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This paper surveys the literature associated with the application of evolutionary algorithms (EAs) in
coastal groundwater management problems (CGMPs). This review demonstrates that previous studies
were mostly relied on the application of limited and particular EAs, mainly genetic algorithm (GA) and
its variants, to a number of specific problems. The exclusive investigation of these problems is often
not the representation of the variety of feasible processes may be occurred in coastal aquifers. In this
study, eight EAs are evaluated for CGMPs. The considered EAs are: GA, continuous ant colony optimiza-
tion (CACO), particle swarm optimization (PSO), differential evolution (DE), artificial bee colony optimi-
zation (ABC), harmony search (HS), shuffled complex evolution (SCE), and simplex simulated annealing
(SIMPSA).

The first application of PSO, ABC, HS, and SCE in CGMPs is reported here. Moreover, the four benchmark
problems with different degree of difficulty and variety are considered to address the important issues of
groundwater resources in coastal regions. Hence, the wide ranges of popular objective functions and con-
straints with the number of decision variables ranging from 4 to 15 are included. These benchmark prob-
lems are applied in the combined simulation–optimization model to examine the optimization scenarios.
Some preliminary experiments are performed to select the most efficient parameters values for EAs to set
a fair comparison. The specific capabilities of each EA toward CGMPs in terms of results quality and
required computational time are compared. The evaluation of the results highlights EA’s applicability
in CGMPs, besides the remarkable strengths and weaknesses of them. The comparisons show that SCE,
CACO, and PSO yield superior solutions among the EAs according to the quality of solutions whereas
ABC presents the poor performance. CACO provides the better solutions (up to 17%) than the worst EA
(ABC) for the problem with the highest decision variables and more complexity. In terms of computa-
tional time, PSO and SIMPSA are the fastest. SCE needs the highest computational time, even up to four
times in comparison to the fastest EAs. CACO and PSO can be recommended for application in CGMPs, in
terms of both abovementioned criteria.

� 2014 Elsevier B.V. All rights reserved.
1. Introduction

In the recent decades, evolutionary algorithms (EAs) with vary-
ing degree of complexities have been used to solve optimization
problems in the fields of groundwater resources management
(Nicklow et al., 2010; Ataie-Ashtiani and Ketabchi, 2011; Singh,
2012, 2014). Groundwater in coastal aquifers is one of the essential
resources of freshwater in coastal regions which are heavily popu-
lated or industrialized areas, and have critical ecosystems. Seawa-
ter intrusion (SWI) is a widespread environmental concern of
coastal aquifers, essentially due to unplanned and over-exploita-
tion of coastal groundwater (Cheng and Ouazar, 2004; Werner
et al., 2013). Comprehensive reviews on SWI simulation
approaches are given by Bear et al. (1999) and Werner et al.
(2013). The SWI status depends on several factors including scale,
aquifer properties, groundwater inflow and outflow, upconing due
to well pumping, the tidal oscillation of the sea level, and climate
change features such as sea-level rise and variations in recharge
rate (e.g., Ataie-Ashtiani et al., 1999, 2013b; Ketabchi et al., 2014;
Mahmoodzadeh et al., 2014) and there are unreliability or uncer-
tainty in many of these factors, that cause the SWI analysis more
complex (Rajabi and Ataie-Ashtiani, 2014; Rajabi et al., 2014).

The combined simulation–optimization techniques can be used
to determine optimal management strategies. Various types of
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Nomenclature

EA Evolutionary algorithm
CGMP Coastal groundwater management problem
GA Genetic algorithm
ACO Ant colony optimization
CACO Continuous ant colony optimization
PSO Particle swarm optimization
DE Differential evolution
ABC Artificial bee colony optimization
HS Harmony search
SCE Shuffled complex evolution
SA Simulated annealing
SIMPSA Simplex simulated annealing
MSL Mean sea level
GWT Water table
SWI Seawater intrusion
ANN Artificial neural network
GP Genetic programming
xbest best solution found from the previous iteration of opti-

mization procedure
s normal distribution
r standard deviation in CACO or SIMPSA
Pop EA’s population size
x decision variable
xmin lower bound of feasible decision variable space
xmax upper bound of feasible decision variable space
D number of decision variables
f objective function value
fmodified modified objective function value
xopt best decision variable
fopt best objective function value
v velocity
g generation number index
NG number of generations
rand random number
x inertia or momentum weight for PSO
bp cognitive experience coefficient of PSO
bg social interactions coefficient of PSO
C1 acceleration constant related to local best positions for

PSO
C2 acceleration constant related to global best positions for

PSO
FDE control parameter of differential variations for DE
u trial vector for DE
jrand random integer in the range (1,D)
CR crossover probability of DE
fitnessi fitness value for ABC
SN number of food sources
limit number of trials as an abandonment criteria of scouts

and their solutions
Probi probability value for ABC or SCE
HMS harmony memory size for HS
HMCR harmony consideration rate for HS
PAR pitch adjustment rate for HS
bw pitch adjustment bandwidth for HS
NC number of complexes
qSCE number of simplexes
aSCE number of consecutive new solutions generated by the

same simplexes
bSCE number of evolution of each complex before complexes

are shuffled
m1 number of successful reflections for SIMPSA
m2 number of unsuccessful reflections for SIMPSA
Ar acceptance ratio for SIMPSA
Tempinit initial annealing temperature for SIMPSA
Temp annealing temperature for SIMPSA

KB Boltzmann’s constant
Df difference of objective function values
Df + average increase in objective function values for m2

reflections for SIMPSA
rcool cooling rate for SIMPSA
NT number of successful generations for the current Temp

of SIMPSA
n total number of pumping wells
ðxi

w; y
i
wÞ coordinates of well i

Pi pumping from cell or well i
Pmin minimum pumping from cell or well i
Pmax maximum pumping from cell or well i
Pump total pumping rate
si hydraulic head level drawdown of well i
A cost dependent constant
MU monetary unit
T transmissivity
Rsw radius of influence of the system of wells
rij distance between wells i and j
rij� distance between well i and imaginary well j⁄

rw radius of well
hf hydraulic freshwater head
d aquifer depth from mean sea level
d density difference ratio of the seawater and freshwater
q fluid density
qs seawater density
qf freshwater density
u flow potential
n freshwater depth from mean sea level
K hydraulic conductivity
q regional uniform flow per unit length of coastline
Xi

toe distance from the coastline to the toe location according
to the pumping well i

Xi
S distance from the coastline to the stagnation points of

the pumping well i
R recharge
Ai cell i area
Wi cell i width
Tji transmissivity and length of the boundary between cell i

and an adjacent cell j
Wji length of the boundary between cell i and an adjacent

cell j
Lji distance between centers of the two adjacent cells
Li mean seawater intrusion length in the coastal cell i
Cost total cost of pumping
costi cost of pumping and conveyance of water from cell i
Sop specific pressure storativity
p fluid pressure
t time
c solute concentration
c⁄ solute concentration as a mass fraction of fluid sources
cmax maximum allowable concentration mass fraction for

potable water
cf freshwater concentration
cs seawater concentration
l fluid dynamic viscosity
Ddiff molecular diffusion
Ddisp mechanical dispersion tensor
gz gravitational acceleration
e aquifer volumetric porosity
kI solid matrix intrinsic permeability
Qp fluid mass sink or source
a dispersivity
Csc penalty coefficient
Pen penalty function
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Nn the number of generations with no improvement in the
objective function value

Nt the number of total generations from the beginning of
computation
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models including analytical solutions (e.g., Cheng et al., 2000),
numerical models (e.g., Mantoglou and Papantoniou, 2008), and
surrogate models such as artificial neural networks (ANNs) and
genetic programming (GP) (e.g., Sreekanth and Datta, 2011;
Ataie-Ashtiani et al., 2014) can be used as groundwater simulators.

In coastal groundwater management problems (CGMPs), the
previous works have obtained optimal solutions at varying degrees
of success using traditional (e.g., linear and nonlinear program-
ming techniques) or EA optimization tools in combination with
simulation models. Linear programming techniques (e.g., Shamir
et al., 1984; Hallaji and Yazicigil, 1996; Nishikawa, 1998; Sethi
et al., 2002; Mantoglou et al., 2004; Abarca et al., 2006;
Uddameri and Kuchanur, 2007; Karterakis et al., 2007) and nonlin-
ear programming techniques (e.g., Gorelick and Voss, 1984; Willis
and Finney, 1988; Finney et al., 1992; Emch and Yeh, 1998; Das
and Datta, 1999, 2000; Gordon et al., 2000; Mantoglou et al.,
2004; Mantoglou and Papantoniou, 2008) were widely used for
CGMPs in the past. Recently, the application of EAs for CGMPs
has extensively been developed in order to overcome the short-
comings of traditional optimization techniques (Singh, 2014). A
wide range of optimization algorithms are available such as genetic
algorithm (GA) (Holland, 1975; Goldberg, 1989), ant colony opti-
mization (ACO) (Dorigo, 1992), evolution strategies (Rechenberg,
1965), particle swarm optimization (PSO) (Kennedy and Eberhart,
1995), differential evolution (DE) (Storn and Price, 1997), artificial
bee colony optimization (ABC) (Karaboga, 2005), harmony search
(HS) (Geem et al., 2001), bacterial foraging optimization (Passino,
2002), shuffled complex evolution (SCE) (Duan et al., 1992), simu-
lated annealing (SA) (Kirkpatrick et al., 1983), simplex simulated
annealing (SIMPSA) (Cardoso et al., 1996), cuckoo search (Yang
and Deb, 2010), invasive weed optimization (Mehrabian and
Lucas, 2006). Considering the large number of such algorithms
and their variants, determining the most appropriate one for the
purposes of CGMPs is still an open question. There is no a superior
and all-purpose EA for all problems (e.g., Wolpert and Macready,
1997; Pham and Castellani, 2014). The success of each EA on a par-
ticular optimization problem depends on how well the algorithm
fits to the proposed problem. The precise understanding of an opti-
mization problem is a key factor due to problem-dependent perfor-
mance of EAs (Pham and Castellani, 2014).

