GOLH sampling strategies. Instances of the use
of random LHS are prevalent in tailored software packages, exam-
ples include ‘DiceDesign’ (see [36]) by Franco, Dupuy and Roustant,
and ‘lhs’ by [37], both of which are developed for the R open source
statistics software, the Matlab toolbox ‘lhsdesign’ (see [38]), and
the generator of designs in the JMP statistical software (for general
information see [39], and for information about their Monte Carlo
design generator refer to [40]).

The basic objective of this paper is to compare the effect of
using these two approaches (i.e. random LHS and midpoint LHS)
for the selection of the initial design that is fed into the optimiza-
tion algorithm in OLHS strategies, on the efficiency of the resulting
sample designs. Note that the computational time and efforts for the
generation of the sample design in the two approaches are identical.
First, we will compare the space-filling characteristics of the sample
designs generated by the two strategies to see if and how the result-
ing sample designs are affected by the initial design. We will then
incorporate the resulting sample designs in MCS for UP analysis
and assess the relative efficiency of the two approaches. The sample
designs are subsequently employed in the selection of the training
set for constructing NIPCE meta-models which subsequently replace
the original full model in MCS. So this study deals with both MCS
and meta-modeling. We focus our analysis on the CLD-ESE OLHS
strategy which was shown by [13,15] to be the most efficient
method amongst the set of evaluated OLHS strategies. The two
methods for the selection of the initial design in OLHS strategies
are applied to case studies involving numerical simulation of den-
sity dependent groundwater flow and solute transport resulting
from SWI in coastal aquifers. Density dependent SWI numerical
models involve solving coupled differential equations that charac-
terize mass and solute transport in porous media, and are well
known in the groundwater modeling community for their highly
non-linear and non-smooth input–output relationship [41,42].

A number of points should be addressed here to clarify the
study objectives and scope. First, a key assumption of LHS and OLHS
strategies is that the uncertain inputs are independent from each
other, and this is also the case in the current study. When dealing
with problems in which the correlation of the uncertain inputs must
be considered (such as the uncertain inputs describing a heteroge-
neous hydraulic conductivity field [43,44]), the generation of sample
points could be done by using LHS or OLHS in conjunction with a
procedure introduced by [45] to induce a desired rank correlation
structure on the resultant design [4,46]. Second, the concern here
is to find an optimal sample design where the number of design
points is determined in advance based on factors such as computa-
tional constrains and required level of uncertainty quantification
and the entire design is generated at once and not sequentially.

2. Theoretical background

First, we briefly describe the theoretical background of the CLD-
ESE sampling strategy. A brief introduction to NIPCEs and the
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methods used for the estimation of NIPCE coefficients is subse-
quently given in Section 2.2.

2.1. The CLD-ESE OLHS strategy

The ESE optimization algorithm used within the context of the
CLD-ESE OLHS strategy consists of two coupled loops, an inner loop
and an outer loop. The CLD-ESE sampling strategy obtains an initial
design (denoted here by Y0Þ with the required number of sample
points which is then fed into the inner loop of the ESE optimization
algorithm. The inner loop uses the initial design to generate a num-
ber of new designs by element exchanges. The algorithms then
evaluate the space-filling characteristics of the generated designs
with respect to the CLD criterion, with the intention of finding
the best design among them [15,27]. The CLD criterion provides
a quantitative measure to assess the deviation of a sampling design
from perfectly uniform point density and is defined as [17]:

CLDðYÞ ¼
X

u

Z
Cu

NðYu; Jyu
Þ

n
� VolðJyu

Þ
����

����
2

du ð1Þ

where u is a nonempty subset of the coordinate indices
X ¼ f1; . . . ; hg;Cu is the juj dimensional unit cube involving the
coordinates in u, VolðJyu

Þ is the volume of the subset Jyu
, Jyu

is the
projection of Jy on Cu, Jy is an h dimensional interval uniquely
defined by Y , Yu is the projection of Y to Cu, Y is the set of n points
fy1; . . . ; yng, and NðYu; Jyu

Þ is the number of points of Yu falling in Jyu
.

Smaller CLD values are an indication of more uniform sample
designs. The ESE algorithm subsequently decides whether to accept
or reject the best design with respect an acceptance criterion as fol-
lows [27]:

if CLDðYiÞ < CLDðY0Þ ) Yi ¼ Ytry ði:e: Ytry is acceptedÞ
else if jCLDðYiÞ � CLDðY0Þj 5 Th � randomð0;1Þ

) Yi ¼ Ytry ði:e: Ytry is accpetedÞ
else Ytry is rejected

ð2Þ

In Eq. (2), Ytry denotes the best design, random (0,1) is a uni-
formly distributed random number generated between 0 and 1,
and Th is a threshold. The inner loop iteratively repeats this process
by a user supplied number of times, with Y0 replaced by Yi. Then,
the outer loop of the ESE algorithm updates the acceptance crite-
rion and the inner loop restarts the optimization process once
again. This continues until the user specified number of iterations
for the outer loop is reached [15].

