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In this paper a locally mass conservative finite volume method is employed to model the one-dimen-
sional, two-phase immiscible flow in a poroelastic media. Since, an appropriate choice of primary vari-
ables is critical in simulating multiphase subsurface flow, depending on such a choice, the governing
equations can be expressed in different forms. By implementing Picard iteration to a highly nonlinear sys-
tem of equations, three numerical models including pressure form, mixed form and mixed form with a
modified Picard linearization are developed in this study. These models have been evaluated in terms
of stability, convergence and mass conservation in various one-dimensional test cases. Selecting water
saturation in the mixed form as a primary variable, which is not frequent in the geotechnical engineering,
could produce convergence problems in transition from saturated to unsaturated regimes, but in other
conditions show good convergence and also mass balance properties. The pressure form and the mixed
form with a modified Picard linearization converge in all test cases even near the fully saturated condi-
tions. The pressure form suffers from poor mass balance and the mixed form with a modified Picard lin-
earization poses superior mass balance property than the pressure form. In order to solve the coupled
multiphase flow and geomechanics, two coupling strategies are used, first the fully coupled approach
and second the iterative algorithm based on the fixed-stress operator split. Comparison between the total
number of iterations and the total execution time of the fully coupled method and the fixed-stress
schemes are presented through different one-dimensional examples. The accuracy, robustness and effi-
ciency of the fixed-stress method have been demonstrated due to the reduced CPU time and low values
of error for different variables.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

The coupling between multiphase flows and geomechanics is of
significant interest in a diverse range of engineering fields. In reser-
voir engineering, examples of applications include land subsi-
dence, hydraulic fracturing, wellbore instability, casing damage
and sand production [1]. Within the field of environmental engi-
neering, soil contamination problems caused by the release of pet-
roleum hydrocarbons and immiscible industrial wastes are highly
nonlinear and challenging to be solved [2–4] and in some cases
they may require a coupled hydro-mechanical analysis in deform-
able subsystems [5,6]. Moreover, consolidation of partially saturat-
ed soils and land settlement due to groundwater pumping are
problems of considerable concern in soil mechanics and geotechni-
cal engineering in which coupled simulators are needed [7–11].
To describe multiphase subsurface flow, an appropriate choice
of primary variables is critical in simulating the resulting nonlinear
system [12,13]. Depending on such a choice, the governing
equations can be expressed in different forms. In the context of
multiphase flow, the basic formulations involve the pressure and
the saturation of the fluid phases. For these two types of
unknowns, the formulations can be derived as: ‘‘the pressure form’’
in which the state variables are the fluid pressures, ‘‘the saturation
form’’ where the saturation of the fluid phases set as primary vari-
ables and ‘‘the mixed form’’ in which both pressure and saturation
appear as unknowns [14]. Since, it is infeasible to model the
saturated regions with the saturation form of flow equations, this
approach is not well adopted. Also, because of the assumption of
the deforming porous media, the solid skeleton displacement is
set as the third independent variable. For the mixed form, Li [15]
and Li et al. [16] developed a model based on state variables
including degree of water saturation, pore water pressure and solid
displacement for the water–oil and water–air systems, respective-
ly. In Ref. [17], formulations based on gas pressure, water
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saturation and displacement as primary variables have been pro-
posed in a water and gas system. For the pressure form, in
[6,9,18–20] the pressures of the wetting and non-wetting phase
act as basic variables, while in [13,21–23] capillary pressure is
one of the related primary variables. Comparative studies on
selecting primary variables in the case of a rigid porous media
has been discussed in the literature [14,24–28]. Numerical simula-
tion based on pressure form, provides unique and continuous solu-
tion. Models of this type could be used in both unsaturated and
saturated zones, but the method suffers from poor mass balance
[14,24,26]. In contrast, mixed form achieves a better mass balance.
Also, in [14] the mixed form of multiphase flow has been linearized
with a modified Picard iteration which results in excellent mass
balance accuracy.

In the cases where solid deformation is involved, due to the
above mentioned advantages the pressure form has been exten-
sively used. In [29] the mass conservation errors have been exam-
ined for the coupled geomechanics and multiphase flow for two
problems in water–oil reservoir. Since, in modeling multiphase
flow in a deformable porous media, most attention has been paid
to stability and convergence properties and in comparison little
effort has been directed to mass conservation analysis, in this
research a detailed comparative study has been performed on this
aspect alongside of the stability and convergence criteria.

Due to the highly nonlinear nature of the governing system of
equations, numerical discretization should be implemented. Dif-
ferent spatial techniques have been used to solve the coupled
equations. The finite element method is the most popular in soil
consolidation problems and geotechnical engineering [6–
9,11,13,18,20,22,23,30]. Despite advantages of this method in deal-
ing with complex geometries and unstructured grids, numerical
instabilities can occur for the standard finite element when strong
pressure gradients appear [31–34]. The other numerical method
which is widely used in the reservoir problems is finite volume
method (FVM). This computational scheme preserves local conser-
vation and is capable of capturing more accurate solution for
heterogeneous material and especially at the discontinuities, as
illustrated in [35]. In [31], the finite volume method has been
employed for discretization of the two-phase flow and the nodal
based finite element scheme for the mechanical equation. The pro-
posed model has been verified for the water-flooding problem in
an oil reservoir. Also, in [36,37], finite volume method has been
used to solve the Richards equation in a rigid soil. Because of the
advantages of the FVM in local conservation at the element level
and eliminating pressure oscillations, this approach has been
implemented in this study to solve the coupled hydro-mechanical
problem.