Some efforts have been devoted to compare EAs performances
for scientific applications. Typically, such comparisons have been
based on benchmark mathematical functions (e.g., Pourtakdoust
and Nobahari, 2004; Elbeltagi et al., 2005; Afshar et al., 2006;
Karaboga and Akay, 2009; Akay and Karaboga, 2012; Civicioglu
and Besdok, 2013; Pham and Castellani, 2014). By comparing the
performances of EAs in CGMPs, we can have an efficient choice
of EAs. However, there has not been any comprehensive compara-
tive study of various EAs and their applicability analyses in CGMPs.
Recently, Karpouzos and Katsifarakis (2013) introduced four new
benchmark problems in the groundwater resources management
field considering the adjustable difficulty through the application
of GA and SA. They showed that such set of benchmark problems
can be useful for evaluating EAs. Singh (2014) reviewed the differ-
ent techniques used for the management of CGMPs and high-
lighted the need to develop appropriate management models for
assessing the strategies of SWI protection in coastal aquifers. He
investigated the applications of linear and nonlinear programming
techniques and GA in CGMPs.
Here, we categorize the applications of EAs in CGMPs to two
group of hypothetical problems and real-case applications. Tables
1 and 2 summarize these two categories. The simulation conceptu-
alizations and the variety of features considered in the optimiza-
tion problems are presented in these Tables. These studies are
not conducted as the representative cases of the range of possible
processes may be occurred in the coastal aquifers, and sometimes
replicate similar cases. The focus of many of these studies is on the
application of a particular EA and there is no comparative evalua-
tion of EAs in these studies. Cheng et al. (2000) reported the first
application of EAs to investigate the CGMPs, using the structured
messy GA in combination with analytical solutions of coastal aqui-
fer problems. Tables 1 and 2 indicate GA and its variants are the
most popular of EAs for such problems in comparison with other
algorithms and there is a very few applications of CACO (Ataie-
Ashtiani and Ketabchi, 2011), DE (Karterakis et al., 2007;
Papadopoulou et al., 2010; Elçi and Ayvaz, 2014), SA (Rao et al.,
2003, 2004), and SIMPSA (Kourakos and Mantoglou, 2009).

Surveying in the literature demonstrates that other EAs, such as
PSO, ABC, HS and SCE, were rarely used in groundwater resources
management and there is no report of their application for CGMPs.
ACO was considered by Amy and Hilton (2007) to groundwater
monitoring design. Gaur et al. (2011) utilized PSO in the Dore river
basin, France to solve two groundwater hydraulic management
problems. A combined simulation–optimization model using
MODFLOW and HS was proposed by Ayvaz (2009) for hypothetical
unconfined aquifer while Ayvaz and Elçi (2013) used such model
for their investigations on Tahtalı watershed (Izmir-Turkey). It
should be noted that it was not found any notable literature, which
used ABC, SCE, and other EAs to CGMPs. Although helpful to give
more insights on the performances of EAs in CGMPs, aforemen-
tioned literatures did not address the need of a systematic and
comprehensive evaluation of EAs. Therefore, it is needed to discuss
and assess the characteristics of some popular EAs in solving
CGMPs.

Tables 1 and 2 also list different objective functions and
the sets of constraints that can be considered to define the
optimization problems of coastal groundwater resources.
Optimal decisions can be related to pumping rate schemes
(e.g., Cheng et al., 2000; Mantoglou et al., 2004; Qahman et al.,
2009; Ataie-Ashtiani and Ketabchi, 2011), well locations (e.g.,
Park and Aral, 2004; Elçi and Ayvaz, 2014), the salinity of
pumped water from wells (e.g., Abd-Elhamid and Javadi, 2011;
Ataie-Ashtiani et al., 2014), water table (GWT) level or draw-
down (e.g., Katsifarakis and Tselepidou, 2009), seawater volume
into the aquifer (e.g., Finney et al., 1992; Emch and Yeh,
1998), operating cost (e.g., Gordon et al., 2000; Kourakos and
Mantoglou, 2009; Abd-Elhamid and Javadi, 2011), net benefit
(e.g., Qahman et al., 2005; Ferreira da Silva and Haie, 2007),
recharge rate schemes (e.g., Kourakos and Mantoglou, 2011),
and also trade-off between environmental and social issues,
and interactions between surface and subsurface resources. The
review of Singh (2014) also revealed that the management
models used in the past mainly considered the abovementioned
objectives. Also, constraints which consider limitations and
controls, can include pumping limits (e.g., Cheng et al., 2000;
Rao et al., 2004; Katsifarakis and Petala, 2006), manage the sea-
water toe location (e.g., Cheng et al., 2000; Park and Aral, 2004;
Ferreira da Silva and Haie, 2007; Mantoglou and Papantoniou,



Table 1
Summary of EA-based literature for hypothetical CGMPs.

References Simulationa Optimizationb Objectivesc Considerationd Casee

Cheng et al. (2000) IF, 2D,UNCO, SS, AN SMGA PR PL, TL, SWI, CI HYP, 22 km2

Rao et al. (2003) IF, 2D, T, NU (SHARP), ANN SO, SA WL, PR PL, TL, GWT HYP, 50 km2

Park and Aral (2004) IF, 2D, AN, SS, 2D MO, MOGA WL, PR PL, TL, SWI HYP, 28 km2

Rao et al. (2004) IF, 3D, UNCO, NU (SEAWAT), ANN SO, SA PR PL, SWI, GWT, BW HYP, 2.64 km2

Bhattacharjya and Datta (2005) DD, 3D, NU (FEMWATER), ANN GA PR PL, SWI, BW HYP, 2.52 km2

Qahman et al. (2005) DD, 3D, CO, NU (CODESA3D) SO, MO, GA PR, NB, COST PL, GWT HYP
Katsifarakis and Petala (2006) IF, 2D, AN, SS, BEM SO, GA WL, PR PL, SWI HYP
Ferreira da Silva and Haie (2007) IF, 2D, AN, NU SO, EA WL, NB PL, TL, SWI, WD, GWT, RES, PS HYP
Bhattacharjya and Datta (2009) DD, 3D, NU (FEMWATER), ANN MO, NSGA-II PR PL, SWI, BW HYP, 2.52 km2

Dhar and Datta (2009) DD, 3D, NU (FEMWATER), ANN MO, NSGA-II PR PL, SWI HYP, 2.52 km2

Sreekanth and Datta (2010) DD,3D, UNCO, NU (FEMWATER), GP, MNN MO, NSGA-II PR PL, SWI, BW HYP, 2.52 km2

Abd-Elhamid and Javadi (2011) DD, 2D, CO, T, NU MO, GA ADR, COST, WC PL, SWI, GWT Henry
problem

Ataie-Ashtiani and Ketabchi
(2011)

IF, 2D, UNCO, SS, AN, NU SO, CACO PR PL, TL, SWI HYP, 28 km2

Kourakos and Mantoglou (2011) DD, 2D, T, NU (SEAWAT) MO, NSGA-II WL, PR, RR, COST PL, WD, DI HYP
Sreekanth and Datta (2011) DD, 3D, UNCO, NU (FEMWATER), GP, ANN SO, GA PR PL, SWI, BW HYP, 2.52 km2

Javadi et al. (2012) DD, 2D, CO, T, NU MO, GA ADR, WC, COST PL, SWI, GWT Henry
problem

a IF: sharp-interface flow; DD: density-dependent flow; D: dimension; UNCO: unconfined; CO: confined; SS: steady-state; T: transient; AN: analytical; NU: numerical;
ANN, artificial neural network; BEM: boundary element method, artificial neural network MNN: modular neural network.

b SO: Single-objective; MO: multi-objective; SMGA: structured messy GA; MOGA: multi-objective GA; NSGA-II: non-dominated sorting GA-II.
c PR: pumping rate; WL: Well locations; NB: net benefit; COST: operating cost; RR: recharge rate; WC: Well concentration.
d PL: pumping limits, TL: toe location, CI: canal impact; WD: water demand; GWT: GWT level (drawdown); RES: reservoir; PS: pumping station; BW: barrier wells.
e HYP: hypothetical aquifer.

Table 2
Summary of EA-based literature for real-case CGMPs.

References Simulationa Optimizationb Objectivesc Considerationd Case

Mantoglou et al. (2004) IF, 2D, UNCO, SS, AN, NU
(MODFLOW)

SO, EA PR PL, TL, SWI Greek island of Kalymnos, �21 km2

Karterakis et al. (2007) IF, 2D, UNCO, SS, AN SO, DE PR PL, GWT Coastal karstic aquifer, Crere, Greece,
17.9 km2

Guan et al. (2008) NU (MODFLOW) IGA PR PL, SWI, GWT Savannah region
Mantoglou and Papantoniou

(2008)
IF, 2D, UNCO, SS, AN, NU
(MODFLOW)

SO, GA WL, PR PL, TL, SWI Greek island of Kalymnos, �21 km2

Kourakos and Mantoglou
(2009)

DD, 3D, NU (SEAWAT), MNN SIMPSA PR PL, SWI, GWT Greek island of Santorini, �66 km2

Qahman et al. (2009) DD, 3D, NU (CODESA3D) MO, GA PR SWI, GWT Gaza Coastal Aquifer, 4 km2

Liu et al. (2010) ANN GA WA, COST,
SSAT

SWI, WD, JORR Pearl River Delta, China, 28,079 km2

Papadopoulou et al. (2010) AN, RBANN DE WA PL, GWT Heraklion, Crete, Greece
Abd-Elhamid and Javadi

(2011)
DD, 2D, CO, T, NU MO, GA ADR, COST,

WC
PL, SWI, GWT Biscayne, Florida, USA, 300 m length

Sedki and Ouazar (2011) IF, 2D, UNCO, SS, T, NU
(MODFLOW)

SO, GA PR, AER PL, SWI, WD, GWT,
WLOG

Rhis-Nekor plain, Morocco, 100 km2

Kourakos and Mantoglou
(2013)

DD, 3D, NU (SEAWAT), MNN SO, MO,
NSGA-II

PR, COST,
ADR

PL, SWI, WD Greek island of Santorini, �66 km2

Ataie-Ashtiani et al. (2014) DD, 3D,UNCO, NU (SUTRA),
ANN

MO, GA CCC, WC PL, SWI, LU, MZA Kish island, Persian Gulf, Iran, �90 km2

Elçi and Ayvaz (2014) IF, 2D, UNCO, SS, NU
(MODFLOW)

DE WL, PR, COST PL, SWI, GWT, TWL,
LU

Coastal aquifer in Tahtalı watershed in
Izmir, Turkey

a IF: sharp-interface flow; DD: density-dependent flow; D: dimension; UNCO: unconfined; CO: confined; SS: steady-state; T: transient; AN: analytical; NU: numerical;
ANN, artificial neural network; RBANN: radial basis function ANN.

b SO: Single-objective; MO: multi-objective; NSGA-II: non-dominated sorting GA-II; IGA: Improved GA.
c PR: pumping rate; WL: Well locations; COST: operating cost; WC: Well concentration; WA: water allocation; SSAT: social satisfaction, ADR: Abstraction, desalination and

recharge; AER: Adverse environmental risks; CCC: Change in concentrations change.
d PL: pumping limits, TL: toe location, CI: canal impact; WD: water demand; GWT: GWT level (drawdown); JORR: joint operation of river and reservoirs; TWL: total well

length, WLOG: water-logging; LU: land-use; MZA: management zone application.
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2008; Ataie-Ashtiani and Ketabchi, 2011), GWT level (e.g.,
Uddameri and Kuchanur, 2007; Katsifarakis and Tselepidou,
2009), salt concentration (e.g., Kourakos and Mantoglou, 2011;
Ataie-Ashtiani et al., 2014), strategic nature of the aquifer, exist-
ing infrastructures, and historical rights rates (e.g., Abarca et al.,
2006). The considered benchmark problems in this study cover
the range of popular objective functions and constraints such
as pumping rate schemes and proposed limits, well locations,
operating cost, drawdown, toe location, and salt concentration.
The objective of this paper is to provide a comparative study of
eight EAs for CGMPs. Here, we examine the application of PSO,
ABC, HS, and SCE for the first time to solve CGMPs. CACO, DE, and
SIMPSA which were rarely applied in this field, are also tested
besides the wide-use EA of GA. The applicability and efficiency of
these eight EAs are investigated using the four benchmark problems
to cover variety of features that occur in coastal regions. The compar-
ative investigation describes the efficiency and robustness of an
extensive number of EAs.