2.2. The NIPCE meta-model

NIPCEs have been extensively used in many scientific disci-
plines such as structural dynamics [47], heat conduction [48], air
pollution dispersion [49], fluid dynamics problems [50] and SWI
modeling [51]. The widespread use of NIPCEs as a meta-modeling
approach in MCS can be attributed to their transparency, simplic-
ity, strong mathematical basis, ability to handle many probability
distribution types and to be used with any second order random
process, and the fact that they allow for a fully probabilistic predic-
tion of what the simulator would produce [5,51–53]. NIPCEs
decompose the uncertain output quantities of interest into sepa-
rate deterministic and stochastic components in the form of a ser-
ies described by the following equation [53–54]:

y ¼
X1
i¼0

aiwiðnÞ ð3Þ

In Eq. (3), y is the output quantity of interest and ai represents a set
of deterministic NIPCE coefficients. In the univariate case, n is a ran-
dom variable with a predefined probability distribution and wi is an
orthogonal polynomial of order i which forms the stochastic com-
ponent of the NIPCE. In the multivariate situation, n is a vector
and the polynomial wi is a tensor product of the polynomial bases
for each component of n. The optimal choice for the type of orthog-
onal polynomial used in NIPCEs is dictated by the probability distri-
bution of n and is usually selected in accordance with the Askey
scheme [55]. For practical reasons, the series in Eq. (3) is often trun-
cated to a limited number of terms.

The use of NIPCEs for UP analysis involves two basic steps. First,
the deterministic coefficients of the NIPCE for each of the output
quantities of interest are estimated. Second, the NIPCE replaces
the original model in MCS in order to provide an estimate of the
PDF of the outputs. The statistics describing the uncertainty in
model outputs can then be calculated with respect to the PDF of
the outputs. In this case, the computational cost associated with
UP analysis is mostly transferred to the estimation of the NIPCE
coefficients, leaving the subsequent MCS computationally inexpen-
sive [53,56]. After the NIPCEs are built, the type of sampling
method used in the framework of the MCS + NIPCE UP strategy is
a trivial issue, because NIPCEs are computationally very economic
and a very large number of sample points are hence affordable. In
this case, due to the large number of simulations, the results con-
verge to the true solution regardless of the sampling strategy. With
the use of NIPCEs the mean, variance and Sobol indices of the out-
put quantities of interest are also available in closed-form without
the need to perform MCS.

There are a number of methods for estimating the coefficients of
NIPCEs including the spectral projection methods (which involves
the sampling-based and quadrature-based methods) [57,58], the
probabilistic (or stochastic) collocation method (PCM) [59], the
gradient-based method also known as collocation method coupled
with sensitivity derivatives [60], and the regression method [61].
All of these methods require a training set of simulator runs. The
PCM, gradient-based and quadrature-based spectral projection
methods use a predetermined number of training points which
are commonly selected through deterministic methods. On the
other hand, the sample-based spectral projection method and the
regression method often (but not necessarily) involve random
sampling for the generation of the training set [62,63]. The number
of training points is user defined but often constrained to a mini-
mum value for the spectral projection and regression methods.

In this study, the coefficients of NIPCEs are estimated by the
regression method because: (1) we are focusing on random sam-
pling for the generation of the training set, (2) the regression
method converges faster in terms of the number of model evalua-
tions compared to the projection method [64,65], and (3) the
regression method is a very flexible, transparent, understandable
and easy to code method for the estimation of NIPCE coefficients.
The regression method involves choosing a set of q training or
regression points in the probability space of the random input var-
iable(s) (nðkÞ; k ¼ 1; . . . ; qÞ through deterministic or random sam-
pling methods. These regression points are then used to perform
q simulations of the model which we denote by
yðnðkÞÞðk ¼ 1; . . . ; qÞ. The NIPCE coefficients are subsequently esti-
mated by solving the following minimization problem [56]:

min
Xq

k¼1

yðnðkÞÞ �
Xd

i¼0

aiwiðnðkÞÞ
" #2

8<
:

9=
; ð4Þ

Eq. (4) can be solved by optimization algorithms such as pattern
search [66] and simulated annealing [67]. For the general multivar-
iate case with m variables, the number of coefficients to be esti-

mated is Ncoeff ¼
mþ d

d

� �
. It has been widely suggested that the

number of sample points must be greater than Ncoeff [68]. Note that
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Eq. (4) can also be written as a system of q nonlinear equations
which could then be solved by using the Levenberg–Marquardt
[69] algorithm. In this study we use this latter approach to estimate
the NIPCE coefficients.