In order to solve the hydro-mechanical coupled set of equations,
two strategies can be used, first the fully coupled approach and
second the sequential algorithm [35,38–40]. There are several
types of sequential methods based on the different degrees of cou-
pling which can be categorized into iteratively, explicit and loosely
coupled schemes [35,38–40]. In a fully coupled fashion, one matrix
system is built to solve simultaneously the equilibrium equation
and the continuity equations for the immiscible flowing fluids
[17,30,41–44]. Despite the stability and convergence properties
of this scheme, computational cost is the issue which may make
the algorithm inefficient. In contrast, by using sequential strate-
gies, computational speed will improve, while accuracy, stability
and convergence properties are affected. Among the sequential
schemes, the iteratively coupled with tight convergence criteria
provide higher accuracy which also has the flexibility and modu-
larity properties of the staggered schemes [29,35,45,46]. In this
approach, the coupled system of equations is split into two sub-
problems, which are the geomechanical equilibrium and the mass
balance equations of the fluid phases. The data exchange is
performed iteratively between these two portions at each time
step until convergence is achieved. To overcome convergence
problems which the sequential schemes deal with, different opera-
tor splits, namely, drained, undrained, fixed-strain and fixed-stress
splits, have been proposed [35,46–48]. Stability analysis indicates
that among these operator splits, fixed-stress split is uncondition-
ally stable for the backward Euler time discretization, even in an
incompressible system [31,46,48] and takes less number of itera-
tions to converge [35,48]. In this method the flow equations are
solved first by freezing the time-variation of the volumetric stress
[31,46,48]. This method has been addressed in this paper to solve
the coupled system of equations. The other sequential schemes
including explicit and loosely coupled suffer from low accuracy
[35] and are not included in this research.

The objectives of this study are to compare different forms of
the multiphase flow in poroelastic media including pressure form,
mixed form and mixed form with a modified Picard linearization in
terms of stability, convergence and mass conservation, in the con-
text of FVM. Moreover, two coupling methods of fully coupled and
iteratively coupled are presented for the coupled multiphase flow
and geomechanics in the presence of capillarity and the accuracy
and efficiency of these two schemes are analyzed. To authors’
knowledge this work is the first systematic comparative study of
mathematical formulations and numerical coupling strategies for
two-phase flow in deforming porous media.

Mathematical models for coupled multiphase flow and geome-
chanics, based on the different sets of primary variables are derived
in Section 2. In Section 3, the finite volume formulations of differ-
ent forms of the governing equations are generated and then, the
coupling strategies are illustrated. Numerical results and compar-
isons are presented in Section 4, and some conclusions are drawn
at the end.

2. Mathematical formulations and governing equations

The full dynamic behavior of multiphase systems based on
averaging theories and a classical point of view on Biot’s theory
is developed in [7]. Since throughout this paper the numerical
solution of the resulting governing equations is dealt with, the
mathematical model using Biot’s theory has been presented. In this
physical approach, the mass balance equation for the solid phase
can be written as [7]

@ð1� nÞqs

@t
þ div 1� nð Þqsvsð Þ ¼ 0 ð1Þ

where n is the porosity of the medium, qs is the density of the solid
phase, t is time and vs is the solid phase velocity. Also the mass con-
servation equation for each fluid phase can be expressed as follows

@ðnSaqaÞ
@t

þ div nSaqavað Þ ¼ 0 ð2Þ

where Sa; qa and va are the degree of saturation, density and abso-
lute velocity of the fluid phase a, respectively. To formulate final
forms of continuity equations, the time derivative of the above
equations are expanded and then Eq. (1) divided by qs, is added
to Eq. (2) divided by Saqa. By introducing relative velocities of flow-
ing phases with respect to the solid phase as vas ¼ va � vs and the
material time derivative as D �ð Þ

Dt ¼
@ �ð Þ
@t þ div �ð Þ: vs, we have [7]:

ð1� nÞ
qs

Dqs

Dt
þ div vs þ

n
qa

Dqa

Dt
þ n

Sa

DSa

Dt
þ 1

Saqa
div nSaqavasð Þ

¼ 0 ð3Þ

By considering the solid and fluid phases as compressible, constitu-
tive relationships for the material time derivatives of the densities
of these phases are needed for the case of isothermal condition.
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For the slightly compressible fluids (e.g. water and oil) this relation
is as follows [7]:

1
qa

Dqa

Dt
¼ 1

Ka

Dpa

Dt
ð4Þ

in which pa and Ka are the pressure and the bulk modulus of the
fluid phase a, respectively. For the gas phase, by assuming ideal
gas behavior, the constitutive relationship can be written as follows
[7]:

1
qg

Dqg

Dt
¼ 1

pg

Dpg

Dt
ð5Þ

As the above equation shows, for a perfect gas the bulk modulus
varies directly with pressure ðKg ¼ pgÞ. In the cases where the pres-
sure of the gas phase (air pressure) remains close to the standard
atmospheric pressure, Kg can be considered constant and equal to
this datum. This assumption is valid for the cases presented in this
study. Also for the solid phase, we have [7]:

1
qs

Dqs

Dt
¼ 1

1� n
b� nð Þ 1

Ks

D�p
Dt
� ð1� bÞdiv vs

� �
ð6Þ

where b is the Biot coefficient and defined as b ¼ 1� KT
Ks
; KT and Ks

are the bulk modulus of the porous medium and the solid grain
respectively and �p denotes the average pore pressure which for a
two-phase flow system calculated from �p ¼