Fig. 1. Flowchart of the combined simulation–optimization approach for CGMP.
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2. Methods and tools

A combined simulation–optimization approach is considered as
given in the presented through a schematic flowchart in Fig. 1. Fol-
lowing problem identification, initialization, and parameter set-
tings, a combined simulation–optimization methodology is used.
Such methodology was suggested by e.g., Dhar and Datta (2009),
Abd-Elhamid and Javadi (2011), Ataie-Ashtiani and Ketabchi
(2011), and Ataie-Ashtiani et al. (2014) due to key advantages in
comparison with other methodologies such as embedding approach
applied by e.g., Shamir et al. (1984), and Das and Datta (1999). The
two main components of this approach are optimization algorithm
and simulation model. EA as an optimization tool calls the simula-
tion model iteratively to evaluate the objective function values
and then update decision variables. This process is repeated until
the stopping criteria are satisfied and accordingly best solution is
obtained. These components are described in the following sections.

2.1. Evolutionary algorithms

EAs are meta-heuristic search methods that are inspired by evo-
lution of biological natures and social behaviors to arrive at a
near-optimum solution (Fogel et al., 1966). EAs are based on the
collective learning process within a population of potential solu-
tions applying the principle of survival of the fittest in order to
refine a set of solution candidates iteratively (Fogel et al., 1966;
Holland, 1975). Their potential as global optimization methods in
real-world and large-scale applications causes to relax shortcom-
ings imposed by traditional optimization techniques. Traditional
techniques are commonly unable to handle large-number of deci-
sion variables, nonlinear non-convex problems, and difficulty or fail
in providing the global optimum without being trapped in local
optimums (Dhar and Datta, 2009; Singh, 2012; Ma et al., 2013;
Pham and Castellani, 2014). In this study, we compare the GA,
CACO, PSO, DE, ABC, HS, SCE, and SIMPSA. There are other EAs which
can be included in such comparison. We have considered these EAs
as the most popular because they were applied in many widespread
scientific fields. A brief description of the aforementioned algo-
rithms is presented in the following. It should be noted that in this
study, the basic variants of the proposed set of EAs are opted.

2.1.1. Genetic algorithm
GA is a search method that mimics the natural biological

evolution of species (Holland, 1975; Goldberg, 1989). GA involves
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several basic mechanisms including initialization, selection, and
reproduction (mating) to produce stronger individuals (The algo-
rithm is provided in Supplementary material A: Algorithm A.1).
In this method, NG is the number of generations and Pop is the size
of chromosome populations. GA starts with a population of chro-
mosome-encoded random potential solutions of the problem.
From the initial population, the fittest strings, as measured by
objective function, are selected to pass genetic information to the
next generation. A new set of solutions is produced from the
selected members of the previous population through the applica-
tion of identified selection, crossover, and mutation operators.
These processes are repeated until the user-specified stopping cri-
teria are met.

2.1.2. Continuous ant colony optimization
ACO as a part of swarm intelligence is inspired by the foraging

behavior of ant colonies that was first introduced by Dorigo (1992).
Ants deposit a pheromone on their path to mark some shorter
paths between food sources and their nest. It is followed by other
ants, when choosing their way. Accordingly, ants tend to choose
paths mark by strong pheromone concentrations. This indirect
communication among ants by forming pheromone trails can give
rise to the emergence of shortest paths (Dorigo and Stützle, 2004).
A similar system for solving optimization problems can be adopted
(Socha and Dorigo, 2008).

ACO was originally proposed for discrete optimization problems
and extended to continuous decision space by Bilchev and Parmee
(1995), namely CACO, and after that improved by some other
researchers (e.g., Pourtakdoust and Nobahari, 2004; Afshar et al.,
2006; Socha and Dorigo, 2008; Madadgar and Afshar, 2009). In this
study, CACO is chosen due to the continuous search space of the
considered optimization problems. This algorithm was developed
by Pourtakdoust and Nobahari (2004) and improved by Afshar
et al. (2006) using elitist strategy (The outline is provided in Sup-
plementary material A: Algorithm A.2). Also, it is closest to the
spirit of ACO for discrete problems. The fundamental idea in CACO
is the solution construction based on the pheromone-based proba-
bilistic choice of solutions (Socha and Dorigo, 2008). Hence, the
probability density function is generally used for determining
pheromone information and its update rule considering the best
solution of each generation (Pourtakdoust and Nobahari, 2004;
Afshar et al., 2006). The normal distribution for calculating phero-
mone information is:

sðxÞ ¼ 1
2r

ffiffiffiffi
p
p e�

ðx�xbest Þ
2

2r2 ð1Þ

where xbest is the best solution in the previous generation and r is
the weighted standard deviation of the normal probability density
function. r is used for the modification of the probability distribu-
tion at any generation toward the choices leading to optimal solu-
tions and forgetting other ones. The r is defined as follows
(Pourtakdoust and Nobahari, 2004):

r ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPPop
i¼1

1
f i�f opt

ðxi � xoptÞ2PPop
i¼1

1
f i�f opt

vuuut ð2Þ

where Pop is the number of ants, xi is the decision variable selected
by ant i (solution), fi is the value of objective function for solution i,
xopt is the best decision variable, and fopt is the best objective func-
tion value from the previous generation.

2.1.3. Particle swarm optimization
PSO is a swarm intelligence-based optimization technique

inspired by social behavior and dynamic movement of a flock of
insects, birds, and fish, which was developed by Kennedy and
Eberhart (1995) (The outline is provided in Supplementary mate-
rial A: Algorithm A.3). A PSO is initialized with a population
(swarm) of random candidate solutions (particles) within the pro-
posed boundaries. The particles fly throughout the search space
following the current optimum particles. The movements of parti-
cles are guided by the best known position of each particle in the
search space using its own memory as well as knowledge learned
from the entire swarm’s best known position. The movement of
each particle for better positions in the search space is determined
by the particle’s velocity. Each generation, the velocities and posi-
tions of the particles are updated until the user-specified stopping
criteria are satisfied (Kennedy and Eberhart, 2001). Each particle
position is updated to the new position, x(g + 1), according to its
current position, x(g), as follows:

xðg þ 1Þ ¼ xðgÞ þ vðg þ 1Þ ð3Þ

where g is a generation number index, and v(g + 1) is the new veloc-
ity of the particle, updated by the following rule:

vðg þ 1Þ ¼ xvðgÞ þ C1 rand1 ðbpðgÞ � xðgÞÞ þ C2 rand2 ðbgðgÞ
� xðgÞÞ ð4Þ

where v(g) is the current velocity of particle. rand1 and rand2 are
two independent random numbers uniformly distributed in the
range of (0, 1). v(g + 1) includes three elements that represent the
persistence of current condition (controlled by x as an inertia or
momentum weight), cognitive experience (tendency to return to
previously found local best position, bp(g), visited by each particle),
and social interactions (tendency to move toward the bg(g) as the
global best position encountered so far with the social neighbors
of the particle). Also, C1 and C2 are two acceleration constants which
control the relative effect of the local and global best positions (Shi
and Eberhart, 1998; Kennedy and Eberhart, 2001).
2.1.4. Differential evolution
DE was developed by Storn and Price (1997). DE includes three

important operations: mutation, crossover and selection to evolve
from a randomly generated initial trial population to the fittest
solution (The procedure is presented in Supplementary material
A: Algorithm A.4). The mutation operator is used to generate per-
turbed individual, xperturbed(g + 1) as:

xperturbedðg þ 1Þ ¼ xrand1 ðgÞ þ FDE � ðxrand2 ðgÞ � xrand3 ðgÞÞ ð5Þ

where xrand1 ; xrand2 , and xrand3 are randomly selected individuals
among the candidate solutions of the current population and must
be different from each other. The scaling parameter, FDE, is a control
parameter of differential variations. After mutation, a crossover
operator forms the trial vector, u(g + 1) according to xperturbed(g + 1)
and the corresponding x(g). Following a discrete recombination
approach, this trial vector is produced by:

ujðg þ 1Þ ¼
xj

perturbedðg þ 1Þ if randj 6 CR or j ¼ jrand

xjðgÞ otherwise

(
ð6Þ

where randj is a uniformly distributed random number in the range
of (0, 1). randj regenerates for each decision variable j, where
1 6 j 6 D and D is the number of decision variables. Also, in Eq.
(6), jrand is a random integer in the range (1,D) to ensure that
u(g + 1) – x(g). CR is the crossover probability that varies between
0 and 1 and is specified by user. Selection is then used to determine
whether the new generated trial vectors can survive the next gen-
eration, x(g + 1). Therefore, a candidate solution replaces the parent
only if it has better objective function value. Abovementioned oper-
ations continue until the stopping criteria are reached.
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2.1.5. Artificial bee colony optimization
ABC, introduced by Karaboga (2005), imitates the intelligent for-

aging behavior of honey bee colonies on finding food sources and
sharing the information to other bees in the nest (The detailed pro-
cess is provided in Supplementary material A: Algorithm A.5). ABC
simulates three kinds of bees: employed, onlooker, and scout bees.
Half of the colony consists of employed bees, and the other half
includes onlooker bees. The employed bees stay on a food source
and provide the neighborhood of the source in their memory. The
onlooker bees wait in the nest and decide on the food source that
is taken based on the information given by the employed bees.
The employed bee whose food source has been exhausted becomes
a scout bee. Scout bees randomly explore the environment for find-
ing new food sources (Seeley, 1995; Karaboga and Akay, 2009).

The food sources representing a possible solution to the optimi-
zation problem are randomly generated in the first step by scout
bees within the range of proposed boundaries. Each food source
is represented by xi. xi has D variables, where D is the number of
decision variables. The number of food sources is SN. After initial-
ization, the solutions are subject to repeated generations of the
search processes of bees (Karaboga and Akay, 2009; Karaboga
et al., 2014). In ABC, finding a neighboring food source is defined
by:

xnew
ij ¼ xij þ randijðxij � xkjÞ ð7Þ

Within the neighborhood of xi, a food source xnew
ij is determined

by changing one parameter of xi. In Eq. (7), j is a random integer in
the range (1,D) and k, where 1 6 k 6 SN is a randomly chosen index
that must be different from i. randij is a uniformly distributed real
random number in the range (�1,1). After creating xnew

i within the
proposed boundaries, a fitness value for an optimization problem
(e.g., minimization) can be assigned to the solution xnew

i by:

fitnessi ¼
1

1þf i
if f i � 0

1þ jf ij if f i < 0

(
ð8Þ

where fi is the objective function value of the solution xnew
i . The bet-

ter one between xi and xnew
i is selected depending on fitness values

representing the nectar amount of the food sources at xi and xnew
i . If

the source at xnew
i is superior to that of xi, the employed bee mem-

orizes the new position and forgets the old one. If not, the previous
position is remained in memory. After completing the searches of
all employed bees, each onlooker bee evaluates the nectar informa-
tion taken from all employed bees and selects the food sources with
a probability depending on the fitness values (Karaboga and Akay,
2009; Karaboga et al., 2014). This probability value, Probi, can be
defined as:

Probi ¼
fitnessiPSN
j¼1fitnessj

ð9Þ

Following the probabilistically selection of a food source for an
onlooker bee, a neighborhood source is determined by Eq. (7), and
its fitness value is computed by Eq. (8). Therefore, the best solu-
tions are selected. If a solution obtained by employed bees cannot
be improved through a predetermined parameter, namely limit,
then that solution is abandoned by scout bees (Karaboga and
Akay, 2009; Karaboga et al., 2014). Considering the abandoned
solution xi, the scout bees determine a new solution to be replaced
with xi using the following operation:

xij ¼ xmin
j þ randj � ðxmax

j � xmin
j Þ ð10Þ

where randj is a random number in the range of (0, 1); and xmin
j and

xmax
j are the lower and upper bound of solution space, respectively.