3. Test cases

We will try to answer the objective questions of this study by
examining two synthetic test cases of SWI in coastal aquifer sys-
tems described in [15]. Both test cases involve density dependent
flow and solute transport in porous media which is basically mod-
eled by the following coupled differential equations that character-
ized mass and solute transport [70,71]:

ðqSopÞ
@p
@t
þ e

@q
@c

� �
@c
@t
�r � kq

lfluid

 !
� ðrp� qgÞ

" #
¼ Q p ð5-aÞ

@ðeqcÞ
@t

þr � ðeqmcÞ � r � ½eqðDmI þ DÞ:rc� ¼ Q pðc� � cÞ ð5-bÞ

where q is fluid density, Sop is specific pressure storativity, p is fluid
pressure, t is time, e is aquifer volumetric porosity, c is solute con-
centration (mass solute/mass fluid), k is solid matrix permeability,
lfluid is fluid dynamic viscosity, g is gravitational acceleration, Qp

is the fluid mass sink or source, m is average fluid velocity, Dm is
apparent molecular diffusion coefficient, I is identity tensor, D is
mechanical dispersion tensor, and c� is the concentration of solute
in the source fluid. The simulations are carried out using the USGS
SUTRA finite element numerical code [70]. No assumptions have
been made regarding the input/output relationship and the mathe-
matical properties of the system except that the noise is assumed to
be identical for two simulation runs with the same inputs (i.e. the
simulator is assumed to be deterministic). Therefore, we expect
Fig. 1. The Henry problem [72]: (a) problem domain, boundary conditions, numer
the basic conclusions of the study to be generally applicable to UP
studies. The two test cases are briefly described in the following
paragraphs and further details can be found in [15].

The Henry problem [72] illustrated in Fig. 1a and b, involves a
two dimensional cross section of a confined coastal aquifer system.
The problem domain is rectangular and the top and bottom bound-
aries are assumed to be impermeable. Seawater intrudes the sys-
tem from the seaward boundary on one side of the problem
domain and freshwater flows into the system from the inland
boundary on the other side. The problem domain is homogeneous
and fully saturated. Here, the aquifer is initially filled with fresh-
water. During the simulation period, seawater begins to intrude
the freshwater system by moving under the freshwater from the
sea boundary, while freshwater flows over the seawater in the sec-
tion and discharges at the sea boundary. The simulation is contin-
ued long enough for the concentration distribution to reach steady
state. The input parameter values used in numerical simulations of
the Henry problem are specified in Table 1. The permeability of the
aquifer (kH) and the total constant fresh-water inflow on the inland
boundary (QinH

) are assumed to be the uncertain input parameters.
The uncertainty of kH and QinH

are characterized by log-normal dis-
tributions described in Table 1. Note that it is common to employ
log-normal distributions to represent uncertainty of permeability
in relatively homogeneous aquifers [73]. It has also been illustrated
in previous studies (such as [74]) that the uncertainty in recharge
rate can be characterized by log-normal distributions [51]. The
output quantities of interest are pressure and salt concentration
values in an arbitrary chosen monitoring point illustrated in
Fig. 1a.

The second test case is a circular island surrounded by seawater,
based on [70,75] (see Fig. 2a and b). This problem was adapted for
UP analyses by [15]. It is assumed that due to a long-term drought,
the island’s aquifer is filled with seawater and the water table has
ical grid and monitoring point, (b) concentration in the steady state solution.



Table 1
Input parameter values for the Henry problem [15].

Parameter Value Unit

Permeability (KH) Uncertain: log-normal
(l = 1.020408 � 10�9,
r2 = 9.5 � 10�19)

m2

Longitudinal and transverse
dispersivities

0.0 m

Freshwater inflow (QINH
) Uncertain: log-normal

(l = 0.06, r2 = 0.0008)
kg/s

Porosity 0.35 –
Molecular diffusion 1.88571 � 10�5 m2/s
Viscosity 1 � 10�3 kg/m s
Freshwater solute

concentration (CINH )
0.0 kg/kg

Salt concentration of
seawater (CSW )