P
a¼w;nwpaSa (i.e. sum-

mation on wetting and non-wetting fluid phases). Also the term
div vs is given by [7]:

div vs ¼
@ev

@t
ð7Þ

where ev is the volumetric strain. By substituting Eqs. (4)–(7) into
Eq. (3) and introducing Darcy’s linear flow law for the relative velo-
cities of the fluid phases, the resultant expressions for the continu-
ity equations of wetting and non-wetting fluids are obtained as
follows:

b� n
Ks

S2
w þ

nSw

Kw

� �
@pw

@t
þ b� n

Ks
SwSnw

� �
@pnw

@t

þ bSw
@ev

@t
� b� n

Ks
Swpc � n

� �
@Sw

@t

þ 1
qw

div qw
kkrw

lw
ð�grad pw þ qwgÞ

� �
¼ 0 ð8Þ

b� n
Ks

SwSnw

� �
@pw

@t
þ b� n

Ks
S2

nw þ
nSnw

Knw

� �
@pnw

@t

þ bSnw
@ev

@t
� b� n

Ks
Snwpc þ n

� �
@Sw

@t

þ 1
qnw

div qnw
kkrnw

lnw
�grad pnw þ qnwgð Þ

� �
¼ 0 ð9Þ

where k is the intrinsic permeability tensor, kw and knw are the rela-
tive permeabilities of the wetting and non-wetting phases which
are functions of degree of saturation. lw and lnw denote the dynam-
ic viscosities of the two fluid phases, g is the gravity vector and pc is
the capillary pressure which is defined as pc ¼ pnw � pw and also can
be determined experimentally as a function of degree of saturation.
Here, the intrinsic permeability is considered to remain constant,
which is a general assumption in standard reservoir simulations
and the problems deal with modeling the partially saturated soils.
In addition, hysteresis effects are ignored.

Under the quasi-static condition, the linear momentum balance
equation for the multiphase medium can be expressed as follows
[7]

div rþ qbf ¼ 0 ð10Þ
in which r is the total stress tensor, f is the body force and qb is the
bulk density which is defined as qb ¼ 1� nð Þqs þ nðSwqw þ SnwqnwÞ.
The equation which relates the total stress to the pore pressure of
the fluid phases and the effective stress, for the compressible solid
grains can be written as [7]:

r ¼ r00 � bI�p ð11Þ

In which r00 is the modified effective stress tensor which causes the
deformations of the solid skeleton and I is the second-order unit
tensor. By assuming linear elastic behavior, the modified effective
stress can be defined as a function of total strain, as follows

@r00

@t
¼ D

@e
@t

ð12Þ

where D represents the elastic stiffness tensor and e is the total
strain tensor.

Introducing definitions (11) and (12) into Eq. (10) and differen-
tiating the resulting equation with respect to time [6,30,9,18],
yields to the following equation of geomechanical equilibrium.

div D
@e
@t
� bI

@�p
@t

� �
¼ qb

@f
@t

ð13Þ
2.1. Primary variable selection

To derive a fully coupled system to simultaneously solve the
mass balance and the mechanical equilibrium equations, appro-
priate choice of primary variables is essential and reformulation
of Eqs. (8), (9) and (13) in terms of these selected variables are
required. For this purpose two types of primary variables are
selected. In the first type, formulations are based on the pressure
of fluid phases and in the second type, saturation and the pres-
sure of the wetting phase are the unknown variables. The math-
ematical equations are developed in the following sections and
appropriate constitutive relationships are implemented in each
case.

2.1.1. Pressure form
In this form of formulations, the displacement and the pressure

of fluid phases are selected as a set of state variables. Based on the
capillary pressure–saturation relationship and by applying the
chain rule, the term @Sw

@t can be rewritten in the following way [9]

@Sw

@t
¼ dSw

dpc

@pc

@t
¼ dSw

dpc

@pnw

@t
� @pw

@t

� �
ð14Þ

The sum of saturations of all fluid phases is equal to unity, so by
imposing the constraint

P
a¼w;nwSa ¼ 1 and substituting expression

(14) into Eqs. (8) and (9), the pressure form of mass flow equations
are derived as follows:

b� n
Ks

S2
w þ

nSw

Kw
þ b� n

Ks
Swpc � n

� �
dSw

dpc

� �
@pw

@t

þ b� n
Ks

Swð1� SwÞ �
b� n

Ks
Swpc � n

� �
dSw

dpc

� �
@pnw

@t
þ bSw

@ev

@t

þ 1
qw

div qw
kkrw

lw
ð�grad pw þ qwgÞ

� �
¼ 0 ð15Þ

b� n
Ks

Swð1� SwÞ þ
b� n

Ks
ð1� SwÞpc þ n

� �
dSw

dpc

� �
@pw

@t

þ b� n
Ks
ð1� SwÞ2 þ

nð1� SwÞ
Knw

� b� n
Ks
ð1� SwÞpc þ n

� �
dSw

dpc

� �
@pnw

@t

þ bð1� SwÞ
@ev

@t
þ 1

qnw
div qnw

kkrnw

lnw
�grad pnw þ qnwgð Þ

� �
¼ 0

ð16Þ
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In the same manner, the rate of the average pore pressure in the
geomechanical equation can be determined as [9]:

@�p
@t
¼ Sw

@pw

@t
þ Snw

@pnw

@t
þ pw

@Sw

@t
þ pnw

@Snw

@t

¼ Sw þ pc
dSw

dpc

� �
@pw

@t
þ 1� Sw � pc

dSw

dpc

� �
@pnw

@t
ð17Þ

Finally, applying Eq. (17) into Eq. (13), leads to the following
expression for the pressure form of the geomechanical equation:

div D
@e
@t
� bI Sw þ pc

dSw

dpc

� �
@pw

@t
þ 1� Sw � pc

dSw

dpc

� �
@pnw

@t

� �� �

¼ qb
@f
@t

ð18Þ
2.1.2. Mixed form
In the mixed form, the displacement of the solid skeleton,

pore water pressure and the degree of water saturation are tak-
en as the independent variables. Since capillary pressure is con-
sidered as a function of saturation, i.e. pc ¼ f ðSwÞ, by imposing
this constraint the mass conservation equations can be written
as follows