The aforementioned steps are repeated until stopping criteria
defined for ABC are satisfied.
2.1.6. Harmony search
HS is a meta-heuristic optimization technique developed first

by Geem et al. (2001). It conceptually mimics the improvisation
process of musicians to obtain better harmony (The algorithm is
proposed in Supplementary material A: Algorithm A.6). In this pro-
cess, each decision variable (musician) generates a value (note) for
finding a global optimum (best harmony). HS consists of a har-
mony memory size (HMS) as a data structure based on previously
remembered improvisations. Harmony memory vector stores the
candidate solutions including D decision variables, all of which
are initialized randomly within the search space. The harmony
consideration rate (HMCR) is in the range of (0, 1), pitch adjust-
ment rate (PAR), and the pitch adjustment bandwidth (bw) are
parameters specified by user for controlling the improvisation pro-
cess (Lee et al., 2005; Moh’d Alia and Mandava, 2011).

In each generation, HMCR is the probability of choosing a value
from the historic values stored in the harmony memory, and
(1 � HMCR) is the probability of randomly choosing a feasible value
not limited to those stored in the harmony memory. The solution
vector from memory consideration is further adjusted by pitch
adjusting process according to the probability of PAR. If the deci-
sion is updating the solution, xj is updated as follows:

xj ¼ xj þ randj � bw ð11Þ

where randj is a random number in the range (�1,1). The probabil-
ity of (1 � PAR) sets the rate of doing nothing. When the obtained
solution vector is better than the worst harmony in the memory,
the worst harmony is replaced by with the solution vector. This pro-
cedure is repeated until the stopping criteria are reached (Yang,
2009; Lee et al., 2005). The considered HS exploits changeable
PAR and bw in the improvisation process. These parameters change
with g and are defined as follows (Mahdavi et al., 2007):

PARðgÞ ¼ PARmin þ g � PARmax � PARmin

NG
ð12Þ

bwðgÞ ¼ bwmax e
lnðbwmin

=bwmax Þ
NG �g ð13Þ

where PARmax and PARmin are maximum and minimum pitch
adjusting rates, respectively, and bwmax and bwmin

are maximum and
minimum bandwidths, respectively.

2.1.7. Shuffled complex evolution
SCE was proposed by Duan et al. (1992) is a population-based

optimization method. It combines competitive complex evolution,
complex shuffling, and downhill simplex procedure to obtain a glo-
bal optimal solution (The algorithm is provided in Supplementary
material A: Algorithm A.7). Complex shuffling makes the informa-
tion of each complex shared at the process of searching, therefore
avoid trapping the local optimal solution. The search ability of
downhill simplex can make the SCE get every local optimal solu-
tion rapidly (Duan et al., 1994).

In SCE method, the number of complexes (NC) and the number
of points in each complex (NP) where NC P 1 and NP P D + 1, are
identified by user and the population size is computed as
Pop = NC � NP. Pop points in the search space are generated ran-
domly and evaluated according to the objective function value.
Then, they are sorted in the order of increasing superiority (for
minimization problem) and partitioned into NC complexes. Each
complex is evolved by competitive complex evolution algorithm,
based on Nelder and Mead (1965) simplex downhill search proce-
dure (local search), and followed by combining the points of the
evolved complexes into a single population and sorting them in
the order of increasing superiority (complex shuffling). Again, the
population partitioned into NP complexes. The local search and
shuffling steps are repeated until the stopping criteria are satisfied
(Duan et al., 1993, 1994).



Fig. 2. The system of wells in a heterogeneous aquifer (Problem 1).
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In competitive complex evolution algorithm, q, a, and b, where
2 6 q 6 NP, a P 1, and b P 1 are selected by user. Based on trian-
gular probability distribution (Eq. (14)), the weights for points
are assigned and q distinct points (simplexes) from each complex
are selected according to Probi as parents. a and b are the number
of consecutive new solutions generated by the same simplexes and
the number of evolution of each complex before complexes are
shuffled, respectively.

Probi ¼
2� ðNPþ 1� iÞ
NP� ðNPþ 1Þ i ¼ 1; . . . ;NP ð14Þ

Further details regarding the competitive complex evolution algo-
rithm are available in Nelder and Mead (1965) and Duan et al.
(1993).

2.1.8. Simplex simulated annealing
SIMPSA was developed for global continuous optimization

problems (Cardoso et al., 1996). It is based on the original SA
(Kirkpatrick et al., 1983) that was proposed for discrete optimiza-
tion problems. SIMPSA combines the Metropolis algorithm
(Metropolis et al., 1953) with the Nelder and Mead (1965) simplex
downhill search (Press and Teukolsky, 1991) (The outline is pro-
vided in Supplementary material A: Algorithm A.8).

Due to the application of the simplex downhill search, a simplex
with D + 1 vertices for D decision variable is used. Starting from a
randomly selected solution in the search space, a new candidate
solution is chosen according to the Metropolis algorithm and the
objective function values are calculated for both solutions. If the
new solution is better than the previous one, thus the new solution
is accepted and becomes the starting point for the next generation,
otherwise the new point is accepted with the probability of Df/
(KB.Temp), where Df is the difference of objective function values,
KB is Boltzmann’s constant, and Temp is the annealing temperature
(Cardoso et al., 1996). For assumed acceptance ratio, Ar, the initial
annealing temperature Tempinit is estimated by:

Ar ¼
m1 þm2e

�Dfþ
Tempinit

m1 þm2
ð15Þ

where m1 and m2 are the number of successful and unsuccessful
reflections, respectively. They are identified in the sufficient preli-
minary number of generations. In Eq. (15), Df+ is the average increase
in objective function values for m2. In the preliminary generations,
the temperature value is remained high, but it is decreased during
next generations in order to reduce the acceptance probability
(Cardoso et al., 1996). The cooling schedule will then continue with
estimated Tempinit by Eq. (15) as (Aarst and van Laarhoven, 1985):

Tempðg þ 1Þ ¼ TempðgÞ
1þ TempðgÞ�lnð1þrcoolÞ

3r

ð16Þ

where rcool is the cooling rate and r is the standard deviation of all
solutions at Temp(g) (current temperature). The simplex downhill
search method to generate possible solutions is used and a positive
logarithmic distributed variable to the objective function value is
added associated with every vertex of the simplex (Press and
Teukolsky, 1991). Then, a similar random variable from the function
value at every reflected point is presented as:

ðf perturbedÞi ¼ f i � Temp� ln randf

� �
i ¼ 1; . . . ;Dþ 1 ð17Þ

ðf perturbedÞreflected ¼ f reflected þ Temp� lnðrandf Þ ð18Þ

where fi is the objective function value of vertex i, freflected is the
objective function value at the replacement point and fperturbed is
the perturbed objective function value. randf is a random number
between 0 and 1.
The abovementioned steps are repeated, and the process is con-
tinued with a sufficient number of successful generations (NT) for
the current Temp. The temperature is then gradually reduced using
Eq. (16) and the entire process is repeated for the new tempera-
ture. The iterative process is continued until the stopping criteria
are met.

2.2. The benchmark problems description

The performances of all aforementioned EAs are investigated
using four-type benchmark problems in groundwater resources
management field. These problems are selected to examine a vari-
ety of objective functions and constraints. The first benchmark
problem introduced by Karpouzos and Katsifarakis (2013) is based
on the common aspects of groundwater pumping cost problems.
The developed EAs are verified by the application of this problem,
and then applied to find the optimal solutions of four CGMPs. A
brief description is given in the following.

2.2.1. Problem 1: minimization of total pumping cost from a
heterogeneous aquifer

An infinite heterogeneous aquifer with two zones of different
transmissivities (zones 1 and 2) is considered as shown in Fig. 2.
The goal is to minimize the pumping cost of a system of wells. Four
pre-existing and two unknown new wells will be pumped for
exploitation purposes. The wells 1–4 are located at the fixed coor-
dinates while the coordinates of new wells 5 and 6 are unknown
which should be constructed inside the assumed square area. The
optimal location of these two wells will be determined via the opti-
mization procedure. Therefore, this problem has ten decision vari-
ables including the pumping rate from each of six wells and four
coordinates of wells 5 and 6 (Karpouzos and Katsifarakis, 2013).

The management model can be stated as follows:

Minimize Cost ¼ A�
Xn

i¼1

Pi � si MU=year ð19Þ

where n is the total number of pumping wells, Pi and si are the
pumping and drawdown of well i located in ðxi

w; y
i
wÞ coordinates,

respectively, A is the cost dependent constant, and MU is monetary
unit.

si can be calculated analytically, based on the method of imag-
inary wells and superposition principle (Bear, 1979). Hence, si for
wells 1 to k, which located in zone 1 is evaluated as follows:

si ¼ �
1

2pT1

Xk

j¼1

Pj � ln
rij

Rsw

� �
� T1 � T2

2pT1 � ðT1 þ T2Þ
Xk

j¼1

Pj

� ln
r�ij

Rsw

� �
� 1

pðT1 þ T2Þ
Xn

j¼kþ1

Pj � ln
rij

Rsw

� �
ð20Þ
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while si for wells k + 1 to n, located in zone 2 is expressed as:

si ¼ �
1

2pT2

Xn

j¼kþ1

Pj � ln
rij

Rsw

� �
� T2 � T1

2pT2 � ðT1 þ T2Þ
Xn

j¼kþ1

Pj

� ln
rij�

Rsw

� �
� 1

pðT1 þ T2Þ
Xk

j¼1

Pj � ln
rij

Rsw

� �
ð21Þ

where T1 and T2 denote the transmissivities of zones 1 and 2,
respectively. Rsw is the radius of influence of the system of wells,
rij is the distance between wells i and j, and rij� is the distance
between well i and imaginary well j⁄. The value of rii is taken equal
to the radius of well i as rw.