0.0357 kg/kg

Density of freshwater 1000 kg/m3

Density of seawater 1024.99 kg/m3
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declined to sea level. This is the initial condition of the model and
we simulate the post-drought conditions in which a freshwater
lens is formed due to seawater being flushed out of the aquifer sys-
tem by constant rainwater recharge. The simulations are continued
until the system reaches steady state and the equilibrium fresh
groundwater lens is established [75,76]. The aquifer system is
assumed to be homogeneous but anisotropic. The radial symmetry
of the problem allows it to be represented by a two-dimensional
cross section that stretches from the seaward boundary to the axis
passing through the center of the island. The boundary represent-
ing this axis and the bottom boundary are assumed to be imperme-
able. Freshwater recharge enters the aquifer system from the
island surface. The input parameters of the model are given in
Table 2. It is assumed that there are six uncertain input parameters,
namely porosity, horizontal permeability, vertical permeability,
longitudinal dispersivity for horizontal flow, longitudinal disper-
sivity for vertical flow, and transverse dispersivity. The statistical
Fig. 2. The radial island problem [70,75]: (a) problem domain, boundary conditions, nu
characteristics of the purely hypothetical PDFs characterizing the
uncertainty of these input parameters are presented in Table 2.
The output quantity of interest is the salt concentration in an arbi-
trary chosen monitoring points illustrated in Fig. 2a.
4. Results and discussion

Here, we denote the CLD-ESE sampling strategy with the initial
design generated by random LHS as CLD-ESE (rand), and the CLD-
ESE sampling strategy with the initial design generated by mid-
point LHS as CLD-ESE (mid). The two sampling strategies are com-
pared first by studying the space-filling characteristics of their
resulting sample designs and then by incorporating them in MCS
based on the original numerical models and the NIPCE meta-mod-
els with respect to the two test case problems.

4.1. Space-filling characteristics

We start by answering the fundamental question: is the space-
filling quality of OLHS strategies sensitive to the initial design that
is fed into the optimization algorithm? In other words, if the num-
ber of iterations is sufficiently high, will the results converge to the
optimum regardless of the initial design? From Section 2.1, we
know that the key input arguments to the ESE algorithm in the
CLD-ESE sampling strategy are JESE, inner itESE, Th0 and outer itESE.
As described by [15], the CLD value of the resulting sample designs
is an asymptotically decreasing function of JESE, inner itESE and
outer itESE. Th0 has little impact on the optimum CLD value. We
choose a sufficiently high value of JESE and inner itESE, (JESE ¼ 50
and inner itESE ¼ 50) and gradually increase outer itESE from one
to a value high enough for the CLD to converge to its optimum
value. This is done by using both the CLD-ESE (rand) and CLD-
ESE (mid) sampling strategies to generate 100 sample points in a
two-dimensional hypercube. In order to dampen the effect of sto-
chastic variations in the generation of random sample points, this
process has been repeated in 30 independent chains and an
merical grid and monitoring point, (b) concentration in the steady state solution.



Table 2
Input parameter values for the radial island problem [15].

Parameter Value Unit

Horizontal permeability Uncertain: log-normal
(l = 5 � 10�12, r2 = 1 � 10�24)

m2

Vertical permeability Uncertain: log-normal
(l = 5 � 10�13, r2 = 1 � 10�26)

m2

Longitudinal dispersivity
for horizontal flow

Uncertain: log-normal (l = 10,
r2 = 8)

m

Longitudinal dispersivity
for vertical flow

Uncertain: log-normal (l = 2.5,
r2 = 0.8)

m

Transverse dispersivity Uncertain: log-normal (l = 0.1,
r2 = 0.003)

m

Freshwater inflow (QINIS
) 2.3766 � 10�5 kg/m2 s

Porosity Uncertain: log-normal (l = 0.1,
r2 = 0.01)

–

Molecular diffusion 1.0 � 10�9 m2/s
Viscosity 1 � 10�3 kg/m s
Freshwater solute

concentration (CINIS )
0.0 kg/kg

Salt concentration of
seawater (CSW )

0.0357 kg/kg

Density of freshwater 1000 kg/m3

Density of seawater 1024.99 kg/m3

Fig. 4. Comparison of mean CLD values obtained from 30 repetitions of CLD-ESE
(rand) and CLD-ESE (mid) sampling strategies. The circle symbols show the mean
values and lines depict their Tukey 95% confidence intervals. The CLD values are
obtained for 100 point sample designs in a two-dimensional hypercube.

Table 3
PI in the CLD criterion obtained through the use of CLD-ESE (mid) as compared to the
CLD-ESE (rand) for different numbers of sample points and dimensions (the input
arguments of the ESE optimization algorithm are as follows: JESE ¼ 50, inner itESE ¼ 50,
outer itESE ¼ 40 � 80).