b� n
Ks
þ n

Kw

� �
Sw

� �
@pw

@t

þ b� n
Ks

Sw 1� Swð Þ
� �

dpc

dSw
� b� n

Ks
Sw

� �
pc þ n

� �
@Sw

@t
þ bSw

@ev

@t

þ 1
qw

div qw
kkrw

lw
ð�grad pw þ qwgÞ

� �
¼ 0 ð19Þ

b� n
Ks
þ n

Knw

� �
ð1� SwÞ

� �
@pw

@t

þ b� n
Ks
ð1� SwÞ2 þ

nð1� SwÞ
Knw

� �
dpc

dSw
� b� n

Ks
ð1� SwÞ

� �
pc � n

� �
@Sw

@t

þ bSnw
@ev

@t
þ 1

qnw
div qnw

kkrnw

lnw
�grad pw þ pcð Þ þ qnwgð Þ

� �
¼ 0

ð20Þ

Also, with respect to the primary variables (i.e., pressure, saturation
and displacement), the geomechanical equation takes the following
form

div D
@e
@t
� bI

@pw

@t
þ 1� Swð Þ dpc

dSw
� pc

� �
@Sw

@t

� �� �
¼ qb

@f
@t

ð21Þ
2.2. Initial and boundary conditions

The above equations form a coupled hydro-mechanical system
defined on a domain X bounded by the boundary C. To complete
the mathematical formulations, the initial and boundary condi-
tions associated with each type of primary unknowns can be
expressed as follows:
2.2.1. Primary variables: pw; pnw;u
For this set of primary variables, the initial and boundary condi-

tions could be defined as follows:

– Initial conditions
u
pa

(

¼ u0

¼ p0
a

a ¼ w;nw at t ¼ 0 and on X ð22Þ
u0 and p0
a, are the initial value of the displacement and the a-

phase pressure, respectively.

– Boundary conditions
u ¼ uD on Cu

r00 � n ¼ SD on Ct

pa ¼ paD
on Cp

kka
la
�grad pað Þ þ qagð Þ � n ¼ qa on Cq

8>>>><
>>>>:

ð23Þ

uD and SD are the prescribed displacement and traction, respec-
tively on the corresponding boundaries, namely Cu and Ct ,
whereas paD

and qa denote the imposed pore pressure and flux
of fluid phase a, on the boundaries Cp and Cq, respectively and
n is the unit normal vector of the boundary [9]. Cu and Cp

correspond to the Dirichet boundary condition for the displace-
ment and the a-phase pressure, respectively. Also Ct and Cq are
the Neumann type boundary conditions. In Eqs. (22) and (23),
Cu [ Ct ¼ Cp [ Cq ¼ C and Cu \ Ct ¼ Cp \ Cq ¼ ;.

2.2.2. Primary variables: pw; Sw;u
For this type of primary variables, we have:
– Initial conditions
u ¼ u0

pw ¼ p0
w

Sw ¼ S0
w

8><
>: at t ¼ 0 and on X ð24Þ

p0
w and S0

w denote the initial value of water pressure and water
saturation, respectively.

– Boundary conditions
For the Neumann boundary conditions the equations are the
same, while for the Dirichlet boundary condition, we have
u ¼ uD on Cu

pw ¼ pwD
and Sw ¼ SwD on Cp

(
ð25Þ

where pwD
and SwD are the prescribed value of water pressure and

saturation on the boundary Cp, respectively.

3. Numerical model

Following the general procedure of the FVM, first the solution
domain is subdivided into a number of finite volumes in such a
way that a dual mesh of control volumes is generated. In this stag-
gered grid arrangement, two different spatial grids are used: one for
the discretization of the pressure and saturation unknowns and the
other for the displacements. In a one-dimensional simulation, the
control volumes and the location of the solution variables are
depicted in Fig. 1. This space discretization strategy preserves mass
conservation at the element level, yields continuous displacement
field and leads to higher accuracy for stresses and fluxes at the inter-
faces [35,46,49,50]. Also for temporal discretization, a grid in time
with a step-size Dt is employed. According to these grids, the nota-
tions for discrete parameters are introduced as follows

u :¼ un :¼ un
i :¼ u zi�0:5; tnð Þ;

pa :¼ pn
a :¼ pn

ai
:¼ pa zi; tnð Þ;

Sa :¼ Sn
a :¼ Sn

ai
:¼ Sa zi; tnð Þ; a ¼ w;nw

ð26Þ

where pn
a; Sn

a and un are the a-phase pressure, saturation and dis-
placement at time tn. pn

ai
and Sn

ai
denote a-phase pressure and

saturation at node i and un
i refers to displacement at node i� 0:5.

In the next step, by integrating the flow equations on a control
volume zi�0:5; ziþ0:5ð Þ and the mechanical equation on zi�1; zið Þ, the
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finite volume scheme is obtained. The detailed formulations for
each form of equations are described in the following sections. Also
for discretization of the time derivative, as included by many
authors, unconditional stability would be obtained for a time
weighting factor greater than 0.5 [9,13,51]. Therefore, as consid-
ered in [30,13,19] fully implicit time discretization has been per-
formed in this research.