By replacing Eqs. (20) and (21) in Eq. (19), the cost of pumping
from the system of wells is obtained (Katsifarakis and Tselepidou,
2009) and considered as the objective function. The following con-
straints also should be satisfied in this problem:

Xn

i¼1

Pi ¼ 6:3� 106 m3=year

0 � Pi � 0:127 m3=s 1 � i � n

� 600 � xi
w � 600 m i ¼ 6 and 5

0 � yi
w � 1200 m i ¼ 6 and 5

ð22Þ

If the coordinates of all pumping wells are known, this optimi-
zation problem can be solved analytically (Katsifarakis and
Tselepidou, 2009; Karpouzos and Katsifarakis, 2013). Table 3 sum-
marized the values of parameters for this problem based on
Karpouzos and Katsifarakis (2013).

2.2.2. Problem 2: maximization of total pumping from an unconfined
aquifer

The objective of this problem is to maximize total pumping
from pre-selected wells in an unconfined coastal aquifer while pro-
tecting from SWI. The analytical solution of the steady-state sharp-
interface SWI model is used in this problem (Cheng et al., 2000;
Park and Aral, 2004; Mantoglou and Papantoniou, 2008; Ataie-
Ashtiani and Ketabchi, 2011). This solution is based on the single
potential mathematical formulation of Strack (1976) and also Dup-
uit hydraulic assumption.

Fig. 3 presents the system of wells and the cross-section of a
coastal aquifer. XS indicates the stagnation point representing the
radius of influence of a pumping well. Badon-Ghyben–Herzberg
principle links the hydraulic freshwater head, hf, to freshwater
depth from mean sea level (MSL), n, as follows (Bear, 1979):

hf � d ¼ dn ð23Þ

where d is the aquifer depth from MSL and d represents the density
difference ratio of the seawater and freshwater as:

d ¼
qs � qf

qf
ð24Þ

where qs and qf are the seawater and freshwater densities, respec-
tively. Following Strack (1976) formulation, the flow potential u is
defined as follows (Ataie-Ashtiani and Ketabchi, 2011):
Table 3
Problem 1 parameters.

Parameter Value

T1 (m2/day) 172.8
T2 (m2/day) 86.4
Rsw (m) 2000
rw (m) 0.25
A (–) 1000
u ¼
0:5� h2

f � 1þ dð Þd2
� �

Zone 1

1þd
2d � ðhf � dÞ2 Zone 2

8<
: ð25Þ

For a homogenous and isotropic aquifer, the u satisfies the
Laplace equation, r2u = 0, in the horizontal plane (Strack, 1976).
The interface location n can be expressed as (Ataie-Ashtiani and
Ketabchi, 2011):

n ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2u
dð1þ dÞ

s
ð26Þ

From Fig. 3, the toe of seawater can be calculated at n = d as:

utoe ¼ 0:5� dð1þ dÞ � d2 ð27Þ

The freshwater potential for the system of wells, in an uncon-
fined aquifer with regional uniform flow per unit length of coast-
line, q, can analytically be evaluated using superposition method,
(Cheng et al., 2000; Ataie-Ashtiani and Ketabchi, 2011):

u ¼ q
K

X þ
Xn

i¼1

Pi

4pK
ln
ðX � xi

wÞ
2 þ Y � yi

w

� �2

X þ xi
w

� �2 þ Y � yi
w

� �2

 !
ð28Þ

where K is the hydraulic conductivity. Using either Eq. (27) in Eq.
(28), the toe location for the system of wells can be obtained. More-
over, the location of stagnation points can be evaluated from
(Strack, 1976; Ataie-Ashtiani and Ketabchi, 2011):

@u
@X
¼ @u
@Y
¼ 0 ð29Þ

Groundwater pumping rates are defined as decision variables
and exploited from pre-selected known pumping wells. The maxi-
mization of pumping in this problem may be formulated as
follows:

Maximize Pump ¼
Xn

i¼1

Pi m3=day ð30Þ

subject to:

Pmin 6 Pi 6 Pmax m3=day 1 6 i 6 n

Xi
toe < Xi

S m 1 6 i 6 n
ð31Þ

where Pmin and Pmax are the minimum and maximum allowable
pumping rates, respectively. Xi

toe and Xi
S are the distance from the

coastline to the toe and stagnation points of the pumping well i,
respectively. These constraints keep the wells located near the coast
from SWI risk by not permitting the toe of the interface to contact
the stagnation points of the wells. Xi

toe and Xi
S are calculated using

Eqs. (27)–(29) in the optimization procedure.
The system of seven-wells (wells 8 and 9 are inactive) and eight

wells (well 3 is inactive) are considered in this problem (Fig. 3). The
parameters of model are given in Table 4, which was adopted from
Cheng et al. (2000), Park and Aral (2004), and Ataie-Ashtiani and
Ketabchi (2011).

2.2.3. Problem 3: Allocation of pumping in an unconfined aquifer
This problem was first proposed by Bear (1979) and solved by

applying the linear programming technique. A 10 km � 10 km
unconfined coastal aquifer is considered in this problem as shown
in Fig. 4. No-flow boundaries at three impermeable sides and bot-
tom of aquifer are assumed while the remaining lateral side is a sea
boundary. The recharge from precipitation at a rate of 100 mm/
year is entered into the groundwater system from top boundary.
Under no-pumping condition, the hydraulic gradient is toward
the sea. The aquifer is homogenous and isotropic with transmissiv-
ity of 1000 m2/day.



Fig. 3. An unconfined coastal aquifer (a) the system of wells and (b) the cross-section (Problem 2).

Table 4
Problem 2 parameters.

Parameter Value

qs (kg/m3) 1025
qf (kg/m3) 1000
d (m) 15
K (m/day) 40
q (m3/day/m) 0.4015
Pmin (m3/day) 150
Pmax (m3/day) 1500

Fig. 4. A coastal aquifer and modeling domain (Problem 3).
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The finite difference discretization using 25 cells of
2 km � 2 km is selected (Bear, 1979). Each cell is considered as a
single pumping point. The steady-state water balance equation
for the cell i can be given as (Bear, 1979; Shamir et al., 1984;
Ataie-Ashtiani and Ketabchi, 2011):

Ri �
Pi

Ai
� q�Wi

Ai
¼ 1

Ai
�
X

j

Tji �Wji

Lji
� ðhi � hjÞ

� �
ð32Þ

where Ri is the recharge rate into cell i, Pi is the pumping from cell i,
Ai and Wi are cell i area and width, respectively. Tji and Wji repre-
senting the transmissivity and length of the boundary between cell
i and an adjacent cell j, Lji is the distance between centers of the two
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adjacent cells, hi and hj are the groundwater level in cells i and j
above MSL, respectively. q is 0 for cells of 1–20, while for the coastal
cells i, where 21 6 i 6 25, can be formulated as (Bear, 1979; Shamir
et al., 1984):

q ¼ 2Ti � hi

Li
ð33Þ

where Ti and Li are mean transmissivity and mean SWI length in the
coastal cell i, respectively.

Pumping is planned in 15 cells of 6–20. The total water demand
of 7 Mm3/year is identified in cell 18. The cost of pumping and con-
veyance of water from cell 18 is 1.0 MU/m3. Also, the cost increases
with distance from the other pumping cell to the demand location
at a rate of 0.5 MU/m3 for per 1 km distance.

The objective function is to minimize the total cost of supplying
the required demand:

Minimize Cost ¼
X20

i¼6

costi � Pi MU=year ð34Þ

where costi is the cost of pumping and conveyance of water from
cell i. The pumping rates are subjected to the following constraints:

X20

i¼6

Pi ¼ 7 Mm3=year

0 6 Pi 6 3 Mm3=year 6 6 i � 20

hi P
0:95 m 16 6 i 6 20
0:64 m 21 6 i 6 25

	 ð35Þ

GWT levels in the aquifer along the sea should have certain
minimum level to avoid SWI into the aquifer. These GWT levels
are decided to be +0.64 m and +0.95 m above MSL at distances of
1 km and 3 km from the sea, respectively. This formulation as the
objective function (Eq. (34)) along with the constraints (Eq. (35))
constitutes a nonlinear optimization problem. Although it can be
converted to a linear optimization problem as described in detail
by Bear (1979).

2.2.4. Problem 4: maximization of total pumping from an island’s
groundwater lens

Fig. 5 shows the modeling domain and the system of four wells
in a two-dimensional island aquifer which has a length of 6000 m,
a depth of 200 m, and a width of 200 m. The pumping from these
wells is carried out at 50 m below MSL.

Numerical modeling is selected for the simulation of this prob-
lem which is conducted using SUTRA model (Voss and Provost,
2010) to determine the hydraulic heads and concentration of
groundwater. The fluid mass balance equation (Eq. (36)) representing
Fig. 5. Modeling domain and the system of wells in an island aquifer (Problem 4).
the single-phase flow in saturated porous media and the solute mass
balance equation (Eq. (37)) characterizing the solute transport
including advection and dispersion mechanisms, are solved simulta-
neously to characterize density-dependent flow associated with
SWI (Ataie-Ashtiani et al., 1999; Voss and Provost, 2010).

qSop
@p
@t
þ e

@q
@c

@c
@t
�r: kIq

l
ðr:p� qgzÞ

� �
¼ Q p ð36Þ

@ðeqcÞ
@t

þr:ðeqvcÞ � r:ðeqðDdiff I þ DdispÞ:rcÞ ¼ Q pc� ð37Þ

where q (M L�3) is fluid density, Sop (L T2 M�1) is specific pressure
storativity, p (M L�1 T�2) is fluid pressure, t (T) is time, e [–] is aqui-
fer volumetric porosity, c (Ms M�1) is solute concentration, kI (L2) is
solid matrix intrinsic permeability, l (M L�1 T�1) is fluid dynamic
viscosity, gz (L2 T�1) is gravitational acceleration, Qp (M L�3 T�1) is
fluid mass sink or source, v (L T�1) is average fluid velocity, Ddiff

(L2 T�1) is molecular diffusion, I is identity tensor, Ddisp (L2 T�1) is
mechanical dispersion tensor, and c⁄ (Ms M�1) is the solute concen-
tration as a mass fraction of fluid sources. The parameters consid-
ered in this problem (Table 5) here are chosen to be similar to the
Kourakos and Mantoglou (2011) case.

The discretization consists of 34 columns in the x direction and
20 layers vertically in the z direction, and one column in the y
direction, giving 735 nodes and 680 elements. Therefore all results
are investigated as per 200 m width of island. The x direction is dis-
cretized with 200 m mesh spacing except around the pumping
wells, where they are 100 m wide. In the z direction, elements
are 10 m high everywhere. This is a similar discretization to that
of Kourakos and Mantoglou (2011).

No flow boundary condition is imposed at the bottom boundary
in the deep depth of 200 m below MSL. Specified pressure bound-
aries are assigned to all nodes below MSL along the sea boundaries
and set to hydrostatic seawater pressure. Inflowing fluid at these
nodes has a concentration of seawater. The land-surface boundary
condition is adopted as a freshwater recharge boundary. The initial
groundwater salinity is set to that of seawater, and hydrostatic
pressures are adopted as the initial flow conditions. Then the aqui-
fer is simulated for a long-time period without any pumping to
reach steady-state equilibrium. Then, this equilibrium condition
is considered in the optimization problem with the object of total
pumping maximization from an island’s groundwater lens for the
10,000 days planning period (Kourakos and Mantoglou, 2011).