Number of sample points Number of dimensions

2 4 6 8 10

10 21.1 8.6 5.5 3.3 2.2
30 19.6 7.0 3.4 2.1 1.5
60 19.5 5.5 2.6 1.2 0.9
100 17.3 3.1 2.4 0.8 0.5
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average of the resulting CLDs for each value of outer itESE is calcu-
lated. The results are illustrated in Fig. 3. The figure shows that the
two strategies do not converge to the same value of the CLD crite-
rion, indicating that the space-filling characteristic of the CLD-ESE
sample designs are in fact sensitive to the initial design. We also
see that the optimum CLD value obtained through the application
of the CLD-ESE (mid) sampling strategy is smaller than the CLD
value obtained from CLD-ESE (rand). This implies that sample
designs generated by the CLD-ESE (mid) sampling strategy are
more space-filling than CLD-ESE (rand). To further assess this con-
clusion, Fig. 4 shows the mean CLD values obtained from the 30
repetitions of CLD-ESE (rand) and CLD-ESE (mid) sampling strate-
gies along with their Tukey [77] 95% confidence intervals. As illus-
trated, the two intervals are disjoint and hence the means are
significantly different from a statistical point of view. We define
the percent improvement (PI) in the CLD value for the CLD-ESE
(mid) sampling strategy compared to CLD-ESE (rand) as follows:

PI ¼ CLDCLD�ESE ðrandÞ � CLDCLD�ESE ðmidÞ

CLDCLD�ESE ðrandÞ
� 100 ð6Þ

The PI is about 17% for the 100 sample point designs generated in a
two-dimensional hypercube. We now expand our analysis to see
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Fig. 3. Convergence analysis of the CLD-ESE (rand) and CLD-ESE (mid) sampling
strategies. The CLD values are obtained for a 100 point sample design in a two-
dimensional hypercube.
how much this relative improvement in space-fillingness depends
on the number of sample points and dimension of the hypercube.
We have generated sets of 10, 30, 60 and 100 sample points in 2,
4, 6, 8 and 10 dimensional hypercubes using the CLD-ESE (rand)
and the CLD-ESE (mid) sampling strategies. For each combination
of the number of sample points and dimensions of the hypercube,
30 sample designs have been constructed and an average of the
resulting CLDs has been calculated. We have used the Tukey test
(with 95% confidence) to analyze whether the mean values of the
CLDs obtained from the two sampling strategies are statistically sig-
nificantly, and if so, the PIs have been calculated. The results are
illustrated in Table 3. We see that the space-filling characteristics
of sample designs generated by CLD-ESE (mid) are consistently bet-
ter than CLD-ESE (rand) and the difference in mean CLD values are
statistically significant in all cases. The resulting PIs vary between
21% and 0.5%. Fig. 5 shows variations of PI with respect to the
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Fig. 5. Variations of PI in the CLD criterion obtained through the use of CLD-ESE
(mid) as compared to the CLD-ESE (rand) for different numbers of sample points and
problem dimensions.



Fig. 7. Comparison of mean CLD values obtained from 30 repetitions of CLD-SA
(rand) and CLD-SA (mid) sampling strategies. The circle symbols show the mean
values and lines depict their Tukey 95% confidence intervals. The CLD values are
obtained for 100 point sample designs in a two-dimensional hypercube.

Table 4
PI in the CLD criterion obtained through the use of CLD-SA (mid) as compared to the
CLD-SA (rand) for different numbers of sample points and dimensions (the input
arguments of the SA optimization algorithm are as follows: C ¼ 0:95,
itSA ¼ 15000 � 70000).

Number of sample points Number of dimensions

2 4 6 8 10

10 27.3 9.0 4.5 3.6 2.0
30 18.3 7.7 3.5 2.6 1.6
60 18.0 5.6 2.6 1.2 1.0
100 17.3 4.7 1.9 0.9 0.7
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number of sample points and dimensions of hypercube. As
demonstrated, the PIs decrease with increasing number of sample
points and dimensions. The input dimensions apparently have a
more significant effect on the resulting PIs.