In order to solve the resulting non-linear coupled system of equa-
tions, iterative schemes are required to deal with nonlinearities. For
linearization of the pressure and mixed form of the governing equa-
tions at each time step, the Picard iteration scheme (fixed point) has
been employed because of its robustness [21]. The other procedure
which can be applied to the mixed form is a modified Picard lin-
earization. Within this approach the pressure of the fluid phases
and the displacement are used as the primary variables for the solu-
tion at a new iteration step. To solve nonlinear forms of multiphase
equations during the iteration process, different convergence
criterions have been suggested and utilized for the rigid [28,52,53]
and deformable porous media [6,9,54]. In this study convergence
criterions which are based on a maximum difference of the state
variables between successive time steps have been used as

max
pnþ1;kþ1

a � pnþ1;k
a

pnþ1;kþ1
a

�����
����� 6 �p

max
Snþ1;kþ1

w � Snþ1;k
w

Snþ1;kþ1
w

�����
����� 6 �s

max
unþ1;kþ1 � unþ1;k

unþ1;kþ1

����
���� 6 �u

ð27Þ

in the above equation, superscript n denotes time level and k is the
iteration counter. �p; �s and �u indicate the convergence tolerance
for pressure of the a-phase, saturation and displacement, respec-
tively. The values of the convergence tolerances depend upon the
desired accuracy and the physics of the problem, and are deter-
mined in each case to accelerate the convergence.

3.1. Finite volume framework

The discretized forms of the solution strategies for the uniform
structured grid in one dimension (Fig. 1) are derived in the finite
volume framework in the following sections.

3.1.1. Pressure form
As mentioned above, by employing FVM for discretization of the

differential problems (15) and (16) over a control volume
zi�0:5; ziþ0:5ð Þ and introducing the volumetric strain for a one-di-

mensional simulation as ev ¼ @u
@z, full discretizations for the pres-

sure form of the wetting and non-wetting phases, respectively,
yield:
b� n
Ks

Snþ1;k
wi

� �2
þ

nSnþ1;k
wi

Kw
þ b� n

Ks
Snþ1;k

wi
pnþ1;k

ci
� n

� �
dSw

dpc

� �nþ1;k

i

" #

�
pnþ1;kþ1

wi
� pn

wi

Dt

 !
þ b� n

Ks
Snþ1;k

wi
1� Snþ1;k

wi

� ��

� b� n
Ks

Snþ1;k
wi

pnþ1;k
ci

� n
� �

dSw

dpc

� �nþ1;k

i

#

�
pnþ1;kþ1

nwi
� pn

nwi

Dt
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jw and jnw are the interblock hydraulic conductivity of the wetting
and non-wetting phases, respectively and evaluated as the arith-
metic mean as follows

ja :¼ jn
a :¼ jn

ai
:¼ ja zi�0:5; tnð Þ
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2

a ¼ w;nw ð30Þ

To discretize the mechanical equation, the stress–strain relation-
ship for a linear elastic porous medium is implemented in Eq.
(18) and the resulting equation is integrated over each interval
ðzi�1; ziÞ, which leads to:
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where Kdr represents the drained bulk modulus of porous media
which can be defined in terms of Young’s modulus and Poisson’s
ratio in one dimension as Eð1�tÞ

ð1þtÞð1�2tÞ .

3.1.2. Mixed form
In a similar manner, a mixed finite volume formulation for the

coupled partial differential Eqs. (19)–(21), can be expressed as
follows
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For the above equation, the discretized form of the term
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@t in Eq. (21) can also be written as
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3.1.3. Mixed form with a modified Picard linearization
In this approach, the time derivative of saturation is

approximated using a first-order Taylor expansion and by incorpo-
rating with the Picard iteration, can be written in discrete terms as
[14]:
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By substituting Eq. (34) into Eqs. (31)–(33), the modified Picard
approximations can be provided.

Finally, the system of algebraic equations can be written in the
following matrix form:

A
dX
dt
þ BX ¼ F ð36Þ

where X ¼ pw;pnw;u½ � in the pressure and modified Picard schemes
and equal to pw; Sw;u½ � in the mixed form. A detailed explanation of
the coefficients in the matrices A; B and F could be derived from the
above equations.

3.2. Coupling schemes

The coupled system of equations presented above can be solved
with two numerical solution algorithms: fully coupled approach
and the sequential method. For the sequential coupling strategies,
fixed-stress scheme has been developed in this section. In this
approach, the rate of the volumetric stress _rvð Þ is kept constant
during the solution of the flow equations. By implementing Picard
iteration to linearize the flow equations, we have [55]:

enþ1;kþ1
v ¼ enþ1;k

v þ b
Kdr

�pnþ1;kþ1 � �pnþ1;k
	 


ð37Þ

By introducing the above definition for the volumetric strain at the
(k + 1) th iteration, the term @ev

@t , in the flow equations can be written
as:
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¼

enþ1;k
v þ b
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v
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ð38Þ

in the above equation, the term �p should be substituted based on
the selected primary variables. By solving the flow equations, the
values for the fluid pressures and saturation are updated and then
the displacements are being calculated from the mechanical equa-
tion. The flowchart of the fixed-stress split as an iteratively coupled
scheme is shown in Fig. 2.

3.3. Mass balance calculations

One essential criterion to evaluate the numerical model is the
global mass balance error which shows the difference between
the total addition mass in the domain and the total net flux into
the domain [24]. A cumulative mass balance error can be defined
as follows [27]:

cumulative error tð Þ ¼ 1�Mt
a �M0

aP
DtqDt

a

�����
����� ð39Þ

where Mt
a and M0

a are the a- fluid mass storage at time t and at ini-
tial, respectively. qDt

a is the total net flux of the a- phase into the
domain during the time step. Wan calculated the global mass bal-
ance error for two cases of primary depletion and water flooding
in deformable porous media to show good properties of global mass
conservation of the proposed model [29].



Fig. 2. Flowchart of the fixed-stress splits for the different forms of the governing equations.
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4. Numerical results

The validity of the proposed models is examined through sever-
al examples, which cover most of the features in modeling the cou-
pled two-phase flow in a poroelastic porous media. These features
include; capillarity and gravity effects, compressibility of the fluid
phases, water–oil and water–gas systems, the conditions near the
residual saturation and the fully saturated and different boundary
conditions for both the flow equations and the mechanics.