The management model is given as follows:

Maximize Pump ¼
Xn

i¼1

Pi m3=day ð38Þ
Problem 4 parameters.

Parameter Value

qs (kg/m3) 1025
qf (kg/m3) 1000
cs (kg/kg) 0
cf (kg/kg) 0.03415
l (kg/m s) 0.001
Ddiff (m2/s) 1.48 � 10�9

gz (m/s2) 9.81
e (–) 0.25
KH (m/day) 10
KV (m/day) 0.1
R (mm/year) 146
aL (m) 20
aT (m) 2
aV (m) 0.2
Pmin (m3/day) 0
Pmax (m3/day) 600
cmax (kg/kg) 5.0 � 10�4
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subject to:

Pmin 6 Pi 6 Pmax m3=day 1 6 i 6 n

ci < cmax kg=kg 1 6 i 6 n
ð39Þ

where ci is the concentration of pumped water as a mass fraction
from well i. cmax is the maximum allowable concentration mass
fraction for potable water (equivalent to 0.5 kg/m3 (Kourakos and
Mantoglou, 2011)).

3. Application and results

We apply the developed combined simulation–optimization
methodology to solve the above benchmark CGMPs after the
parameter settings of EAs. The obtained results are also presented
and discussed here. All simulation and optimization algorithms
and their related combinations are coded via Matlab platform.

3.1. Problem setup for evolutionary algorithms

The proposed EAs find feasible solutions of the constrained
problem by penalizing infeasibilities to force the search toward
the feasible region. Moreover, some constraints e.g., the search
space of decision variables are automatically satisfied by forcing
EAs to identify optimal solution in the proper pre-introduced
space. The underlying constrained problem is transformed to an
unconstrained one, using the penalty function (Pen) and building
a single objective function, which in turn is optimized using an
unconstrained optimization procedure (Katsifarakis and Petala,
2006; Ataie-Ashtiani and Ketabchi, 2011). The value of Pen, which
depends on the exceedance of constraints, is regulated heuristi-
cally during the EA process. To ensure all constraints are satisfied,
a modified objective function which affected by Pen is assigned to
optimization problems as:

f modified ¼ f � Csc � Pen ð40Þ

where Csc is a penalty coefficient. Csc is zero when the constraints
are satisfied and gets a large positive value for maximization prob-
lems and a large negative values for minimization problems when
the respective constraints are violated. It means violate the con-
straints, significantly increase the modified objective function value
in the minimization problems and decrease it in the maximization
ones (Katsifarakis et al., 1999; Ataie-Ashtiani and Ketabchi, 2011).

3.2. Parameter settings for evolutionary algorithms

To obtain the most appropriate parameter values of EAs, around
10,000 preliminary experiments are conducted using a variety of
values previously reported in the literature. Accordingly, the pre-
ferred efficient parameter values set for EAs are given in Table 6.
The example references suggested such values are also provided
in this Table.

For instance, the experiments of the first parameter setting of
each EA which is mentioned in Table 6 (for Problem 3 as an exam-
ple) are presented in Fig. 6 and the preferred value of this param-
eter is shown. Similar procedures are performed for other
parameters in all problems.

Stopping the computation after the fixed number of simulations
is used as the stopping criterion which is identified based on the
following analysis. The number of required simulations is obtained
and rounded on the basis of some preliminary experiments as two
following criteria are satisfied: (1) the exceedance of 10% of the
Nn/Nt ratio is reached, where Nn is the number of generations with
no improvement in the objective function value and Nt is the
number of total generations from the beginning of computation
(i.e. the objective function value does not improve in sufficient
consecutive generations.) and (2) the convergence rate of the
objective function value is less than 0.01% (i.e. an acceptable
tolerance of the objective function value variations is reached in
two consecutive generations with different values of objective
function). Such types of stopping criteria were considered by e.g.
Elbeltagi et al. (2005) and Ayvaz (2009).

In the following evaluations, each problem is independently
solved 30 times using considered EAs and the average optimal
solutions are recorded as same as Karaboga and Akay (2009).

3.3. The combined simulation–optimization results

The developed algorithms and codes are verified using Problem
1. This problem is solved with linear programming technique by
setting (�600, 1200) and (�600, 0) to two unknown well coordi-
nates inside the proposed square area (Fig. 2). This setting is based
on Karpouzos and Katsifarakis (2013) description because T1 > T2.
Table 7 shows that the minimum total cost is equal to
9486.60 MU/year which is the global optimum for this problem.
This agrees with the previous result of Karpouzos and
Katsifarakis (2013). Drawdown of all pumping wells is 47.43 m in
this condition. In Table 7, the optimal solutions obtained from pro-
posed EAs are presented. The number of required simulations for
EAs is also listed in this Table. The results of CACO, SCE, DE, PSO,
and HS are similar to linear programming solution. Also, the results
of ABC, GA, and SIMPSA are close to exact solution. The difference
between the best and the poor results of EAs, obtained by CACO
and ABC respectively, is about 3%. Therefore, the applicability of
such EAs and also the developed methodology are satisfactory
and verified for investigations considered in this study.

Tables 8 and 9 present the optimal solutions of Problems 2a and
2b which consist of the system of seven-wells and eight-wells,
respectively. Problem 2 covers the two variants of this type prob-
lem. SCE and PSO achieve the best solutions (3906.74 m3/day and
3698.90 m3/day) after 50,000 and 10,000 simulations while CACO
and SCE (3901.70 m3/day and 3684.93 m3/day) are ranked in the
second level in terms of solutions quality after 10,000 and 50,000
simulations for Problems 2a and 2b, respectively. The performance
of ABC and SIMPSA was poor compared to SCE and PSO. ABC results
(3341.74 m3/day and 3189.82 m3/day) exhibit 14.5% and 13.8% dif-
ference while the results of SIMPSA (3640.27 m3/day and
3466.7 m3/day) demonstrate 6.8% and 6.3% difference compared
to the best results for Problems 2a and 2b, respectively. It should
be noted that while SCE is one of superior EAs in terms of the qual-
ity of solutions, but it ranked in the poor place due to need to the
most number of simulations. Problems 2a and 2b were also previ-
ously solved by Cheng et al. (2000), Park and Aral (2004), and
Ataie-Ashtiani and Ketabchi (2011). Elitist CACO was applied in
the field of CGMPs for the first time by Ataie-Ashtiani and
Ketabchi (2011) and 3901.5 m3/day and 3669.2 m3/day were cor-
respondingly estimated for Problems 2a and 2b which were the
best solutions of these problems found in the previous studies.

When we compare the obtained results of this study with the
best previous solutions given by Ataie-Ashtiani and Ketabchi
(2011), SCE and CACO for Problem 2a and PSO, SCE, and CACO for
Problem 2b produced slightly better results. Also, the results
obtained by the application of Problems 2a and 2b as the variants
of this type problem confirm the procedure of our methodology to
find the best quality of solutions and the required number of sim-
ulations. In the optimal condition, the toe location of SWI and the
stagnation points of the system of active and inactive wells are
illustrated in Fig. 7 for Problems 2a and 2b, respectively. As shown,
the toe location is restricted by the stagnation points of pumping
wells generally closer to sea.

The optimal solutions obtained from both linear programming
technique as the global optimum and EAs are presented for



Table 6
EA parameters.

EA Parameters Selection a Example references

GA Chromosome size 20–150b Goldberg (1989)
Selection Stochastic uniform Michalewicz (1996)
Mutation Gaussian Bäck and Schwefel (1993)
Crossover Scattered Glover (1994)
Crossover probability 0.8 Goldberg (1989)

CACO Ant colony size 30–200b Ataie-Ashtiani and Ketabchi (2011)

PSO Swarm size 20–150b Kennedy and Eberhart (2001)
x 0.2 Clerc and Kennedy (2002)
C1 2 Kennedy and Eberhart (2001)
C2 2 Kennedy and Eberhart (2001)

DE Individual size 50–150b Corne et al. (1999)
FDE 0.9 Corne et al. (1999)
CR 0.5 Corne et al. (1999)

ABC Bee colony size 50–300b Karaboga et al. (2014)
limit = (0.5P � D) 100–2250b Karaboga and Akay (2009)

HS HMS 20–150b Lee et al. (2005)
HMCR 0.9 Lee et al. (2005)
bwmin

0.0001 Mahdavi et al. (2007)
bwmax 1 Mahdavi et al. (2007)
PARmin 0.1 Lee et al. (2005)
PARmax 0.5 Lee et al. (2005)

SCE NC 5–30b Duan et al. (1994)
NP = (2D + 1) 9–31b Duan et al. (1993)
qSCE = D + 1 5–16b Nelder and Mead (1965)
aSCE 1 Duan et al. (1993)
bSCE = (2D + 1) 9–31b Duan et al. (1993)

SIMPSA NT = 10D 40–150b Cardoso et al. (1996)
Ar 0.01 Cardoso et al. (1996)
rcool 0.95 Cardoso et al. (1996)

a Based on 1200 preliminary experiments.
b The test problems dependent.
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Problem 3, in Table 10. The obtained results are in agreement with
the previously reported results of this problem by Bear (1979)
which was resolved by the application of the linear programming
technique. Fig. 8 presents the GWT level in the no-pumping
steady-state condition and also under optimal pumping condition
with the minimum total cost. As shown in Fig. 8a, the hydraulic
gradient is toward the sea for the no-pumping condition. The GWT
level drops due to pumping (Fig. 8b) but SWI can be controlled
by keeping the determined GWT level in the near-sea cells.

The best solution is obtained by CACO with the optimal solution
of 14.04 MU/year which shows 2.0% difference in comparison with
the global minimum. HS, PSO, and DE are ranked in the next levels
in terms of solutions quality with 4.2%, 4.6%, and 6.0% differences
comparing to the optimum, respectively. CACO also needs the low-
est simulation numbers among EAs. The obtained results indicate
the superiority of CACO in this problem with the highest number
of decision variables (15 decision variables). In this problem, ABC
and SCE with 19.7% and 14.5% extra cost of the optimal value, pro-
vide the worst results. The quality of SCE solution is considerably
different among this problem and Problems 1 and 2. Also, in this
problem similar to the former problems, SCE is ranked in the low
rank as it requires a high number of simulations.

Problem 4 also deals with the maximization of total pumping
rates from an aquifer system by application of numerical model
of SUTRA (Voss and Provost, 2010). This problem represents a class
of island aquifer problems and typical of real-case objectives and
constraints (Ataie-Ashtiani et al., 2014). The results are summa-
rized in Table 11. The obtained results are compared with that
the solution of 764 m3/day given by Kourakos and Mantoglou
(2011) using SEAWAT and non-dominated sorting GA-II. As seen
in Table 11, SCE, SIMPSA, and CACO are the best EAs with the max-
imum total pumping of 777.27 m3/day, 774.78 m3/day, and
762.12 m3/day, respectively. ABC finds the poorest solution equal
to 720.11 m3/day, with 7.4% difference compared to SCE results.
HS (730.47 m3/day), PSO (734.19 m3/day), and GA (735.17 m3/
day) did not performed well in this problem in comparison with
their performances for Problems 1, 2, and 3. The comparison of
the number of simulations shows that GA, CACO, PSO, and HS
require 1500 simulations whereas SCE requires 5000 simulations.