We have applied the same analysis to the CLD-SA sampling
method to see whether this conclusion can be extended to other
OLHS strategies. We denote the CLD-SA sampling strategy with
the initial design generated by random LHS as CLD-SA (rand), and
the CLD-SA sampling strategy with the initial design generated by
midpoint LHS as CLD-SA (mid). There are three main input argu-
ments to the SA optimization algorithm: itSA which is the number
of iteration, T0 which is the initial temperature, and a which is
the cooling factor (refer to [27] for a description of theoretical back-
ground of the SA algorithm). itSA is the most influential input
argument on the resulting CLD values, followed by a. CLD is an
asymptotically decreasing function of itSA and a. When the number
of iterations of the SA algorithm (itSA) are sufficiently large, different
T0 values will result in CLDs that converge to nearly the same value,
in a manner similar to the ESE algorithm [15]. In the framework of
the convergence analysis, we choose a sufficiently high cooling fac-
tor (a ¼ 0:95) and gradually increase itSA from one to a value high
enough for the CLD to converge to its optimum value. We have gen-
erated thirty 100 point sample designs in a two-dimensional hyper-
cube for each value of itSA. The results are illustrated in Fig. 6.
Similar to the CLD-ESE sampling strategy, the resulting CLD values
do not converge to the same value, and the CLDs for the CLD-SA
(mid) sampling strategy are smaller than CLD-SA (rand). Here also,
the difference in mean CLD values is statistically significant as indi-
cated by the Tukey test with 95% confidence (see Fig. 7). The PIs in
CLD values obtained through the use of the CLD-SA (mid) sampling
strategy as opposed to CLD-SA (rand) have been calculated for sets
of 10, 30, 60 and 100 sample points in 2, 4, 6, 8 and 10 dimensional
hypercubes, with 30 sample designs generated for each case. Table 4
shows the results. As illustrated, the PIs vary between 27% and 0.7%.
In general the PIs obtained for the CLD-SA sampling strategy are
very similar to the CLD-ESE sampling strategy. These results show
that the concept of using midpoints in the hypercube intervals as
the initial designs can also be used with the CLD-SA OLHS sampling
strategy to improve its performance in terms of generating more
space-filling sample designs.
4.2. MCS based on numerical modeling

Due to the superior space-filling characteristics of CLD-ESE
(mid) sample designs compared to CLD-ESE (rand), we expect
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Fig. 6. Convergence analysis of the CLD-SA (rand) and CLD-SA (mid) sampling
strategies. The CLD values are obtained for 100 point sample designs in a
two-dimensional hypercube.
CLD-ESE (mid) to be a more efficient sampling strategy in MCSs
regardless of the statistical characteristics (e.g. PDF type, mean,
variance, etc.) of the uncertain inputs (see [10,11,13] for detailed
descriptions). We will examine this by applying the two sampling
strategies (i.e. CLD-ESE (rand) and CLD-ESE (mid)) to the test case
problems described in Section 3. For this purpose, sets of 10, 30, 60
and 100 sample points have been generated using the two sam-
pling strategies. These sample points are initially drawn from the
uniform distribution ½0;1�, and are subsequently mapped onto
the required log-normal distributions described in Table 1 and
Table 2. The resulting sample points are used as the basis for MCSs
based on numerical modeling of the two test case problems. We
have also used random LHS and midpoint LHS for the same pur-
pose. In this study, MCSs are carried out by employing the SENSAN
code which is part of the PEST suite [78].

The sampling strategies are compared with respect to an exter-
nal measure of accuracy based on normalized deviations from the
relevant reference solutions. The reference solutions are obtained
from 10,000 MCSs with SRS, and it is assumed that due to the large
number of simulations, the results converge to the true solutions
regardless of the sampling strategy. These normalized deviations
are calculated for the mean and standard deviation of the output
quantities of interest (2 ðlÞ and 2 ðrÞ respectively) using the fol-
lowing equations [13,15]:

2 ðlÞ ¼
jl� lref j

lref
ð7-aÞ

2 ðrÞ ¼ jr� rref j
rref

ð7-bÞ

where l and r are the mean and standard deviation of each MCS
and lref and rref are the mean and standard deviation of their
respective reference solutions. Smaller normalized deviations indi-
cate higher accuracies. For a fixed number of sample points and
hence simulation time, the efficiency of an unbiased estimator can



Fig. 9. Comparison of different sampling strategies in MCSs based on the original
numerical model, for concentration solutions in the monitoring point of the Henry
problem test case. The figures show the variances of errors in (a) mean and (b)
standard deviation estimates with respect to the reference solutions.
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be measured by its variance [4]. Based on this notion, MCSs have
been repeated 30 times with different sample designs and the vari-
ances of 2 ðlÞ and 2 ðrÞ (varð2 ðlÞÞ and varððrÞÞ respectively) have
been estimated. Figs. 8 and 9 show variations of varð2 ðlÞÞ and
varð2 ðrÞÞwith respect to the number of sample points for pressure
and concentration solutions of the Henry problem. As illustrated,
the variances of solutions obtained through the use of the CLD-
ESE (mid) sampling strategy are consistently smaller than CLD-
ESE (rand). The use of the non-parametric squared ranks test [79]
confirmed that the differences in the variances for the two strate-
gies are in general statistically significant. The practical significance
of the variance reductions obtained from using CLD-ESE (mid)
instead of CLD-ESE (rand) can be well understood by comparing it
with the variance reductions obtained from using the CLD-ESE sam-
pling strategies instead of LHS strategies.