The first and second examples are the benchmark problems and
show the potential of the model in the case of unsaturated deform-
ing porous media [6,7,51]. The third and fourth problems involve
an incompressible water/oil system, initially saturated with the
non-wetting and wetting fluid phases, respectively [27,59,60]. In
the first part, numerical modeling of different forms of the govern-
ing equations are studied and the advantages and disadvantages of
each model have been discussed. In the second part different
coupling schemes including fully coupled and iteratively coupled
(fixed-stress) are analyzes to assess their CPU time, total iterations
and the value of RMSE (root mean square errors) for pressures,
saturation and displacement relative to the fully coupled approach.
In this study, all of the numerical codes have been developed in
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MATLAB 6.0 software and have been simulated using a serial code
on an Intel� Core™ i5 CPU M540@ 2.53 GHz processor with 6 GB
RAM.
4.1. Model verification and a comparison of numerical algorithms

In this section, the first and second examples have been tested
by comparison against solutions which reported in the references
and for the Mcwhorter problems [59], comparisons are made with
the result of the analytical solutions in the rigid porous media.
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4.1.1. Liakopoulos experiment: Sand column drainage
The first example is based on an experiment performed by Lia-

kopoulos [56] which involves desaturation of a soil column due to
gravitational effect. This test case has been used as a benchmark in
the literature for validation of multiphase fluid flow in a deform-
able porous media [9,19,20,22,23]. In this experiment, a vertical
soil column with a height of 1 m, consisting of Del Monte sand, is
instrumented to measure moisture pressure during transient water
flow. Before the start of the drainage process, a fully saturated ini-
tial condition was imposed by establishing uniform flow through a
soil profile. In order to achieve this condition in the laboratory,
constant water inflow and free drainage condition are applied at
the top and bottom surfaces, respectively. When the measure-
ments show zero pore pressure within the specimen, water inflow
is stopped and drainage takes place from the base of the soil col-
umn under gravity. Hence, pore water pressure at the bottom is
put equal to zero (i.e. the atmospheric pressure). Also, during the
experiment both ends of the specimen are exposed to the atmo-
spheric pressure, so there would be zero air pressure at the upper
and lower boundaries. For the displacement field, traction-free
boundary condition is applied on the top surface and vertical dis-
placement is constrained at the bottom. The side walls are rigid
and impermeable so the example can be solved as a one dimen-
sional problem. Configuration of the problem with assumed
boundary conditions before and at the beginning of the experiment
is shown in Fig. 3. The initial condition prior to the start of the
experiment has been illustrated in Fig. 3a. At this stage the water
pressure throughout the column is equal to zero. Also in Fig. 3b
the boundary condition at the initial and during the simulation is
shown. In this figure, interruption of inflow at the top of the
specimen has been represented with the impervious boundary
condition.
Fig. 3. Liakopoulos experiment: configuration of the problem with assumed
boundary conditions (a and b).
The constitutive relationships for the water degree of saturation
and the water relative permeability, which were experimentally
determined by Liakopoulos, are shown in the following equations:

Sw ¼ 1� 1:9722� 10�11p2:4279
c ð40Þ

krw ¼ 1� 2:207ð1� SwÞ1:0121 ð41Þ

Also for this two-phase flow simulation, dependency of gas relative
permeability on water saturation is described by Brooks–Corey
model [57]

krg ¼ 1� Seð Þ2 1� S
ð2þkÞ

k
e

� �
ð42Þ

Se ¼
Sw � Srw

1� Srw
ð43Þ

where Se is the effective saturation, Srw is the residual water satura-
tion and k is the pore size distribution index. In addition, to solve
the problem in fully saturated condition, the gas relative perme-
ability is limited to a minimum value of 0.0001 [7,51]. This assump-
tion implies that both water and airflow exist and the air phase
continuity equation is always maintained [7]. Eqs. (40)–(42) have
been illustrated in Figs. 4–6, respectively. Parameters of the hydrau-
lic functions and properties of the material are summarized in
Table 1. Since in this problem gas pressure changes are small in
comparison to atmospheric pressure, the constant bulk modulus
equal to the atmospheric pressure is assumed. Indeed in this exam-
ple, the values of the air compressibility varies in the range of 10�5

to 1:064� 10�5 and this limited range of changes justifies this
assumption. To improve accuracy, the solution domain is
discretized into a fine grid with 100 nodes. Also an adaptive time
Satura�on

Fig. 4. Liakopoulos experiment: capillary pressure vs. water saturation (Eq. 40).
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Fig. 5. Liakopoulos experiment: water relative permeability vs. water saturation
(Eq. 41).
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Fig. 6. Liakopoulos experiment: gas relative permeability vs. effective saturation
(Eq. 42).

Table 1
Material properties of the Liakopoulos test.

Parameters Values

Intrinsic permeability k ¼ 4:5� 10�13 m2

Viscosity of water lw ¼ 0:001 Pa s
Viscosity of air lg ¼ 1:8� 10�5 Pa s
Solid phase density qs ¼ 2000 kg=m3

Water density qw ¼ 1000 kg=m3

Air density qg ¼ 1:2 kg=m3

Biot coefficient a ¼ 1:0
Porosity / ¼ 0:2975
Bulk modulus of solid phase KS ¼ 1� 1012 Pa
Bulk modulus of water Kw ¼ 2� 109 Pa
Bulk modulus of air Kg ¼ 0:1� 106 Pa
Pore size distribution index k ¼ 3
Residual water saturation Srw ¼ 0:2
Young’s modulus E ¼ 1:3� 106 Pa
Poisson’s ratio # ¼ 0:4
Gravitational acceleration g ¼ 9:81 m=s2

Atmospheric pressure patm ¼ 0 Pa
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stepping strategy similar to that suggested in [58] was applied.
According to the number of iterations, if more than 8 iterations
were required for convergence at the previous time step, the next
time step is reduced by 5%, while for the Picard iterations of less
than 4 it is increased 5%. The time-step size of 0.5 s is assumed ini-
tially which updated automatically during the course of the compu-
tation. Run-time information of the adaptive time-stepping method
for the pressure form and the modified Picard, with respect to the
total number of iterations and time steps are summarized in Table 2.