For Problem 4, Fig. 9a illustrates the no-pumping steady-state
salinity distributions as the initial condition while Fig. 9b shows
the obtained condition under optimal pumping rates after the
10,000 days planning period. The salinity distributions of 1.5%
(equivalent to 5.0 � 10�4 kg/kg, the maximum allowable concen-
tration mass fraction for potable water) approaches the pumping
points of wells, however does not enter them. Therefore, the
pumping wells are safe from violated salinities. In this condition,
the pumped groundwater has an appropriate quality but the island
groundwater quality is deteriorated. Consequently, the smaller
exploitation from these four pumping wells can be provided in
next planning periods. For example, the optimal total pumping of
232.7 m3/day (41.7, 89.9, 76.4, and 24.7 m3/day for wells 1–4,
respectively) is obtained for next 10,000 days planning period
using e.g., CACO which is extremely smaller than the total exploi-
tation of 777.27 m3/day obtained in the first planning period. The
total pumping rate of 197 m3/day was reported by Kourakos and
Mantoglou (2011) for similar condition.
4. Discussions

In this section, we evaluate the performances of EAs and pro-
vide comparative assessments. Then, some of the important
remaining challenges for future research in this field are provided.
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Fig. 6. The first parameter setting examinations of EAs for problem 3.
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4.1. Performance evaluations

The mean, maximum, minimum, and standard deviation of
optimal solution results have been computed by analyzing the
recorded results of 30 independent runs. These results are obtained
using nominal 2.20 GHz Intel� Core™ i7 processor with 8.00 GB
RAM based on 1,200 experiments (30 times independently runs
of eight EAs and five problems). Within the framework of the com-
parative study, around 60,000,000 numbers of simulations (see
Tables 7–11) for abovementioned experiments have been
performed.

Table 12 summarizes these statistical results and also indicates
the ranking of EAs based on the projected performance (the quality
of solution and computational time) in each problem. The processing



Table 7
Problem 1: Comparison of optimal solution results.

Decision variable (m3/s and m) Optimal solution results

LPa Present Study

LP GA CACO PSO DE ABC HS SCE SIMPSA

P1 0.0325 0.0326 0.0340 0.0328 0.0327 0.0325 0.0325 0.0327 0.0326 0.0326
P2 0.018 0.018 0.0192 0.0179 0.0178 0.0180 0.0187 0.0180 0.0180 0.0185
P3 0.0325 0.0326 0.0303 0.0326 0.0325 0.0325 0.0291 0.0326 0.0326 0.0326
P4 0.018 0.018 0.0183 0.0180 0.0182 0.0179 0.0214 0.0179 0.0180 0.0177
P5 0.0495 0.0495 0.0480 0.0495 0.0496 0.0496 0.0470 0.0494 0.0495 0.0476
P6 0.0495 0.0495 0.0501 0.0493 0.0492 0.0495 0.0513 0.0495 0.0495 0.0511
x5 �600 �600 �600 �600 �599.8 �600 �600 �599.7 �600.0 �600
y5 1200 1200 1,199.2 1200 1,199.8 1200 1200 1,199.4 1200 1200
x6 �600 �600 �600 �600 �600 �600 �600 �599.6 �600 �600
y6 0 0 0.1 0 0.1 0 0 0.4 0.0044 0
Total cost (MU/year) 9486.81 9486.60 9517.68 9486.62 9488.22 9486.72 9781.33 9488.65 9486.63 9499.19
Number of simulations – – 100,000 10,000 10,000 50,000 20,000 80,000 150,000 80,000

a Karpouzos and Katsifarakis (2013).

Table 8
Problem 2a: Comparison of optimal solution results for the system of 7 wells.

Decision variable (m3/day) Optimal solution results

SMGAa MOGAb CACOc Present study

GA CACO PSO DE ABC HS SCE SIMPSA

P1 201 198.1 197.6 221.86 206.12 222.28 289.64 329.84 294.35 224.21 291.05
P2 351 380 386.0 351.29 371.19 315.61 235.59 362.54 262.92 329.46 319.36
P3 150 150.1 150.1 159.29 152.15 184.37 180.30 371.95 237.76 162.14 311.32
P4 1497 1462 1460.6 1433.14 1463.41 1427.48 1441.18 574.16 1276.97 1499.90 1003.44
P5 155 150.0 150.2 157.00 151.42 151.09 150.00 454.98 220.63 150.05 337.64
P6 1387 1406.6 1406.9 1415.29 1406.62 1430.79 1413.04 972.65 1350.72 1390.99 1170.68
P7 150 150.2 150.1 150.86 150.09 150.23 150.42 275.62 160.55 150.00 206.78
P8 – – – – – – – – – –
P9 – – – – – – – – – – –
Total pumping (m3/day) 3891 3897.0 3901.5 3888.71 3901.70 3881.86 3861.97 3341.74 3803.88 3906.74 3640.27
Number of simulations – – 20,000 10,000 10,000 10,000 10,000 15,000 10,000 50,000 10,000

a Cheng et al. (2000).
b Park and Aral (2004).
c Ataie-Ashtiani and Ketabchi (2011).

Table 9
Problem 2b: Comparison of optimal solution results for the system of 8 wells.

Decision variable (m3/day) Optimal solution results

SMGAa MOGAb CACOc Present study

GA CACO PSO DE ABC HS SCE SIMPSA

P1 255 221.7 222.8 284.00 317.34 417.72 383.63 416.55 370.73 305.53 330.39
P2 402 579.8 587.6 489.33 421.05 150.04 246.96 286.41 330.96 404.68 373.77
P3 – – – – – – – – – – –
P4 728 733.2 658.5 644.67 704.29 1,028.47 879.85 264.55 723.38 793.95 813.24
P5 232 178.4 203.1 231.67 251.28 151.70 165.91 264.69 218.83 192.79 303.64
P6 1500 1402.9 1499.9 1494.33 1485.46 1499.88 1493.78 1060.41 1455.74 1499.05 985.34
P7 185 215.9 197.0 192.67 182.84 151.05 177.63 271.78 194.80 188.86 271.00
P8 158 154.4 150.2 163.33 158.79 150.02 154.20 359.04 177.73 150.07 232.44
P9 150 151.1 150.1 155.67 150.50 150.02 158.49 266.36 158.86 150.01 156.95
Total pumping (m3/day) 3610 3637.4 3669.2 3655.67 3671.55 3698.90 3660.44 3189.82 3631.03 3684.93 3466.77
Number of simulations – – 20,000 10,000 10,000 10,000 10,000 15,000 10,000 50,000 10,000

a Cheng et al. (2000).
b Park and Aral (2004).
c Ataie-Ashtiani and Ketabchi (2011).
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time denotes the time required for each simulation and total
computational time need for each EA are given as seconds in this
Table. The total required time is considered for the purpose of com-
parison to measure the speed of EAs which mostly consistent with
the number of simulations The number of simulations has a consid-
erable impact on total required time because the required simula-
tion numbers of considered EAs are different (See Tables 7–11).
However, the processing time of each problem is in the approxi-
mately same order for proposed EAs as seen in Table 12. Hence,
the reduction of the number of required simulations has a significant
role in the final efficiency, as the simulation time of real SWI numer-
ical models is considerable. For example, a simulation time of 55 min
for a single run of a real-case SWI numerical model with a relatively
coarse discretization was reported by Ataie-Ashtiani et al. (2013a).



Fig. 7. SWI in the condition of (a) Problem 2a and (b) Problem 2b.

Table 10
Problem 3: Comparison of optimal solution results.

Decision variable (Mm3/year) Optimal solution results

LPa Present study

LP GA CACO PSO DE ABC HS SCE SIMPSA

P1 0 0 0.01 0 0.01 0.03 0.04 0 0.04 0.01
P2 0 0 0.01 0 0 0.02 0.15 0 0.12 0.05
P3 0 0 0.04 0 0.01 0.09 0.25 0 0.15 0.06
P4 0 0 0.02 0 0.03 0 0.17 0 0.13 0.05
P5 0 0 0.01 0 0 0 0.03 0 0.08 0
P6 0 0 0.05 0 0.02 0.07 0.31 0 0.31 0.08
P7 0 0 0.43 0.27 0.49 0.29 0.38 0.54 0.52 0.57
P8 1.06 0 0.77 0.66 0.29 0.48 0.80 1.07 0.61 0.73
P9 0 0 0.52 0.30 0.55 0.10 0.38 0.53 0.79 0.52
P10 0 0 0.07 0 0.10 0.04 0.16 0 0.12 0.12
P11 0.8 0.68 0.68 0.67 0.57 0.60 0.74 0.45 0.55 0.54
P12 1.59 2.02 1.35 1.68 1.61 1.57 0.89 1.47 1.16 1.28
P13 1.16 1.60 1.18 1.23 1.29 1.34 1.12 1.00 1.04 1.20
P14 1.59 2.02 1.39 1.83 1.58 1.62 0.75 1.49 0.91 1.17
P15 0.8 0.68 0.46 0.37 0.43 0.74 0.84 0.44 0.47 0.63
Total cost (MU/year) 14.44 13.76 14.61 14.04 14.39 14.58 16.47 14.34 15.76 14.87
Number of simulations – – 90,000 60,000 60,000 300,000 60,000 300,000 300,000 60,000

a Bear (1979).
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In this case, if we consider 5000 and 1500 simulations for SCE and
CACO, respectively (Table 11) and considering the abovementioned
simulation time for a single run, a difference of 3200 h for simulation
time is estimated for these two EAs. Hence more efficient simula-
tion–optimization strategy requires fewer simulations and there-
fore less computational time to reach the optimal solution.

Based on the results of this study, GA performs poorly than
other EAs despite its extensive use in CGMPs. Table 12 reveals
the higher performance and robustness of SCE, CACO, and PSO to
find the high-quality solutions. On two problems, SCE and on
another two out of five problems, CACO are first while in the
remaining problem, PSO obtains the best solution. SCE has one of
the superlative places for all problems except for the case of Prob-
lem 3 which is a complex problem containing 15 decision vari-
ables. Hence, on average, CACO is superior in the problems with
higher decision variables, besides the having one of the top places
among the EAs. For instance, CACO shows the better solutions
(up to 17%) than the poor one in Problem 3 which has the highest
decision variables among the CGMPs of this study. These results
are similar to those of Afshar et al. (2006), Madadgar and Afshar
(2009), and Ataie-Ashtiani and Ketabchi (2011). ABC shows the
poor results in all Problems, while GA in Problem 1, SIMPSA in
Problem 2, SCE in Problem 3, and HS in Problem 4 are the second
poor EA in terms of solution quality.