As demonstrated by the bean-plots of Fig. 10, the CLD-ESE
(rand) sampling strategy leads to a higher degree of dispersion in
the results compared to CLD-ESE (mid), which further shows the
superior efficiency and robustness of the CLD-ESE (mid) strategy.
The differences between the variances of 2 ðlÞ and 2 ðrÞ in the
two sampling strategies decrease with increasing number of sam-
ple points. This is expected based on the behavior of the space-
filling characteristics of sample designs with respect to variations
in the number of sample points which was demonstrated in
Section 4.1. Note that in practical applications involving computa-
tionally expensive models, repeating and averaging MCSs are not
affordable. Hence the higher robustness of a sampling strategy
becomes very important as it increases the chance of arriving at
the true solutions in a single attempt.

Now we move to the radial island test case which has six uncer-
tain inputs. Fig. 11 shows variations of varð2 ðlÞÞ and varð2 ðrÞÞ
with respect to the number of sample points for concentration
Fig. 8. Comparison of different sampling strategies in MCSs based on the original
numerical model, for pressure solutions in the monitoring point of the Henry problem
test case. The figures show the variances of errors in (a) mean and (b) standard
deviation estimates with respect to the reference solutions.

Fig. 10. Bean-plots for pressure solutions in the monitoring point of the Henry
problem numerical model. The plots are obtained from MCSs with CLD-ESE (rand)
and CLD-ESE (mid) sampling strategies.
solutions of the radial island test case. We see that the general con-
clusions drawn from the analysis of Henry problem are also valid
for the radial island problem, but in this case, the relative improve-
ments resulting from the use of the CLD-ESE (mid) strategy instead
of CLD-ESE (rand), are relatively smaller.

Based on these results we can make the following conclusions;
(1) the use of midpoints in hypercube intervals as the initial design
in the CLD-ESE sampling strategy significantly decreases the vari-
ances of errors and there by increases the efficiency and robustness
of the resulting MCSs, and (2) this improvement decreases
with increasing number of sample points and input parameter
dimensions.
4.3. MCS based on NIPCE meta-models

The CLD-ESE (rand) and CLD-ESE (mid) sampling strategies
are applied to the selection of the regression data set for the



Fig. 11. Comparison of different sampling strategies in MCSs based on the original
numerical model, for concentration solutions in the monitoring point of the radial
island test case. The figures show the variances of errors in (a) mean and (b)
standard deviation with respect to the reference solutions.

Fig. 12. Comparison of CDFs resulting from MCSs based on NIPCE meta-models
with q = 30 and d = 1, 2, 3 and 4, with the reference CDFs, for (a) pressure and (b)
concentration in the monitoring point of the Henry problem test case.
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construction of NIPCEs. We have also used random LHS and mid-
point LHS to generate the regression data sets. Note that the effi-
ciency for meta-modeling is defined as the computational effort
required for constructing the meta-model and for predicting the
response [33]. The second part of the definition (i.e. predicting
the response) requires the same amount of computational effort
for NIPCEs no matter which sampling strategy is initially used for
the selection of the regression data set. So, our focus is on the com-
putational efficiency of constructing the NIPCE meta-models. The
comparison procedure is as follows. Sets of 10, 30, 60 and 100 sam-
ple points are initially generated using the four sampling strate-
gies. The sample points are then employed as regression points
to build NIPCEs for pressure and concentration solutions of the
Henry problem test case. The resulting NIPCEs are subsequently
used in the framework of UP analysis for the estimation of l and
r of the respective outputs. This procedure is repeated 30 times
with different sample designs, and an average of these 30 repeti-
tions is presented as the outcome of NIPCEs for a specific polyno-
mial degree (d) and number of regression points (q). The aim of
doing these repetitions is to dampen the effect of stochastic varia-
tions in the generation of random numbers.