In this numerical simulation, as considered in the aforemen-
tioned references, first the pressure-based formulation is used to
obtain the solution. In the following figures, the gas pressure,
Table 2
Run-time information for the adaptive time-stepping method for the pressure based and

t = 5 min t = 10 min t =

Pressure based method
NIa 875 1026 12
NTSb 221 273 30
DtmaxðsÞ 3.041 13.142 13

Modified Picard method
NI 333 396 47
NTS 97 118 13
DtmaxðsÞ 8.068 22.477 31

a NI is the total number of iterations, during the simulation.
b NTS is the total number of timesteps, during the simulation.
water pressure, water saturation and vertical displacement distri-
butions over the column height at selected times are presented.
Then, the mixed form method has been tested. In this scheme,
numerical oscillations occur at or near the fully saturated regions
during the initial time step which result in the algorithm becoming
unstable. To reach a convergent solution, the standard convergence
criterion, which considered the maximum absolute difference
between values of pressure, saturation and displacement of two
successive iterations, with large tolerance values has been imple-
mented. But oscillations in the values of saturation were still
observed and low accurate solutions for pressure values would
be obtained.

To resolve the stability problems of the mixed form, the modi-
fied Picard iteration method is applied. The simulated profiles from
the modified Picard approach are compared with the results of the
pressure based method as shown in Figs. 7–10. As the profiles
show, both algorithms give very similar results which closely cor-
respond to those in Refs. [7,51]. The difference between the results
of the two methods remains, even by assuming a constant time
step. This is mainly due to the selection of the primary variables.
Since the expansion of the time derivative term is the main differ-
ence between these numerical approximations, it is the cause of
these differences. Furthermore, as shown in Table 2, the modified
Picard method is able to achieve accurate solutions with very large
time steps, which indicates the efficiency of this method.

4.1.2. Partially saturated consolidation problem
In the second example, the model of immiscible multiphase

flow has been tested in a partially saturated consolidation problem.
For this purpose the results are compared with the finite element
solutions which have been presented by Rahman and Lewis [6]
and then by Khoei and Mohammadnejad [51]. In this problem a
soil column of 1 m height is subjected to an external surface load
of 1000 Pa. At the beginning a partially saturated state with water
saturation of 0.52 and pore water pressure of �280 kPa is assumed,
as well as a mechanical equilibrium state. At the top boundary con-
dition the value of pore water pressure is instantaneously changed
from �280 kPa to �420 kPa, while the air pressure remains con-
stant at atmospheric pressure. The basement is fixed and no-flow
boundary condition is applied at bottom for both water and air
(Fig. 11. Also there is no gravity. The mechanical and hydraulic
properties of the porous media are listed in Table 3. The simula-
tions were performed by using the Brooks–Corey hydraulic func-
tions as follows [57]:

Se ¼
Srw þ 1� Srwð Þ: pc=pdð Þ�k if pc < pd

1 if pc P pd

(

krw ¼ Sð2þ3kÞ=k
e

krg ¼ 1� Seð Þ2 1� S
ð2þkÞ

k
e

� � ð44Þ
modified Picard methods.

20 min t = 30 min t = 60 min t = 120 min

40 1804 3442 5132
7 376 616 851
.593 7.345 9.444 22.248

7 555 719 875
8 157 201 244
.627 31.627 56.798 123.983
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Fig. 7. Liakopoulos experiment: gas pressure profiles obtained by using the pressure form and the modified Picard scheme.
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Fig. 8. Liakopoulos experiment: water pressure profiles obtained by using the pressure form and the modified Picard scheme.
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Fig. 9. Liakopoulos experiment: water saturation profiles obtained by using the pressure form and the modified Picard scheme.
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in which the residual water saturation Srw ¼ 0:3966, the air-entry
pressure pd ¼ 225� 103 Pa and k, the pore size distribution index
is 3. The number of nodes of 20 and time step of 1 s, are chosen
in this simulation. The resulting profiles of water pressure, water
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Fig. 10. Liakopoulos experiment: vertical displacement profiles obtained by using the pressure form and the modified Picard scheme.

Fig. 11. Partially saturated consolidation problem: configuration of the problem
with assumed boundary conditions.

Table 3
Partially saturated consolidation problem: hydraulic and mechanical parameters of
the porous medium.

Parameters Values

Intrinsic permeability k ¼ 0:46� 10�11 m2

Viscosity of water lw ¼ 0:001 Pa s
Viscosity of air lg ¼ 0:001 Pa s
Solid phase density qs ¼ 2000 kg=m3

Water density qw ¼ 1000 kg=m3

Air density qg ¼ 1:22 kg=m3

Biot coefficient a ¼ 1:0
Porosity / ¼ 0:3
Bulk modulus of solid phase KS ¼ 0:14� 1010 Pa
Bulk modulus of water Kw ¼ 0:43� 1013 Pa
Bulk modulus of air Kg ¼ 0:1� 106 Pa
Young’s modulus E ¼ 6� 106 Pa
Poisson’s ratio # ¼ 0:4
Atmospheric pressure patm ¼ 101:325� 103 Pa
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saturation and vertical displacements for mixed, modified Picard
and pressure forms of multiphase flow, are shown in Figs. 12–14.
The profiles obtained with the FVM, for these forms of equations,
show very good agreement with the results reported in Ref. [6].
These results could also be compared with the results of [51] which
have solved the problem with the assumption of imposed gravity,
the comparison with these references shows the negligible effect
of the gravity in the final results. In this partially saturated condi-
tion all of these schemes are stable and convergent.