PSO on Problems 1 and 4, and SIMPSA on Problems 2 are the
fastest. In Problem 3, GA is the fastest with lowest total time.
Although SCE is more successful in the solution of the considered
problems due to find the high-quality solutions, its computational
time is not competitive and therefore, it restricts SCE applicability
compared to CACO and PSO. For example, in Problem 4, SCE needs
8145 s while 2158.5 s is sufficient for PSO. CACO and PSO can be
chosen in terms of both abovementioned criteria to application
in CGMPs. It should be noted that CACO employs only one control
parameter to be set with respect to other superlative EAs (see



Fig. 8. GWT in Problem 3 (a) no-pumping condition and (b) with optimal pumping condition.

Table 11
Problem 4: Comparison of optimal solution results.

Decision variable (m3/day) Optimal solution results

NSGA-II a Present study

GA CACO PSO DE ABC HS SCE SIMPSA

P1 41 121.17 101.19 100.28 95.58 96.60 100.50 96.17 94.67
P2 500 277.83 368.85 378.49 373.97 327.20 351.23 378.66 378.55
P3 223 291.83 242.21 191.45 263.37 253.24 236.49 259.12 258.50
P4 0 44.33 49.88 63.97 27.56 43.07 42.25 43.32 43.05
Total pumping (m3/day) 764 735.17 762.12 734.19 760.49 720.11 730.47 777.27 774.78
Number of simulations – 1500 1500 1500 3000 2500 1500 5000 3000

a Kourakos and Mantoglou (2011).

Fig. 9. Steady-state salinity distributions for Problem 4 (a) no-pumping and (b) with pumping.
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Table 12
Statistical results of 30 independent runs obtained by EAs.

aMean: mean of the optimal values; Max: maximum of the optimal values; Min: minimum of the optimal values; Dev: standard deviation of the optimal values; P-Time:
processing time; T-Time: total time.
bHigher performance is indicated by darker. The best solution for each EA are shown with black cell.
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Table 6). Clearly, this characteristic causes an easy parameter set-
ting procedure in comparison to other EAs. This feature is consid-
ered as one of the advantages of any EAs (Pourtakdoust and
Nobahari, 2004; Karaboga and Akay, 2009).

There are very few studies reported in the literature on the sub-
ject of the relative efficiency and robustness of various EAs. Some
important examples are Karaboga and Akay (2009), Ma et al.
(2013), Civicioglu and Besdok (2013), and Pham and Castellani
(2014), however none of them are in groundwater resources man-
agement problems. Karaboga and Akay (2009) used 50 benchmark
functions in order to test the performance of ABC in comparison
with GA, DE, PSO based on repeated 30 times runs as similar as this
study. Based on their results, ABC was better than GA, PSO, DE. In
our study, ABC has the poorest level among the all EAs in solving
CGMPs despite the Karaboga and Akay (2009) results and it shows
the necessities of comparative study in each field of optimization
problems. Ma et al. (2013) also established that DE and PSO were
better than GA under certain conditions of their considered bench-
mark functions. Based on our results, DE results are superior in four
out of five problems while PSO performs better in three of them.
Civicioglu and Besdok (2013) compared the EAs of Cuckoo search,
PSO, DE, ABC by testing over 50 different benchmark functions.
Cuckoo search and DE supplied more robust results than the PSO
and ABC in their study. The results of the present study show sim-
ilar trend for DE and ABC, but do not confirm the superiority of DE
to PSO for three out of five problems. Pham and Castellani (2014)
compared GA, PSO, ABC, and bee’s algorithm to 25 benchmark
functions. Their results supported the superiority of PSO relative
to GA, but contradict with our findings regarding ABC performance.

Ayvaz (2009) proposed a combined MODFLOW and HS model
for groundwater resources management purposes and compared
HS to the previously published results of GA, SA, SCE and some
of their variants. Their results showed the superiority of SCE and
in some cases, HS, and SA in comparison with each other, as con-
firmed the most results of this study. As can be comprehended
from obtained results and available literature, although some
efforts have been made in scientific applications and in particular
using benchmark test functions, the efficient choice of EAs are still
an open challenge for coastal groundwater managers. The results
of this paper address some elements of this need for having com-
parative assessments. Also, it can be utilized as the basis for the
choice of appropriate EAs in similar applications. While CACO
and PSO are shown efficient in this study, it is important to empha-
size that this result is generally problem-dependent. For this rea-
son, in this study, it is tried to utilize the wide range of
benchmark CGMPs to dominate this issue. The methodology of
EA’s selection can be opted by the assessments similar to method-
ology considered in this study for CGMPs.

4.2. Future research challenges

The other challenges remaining in this context are briefly
scrutinized here. Considering this first comparative study in the
field of CGMPs, further extensive evaluations of combined simula-
tion–optimization algorithms seems required. One of the main
challenges and opportunities for future research is the need for
developing, evaluating, and implementing the available methodol-
ogies for the combined simulation–optimization models of coastal
aquifers to real-case and large-scale problems. Future research
efforts can also be focused on other EAs and their variants. For
instance, other EAs such as memetic algorithm and cuckoo search
(e.g., Elbeltagi et al., 2005; Civicioglu and Besdok, 2013) may
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provide better solutions for the specific type of problems than EAs
of this paper. In addition, high-performance computational tools or
some efficient techniques such as parallel processing (e.g., Coumou
et al., 2008; Pedemonte et al., 2011) and surrogate models (e.g.,
Ataie-Ashtiani et al., 2014) can be applied to improve the efficiency
of combined simulation–optimization models by reduction the
computational time. Accelerating the convergence speed of EAs is
one of the other necessities. Afshar et al. (2006) improved the con-
vergence speed of CACO by implementing the elitist strategy in its
algorithm. Zecchin et al. (2007) investigated four variants of ACOs
and discuss how these EAs match to their problems. Another
opportunity is hybridizing the techniques of EAs by coupling them
(e.g., Kaveh and Talatahari, 2009). By this technique, researchers
can integrate the advantages of the efficient steps of a particular
EA into others which are weak in proposed steps, and therefore
obtain improved EAs. Kaveh and Talatahari (2009) hybridized the
capabilities of PSO, ACO, and HS. PSO was applied for global opti-
mization, ACO was used to update positions of particle to reach
the feasible solution space, HS handled variable constraints in their
EA, and consequently a more efficient EA in terms of convergence
speed was achieved for their application. Dealing with the multi-
objective functions in optimization procedure which a more realis-
tic approach, is another important issue. Some examples include
Reed et al. (2013) and Ataie-Ashtiani et al. (2014). Reed et al.
(2013) evaluated the performances of ten benchmark multi-objec-
tive EAs for a representative suite of water resources applications.
Ataie-Ashtiani et al. (2014) identified the Pareto-optimal solutions
via a combined ANN-GA to solve complex real-case CGMPs consid-
ered in Kish Island, Iran.

To address the complexities of real-world problems the uncer-
tainties in parameters and processed shall be infolded. The work
of Sreekanth and Datta (2011) is an example of incorporating
uncertainty in the process. Considering the recent works on
improving the efficiency of Monte Carlo procedure, there are prom-
ising research opportunities in this regard. Recently Rajabi and
Ataie-Ashtiani (2014) investigated the implementation of Monte
Carlo simulations for the propagation of uncertainty in SWI numer-
ical models, which often becomes computationally unaffordable for
real cases. More efficient sampling strategies, which required fewer
simulations and less computational time to reach a certain level of
accuracy, were suggested in their studies. Moreover, Rajabi et al.
(2014) proposed the application of non-intrusive polynomial chaos
expansions for uncertainty propagation analysis in SWI numerical
modeling studies. They showed that non-intrusive polynomial
chaos expansions provided a reliable and yet computationally effi-
cient surrogate of the original numerical model. Conceptualizing
some global and significant concerns such as the effects of climate
change (e.g., Ketabchi et al., 2014; Mahmoodzadeh et al., 2014) is
one of areas which demand further examinations to identify how
these impacts change the coastal groundwater management. As
these issues (e.g., climate change-induced sea-level rise and varia-
tions in recharge rates) are essentially uncertain, stochastic concep-
tualization is compelled to properly distinguish between the
various impacts and different SWI underlying factors (Werner
et al., 2013).

5. Conclusions

This paper presents the results of the application of eight EAs to
four benchmark CGMPs with different degree of difficulty. Pumping
rate schemes and proposed limits, well locations, operating cost,
GWT level, SWI toe location, and salt concentration are examples
of the objective functions and constraints considered in the pro-
posed CGMPs. In all problems and their associated simulation and
optimization formulation presented here, a combined simulation–
optimization approach has been used to obtain decisions for coastal
groundwater management and particularly the SWI protection of
coastal regions. To set the most efficient parameter values of EAs,
a trial and error approach using the number of preliminary experi-
ments has been adopted. Surveying the literature indicates that just
a few of EAs have been applied in the resolving of CGMPs and com-
monly focused on a certain EA application, mostly GAs. Therefore,
there is a need for a systematic and comprehensive evaluation of
a wide range of EAs applications for CGMPs. This investigation
seems to be the first effort in this regard. This paper is also the first
attempt to apply PSO, ABC, HS, and SCE to resolving groundwater
optimization problems and especially CGMPs. Also, CACO, DE, and
SIMPSA which have rarely been utilized in this field are tried.

On the basis of the findings of this investigation, the following
points can be compiled in conclusion:

� The applicability and capabilities of each EA toward CGMPs are
compared in terms of results quality and required computa-
tional time. The comparisons show that the performance of
SCE, CACO, and PSO is outstanding compared to the other EAs
examined according to the quality of solutions whereas ABC
show the least fitting results. Also, CACO seems better than
SCE in complex CGMPs with higher decision variables. More-
over, GA finds imperfect solutions in comparison with some of
the other applied EAs, despite the wide application to solve
CGMPs in former works. In terms of required computational
time, PSO and SIMPSA are ranked in the first places. Neverthe-
less SCE is the slowest EA, even up to four times compared to
the fastest EA.
� CACO and PSO are recommended for application in CGMPs.

These EAs are the fastest and also generally outperform all other
EAs in terms of solution quality. Also, among the superlative
EAs, CACO has only one control parameter to be set. This is an
advantage of CACO because it has an easy parameter setting
procedure than other EAs.
� The future opportunities and challenges in this field are: imple-

menting other EAs and their variants, investigating the stochas-
tic objective functions and constraints including uncertainty
analyses, considering the multi-objective purposes, hybridizing
EAs, applying the high-performance techniques such as parallel
processing and surrogate models, investigating the real-case
and large-scale problems, and considering the significant
impacts such as climate change effects.

In summary, this paper clearly demonstrates that the inclusion
of new EAs such as SCE, CACO, and PSO leads to improve the effi-
ciency of considered approaches in many CGMPs. To conclude, a
deep understanding of the efficiency and robustness of EAs might
help the coastal groundwater managers to select the efficient
EAs. It is noteworthy that the proposed methodology and also con-
sidered EAs are applicable to real-case and large-scale CGMPs or
even in different types of problems. However, particular attention
should be endowed to the problem-dependent behavior of EAs.
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