Note that the system of equations in the regression method
should be over-determined, because if not, the accuracy of the
results significantly deteriorates [51,62]. Moreover, we base our
analysis on the optimal polynomial degree for each q, that is, the
minimum polynomial degree for which the results illustrate the
highest level of accuracy and that further increase in d would result
in either constant or deteriorating accuracies. For q ¼ 10, we can
have d ¼ 1;2 (for d P 3 the system of equations is no longer
over-determined), from which we choose d ¼ 2 for its higher accu-
racy. For q ¼ 30;60;100, NIPCEs of degree one to six are con-
structed and compared based on their accuracies (not shown
here) and d ¼ 4 is chosen for all three cases as the optimal
polynomial degree. As an illustration, Fig. 12a and b compare the
cumulative distribution function (CDFs) resulting from MCSs based
on NIPCE meta-models (for d ¼ 1;2;3;4 and q ¼ 30), with the CDFs
for the reference solutions of pressure and concentration in the
Henry problem test case respectively. For each d and q, we have
30 CDFs each obtained from a NIPCE meta-model which is con-
structed based on a unique training data sets. Fig. 12a and b show
the scattering of these 30 CDFs around the reference solutions. We
see that for d ¼ 4, there is acceptable agreement between the CDFs
obtained from MCS + NIPCE and the reference solutions. The data
sets used for the construction of the NIPCEs in Fig. 12a and b are
based on the CLD-ESE (mid) sampling strategy and the CDFs are
generated using the non-parametric kernel density estimation.

Figs. 13 and 14 compare the outcome of random LHS, midpoint
LHS, CLD-ESE (rand) and CLD-ESE (mid) sampling strategies for the
selection of the regression data set in NIPCEs. The figures show the
variations of varð2 ðlÞÞ and varð2 ðrÞÞ with respect to the number
of sample points for concentration and pressure solutions of the
Henry problem. As illustrated, the efficiency of l and r estimates
obtained from NIPCEs based on OLHS (both CLD-ESE (rand) and
CLD-ESE (mid)) are generally significantly higher than those
obtained from NIPCEs based on LHS. The average percent improve-
ments in the accuracy and robustness of l and r estimates with
the use of the CLD-ESE sampling strategies instead of LHS (random
LHS or midpoint LHS) is 37%. To the author’s knowledge, OLHS
strategies have not been previously used in the context of generat-
ing training data sets for NIPCEs. However, previous studies have
pointed towards OLHS for improving the efficiency of other
meta-models [e.g. 9,33,35].



Fig. 13. Comparison of different sampling strategies in MCSs based on NIPCE meta-
models for pressure solutions in the monitoring point of the Henry problem test case.
The figures show the variances of errors in (a) mean and (b) standard deviation with
respect to the reference solutions.

Fig. 14. Comparison of different sampling strategies in MCSs based on NIPCE meta-
models, for concentration solutions in the monitoring point of the Henry problem test
case. The figures show the variances of errors in (a) mean and (b) standard deviation
with respect to the reference solutions.
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Figs. 13 and 14 also show that the CLD-ESE (mid) sampling
strategy generally results in NIPCEs with higher accuracy and
robustness compared to NIPCEs based on the CLD-ESE (rand) strat-
egy. On average, the efficiency improves around 22% with the use
of CLD-ESE (mid) instead of CLD-ESE (rand). These results are con-
sistent with those obtain when analyzing MCSs based on the origi-
nal numerical model.
5. Conclusions

In this study we have compared two approaches for the selec-
tion of the initial design that is fed into the optimization algorithm
of OLHS strategies. The first approach is the use of random points
in the hypercube intervals (random LHS), and the second approach
is to employ midpoints in the hypercube intervals (midpoint LHS).
Both approaches have been extensively used in previous literature
and codes developed for OLHS. The scientific literature has some-
what favored the use of midpoint LHS, but random LHS has been
the predominant choice in ready-made toolboxes and codes. But
no attempt has been previously made to compare the outcome of
the two approaches. We have assessed the efficiency of the two
approaches, firstly by comparing the space-filling characteristics
of their resulting sample designs, secondly by incorporating the
resulting sample designs in MCS for UP analysis, and thirdly, by
employing the sample designs in the selection of the training set
for constructing NIPCE meta-models which subsequently replace
the original full model in MCS. The analysis in the second and third
steps is based on two case studies involving numerical simulation
of density dependent flow and solute transport in porous media
within the context of SWI in coastal aquifers. The study showed
that the use of midpoint LHS as the initial design significantly
improves the space-filling characteristics of the resulting sample
designs and increases the efficiency and robustness of the resultant
MCSs and NIPCE meta-models. It was also illustrated that this rel-
ative improvement decreases with increasing number of sample
points and input parameter dimensions. Since the computational
time and efforts for generating the sample designs in the two
approaches are identical and the proposed approach requires little
effort, we recommend the use of midpoint LHS as the initial design
in OLHS strategies. The proposed approach provides the most ben-
efit when used with long running real world models where any
improvement in the computational efficiency of UP methods can
be invaluable.
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