Despite stability and convergence properties, these schemes are
evaluated in terms of mass balance error to examine acceptability
and solution accuracy. The mass balance errors of the pressure
form, modified Picard and the mixed form for different time steps
during the simulation are summarized in Table 4. As the results
show, for the pressure form, mass balance errors are about 5%.
The modified Picard method and the mixed form pose very
good mass balance property. In Table 4. by increasing the time
step, the cumulative mass balance errors improve. This occurs
because on the first time step of the simulation, there is an incon-
sistency between boundary and initial conditions, which might
make a relatively large incremental mass balance error. This value
at the first time step will increase by decreasing the time step size
and affects the cumulative mass balance error during the
simulation.
4.1.3. Mcwhorter and Suanda problem: Initially saturated with an
incompressible non-wetting fluid

Mcwhorter and Suanda [60] have developed an exact integral
solution for unsteady two phase flow, in a one-dimensional
horizontal system. In this process of unidirectional displacement
of oil by water, capillary pressure is considered but gravity is
neglected. In order to examine the coupled solution of fluid flow
and geomechanics, the porous medium is considered deformable.
In this example, the mechanical properties which are applied to
the poroelastic media are listed in Table 5. Other hydraulic para-
meters and relationships are assumed as [27,60]. As mentioned
in [60], the right boundary is closed and not affected by the inflow.
So it could be assumed as a non-conductive boundary. As shown in
Fig. 15, the Dirichlet boundary conditions are imposed to the left
boundary condition. For the mechanical problem, zero displace-
ment is considered at both ends. In this situation the length of
the specimen is fixed. The column is initially saturated with non-
wetting fluid, but to avoid numerical instability, water saturation
at the initial condition is assumed 0.01 as [60]. It should be men-
tioned that both fluid phases are considered incompressible. To
consider the incompressibility of the fluids, the inverse of the bulk
modulus (i.e. fluid compressibility) is set equal to zero 1

Kf
¼ 0. To

implement it, the terms including bulk modulus of the fluids
nSw
Kw

and nð1�SwÞ
Knw

� �
have been removed from the general equations.

The domain is discretized into 80 control volumes and the time
discretization is based on the implicit Euler method. Because of
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Fig. 12. Partially saturated consolidation problem: mixed, modified Picard and pressure forms of numerical solutions for the pore water pressure.
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the zero-displacement boundary conditions and the poroelastic
model used for this study, deformation is only caused by the
pressure gradient and the resulting solutions are very smooth. In
this way, the solutions of the flow equations (i.e. pressures and
saturation) are not significantly affected by geomechanical
deformations. So the numerical models are compared with the



Table 4
Partially saturated consolidation problem: Mass balance errors for the pressure form, modified Picard and the mixed form.

Simulation time 100 s 864 s (0.01 day) 8640 s (0.1 day)

Time step 1 s 4 s 8 s 1 s 4 s 8 s 1 s 4 s 8 s

Pressure form 0.0553 0.0501 0.0437 0.034 0.0317 0.0293 0.0295 0.0289 0.0281
Modified Picard 0.0007 0.0007 0.0007 0.001 0.001 0.001 0.0012 0.0012 0.0012
Mixed form 0.0007 0.0007 0.0006 0.0009 0.0009 0.0009 0.0012 0.0012 0.0012

Table 5
Mcwhorter problem: hydraulic and mechanical para-
meters of the porous medium (test case 3).

Parameters Values

Intrinsic permeability k ¼ 10�10 m2

Viscosity of water lw ¼ 0:001 Pa s
Viscosity of oil lnw ¼ 0:001 Pa s
Water density qw ¼ 1000 kg=m3

Oil density qnw ¼ 1000 kg=m3

Biot coefficient a ¼ 1:0
Porosity / ¼ 0:3
Young’s modulus E ¼ 5� 106 Pa
Poisson’s ratio # ¼ 0:4
Residual water saturation Srw ¼ 0
Residual oil saturation Srnw ¼ 0
Entry pressure pd ¼ 5000 Pa
Pore size distribution index k ¼ 2

x

Fig. 15. Sketch of the problem setup for the Mcwhorter problem.

0

0.00002

0.00004

0.00006

0.00008

0.0001

0.00012

0 1 2 3

D
is

pl
ac

em
en

t (
m

)

Distance (m)

Pressure form

Modified Picard

Mixed form

Fig. 17. Mcwhorter problem: displacement at t = 1000 s for pressure form, modified
Picard and mixed form.

Table 6
Mcwhorter problem: water mass balance errors for the pressure form, modified
Picard and the mixed form (N = 80).

Simulation time 100 s 500 s 1000 s 4000 s

Pressure form 0.03641 0.02102 0.01565 0.00769
Modified Picard 0.00041 0.00034 0.00012 0.00036
Mixed form 0.00048 0.0005 0.00049 0.00041
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quasi-analytical solution of Ref. [60] at three selected time inter-
vals. Fig. 16. shows accurate solutions for all forms of the dis-
cretized methods discussed above. Also for the displacement as
shown in Fig. 17, the compaction and dilation occur behind and
ahead of the water front, respectively.

Furthermore, in order to check the mass balance accuracy,
water mass balance errors for two different mesh sizes with 80
and 20 nodes are listed in Tables 6 and 7, respectively. In Table 6,
time step size varies between 0.01 s to 1 s in the first 10 s to
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Fig. 16. Mcwhorter problem: saturation profiles at three selected times for
guarantee the convergence of the solution and remains constant
during the simulation. In Table 7, two time step size of 5 and
10 s are considered throughout the computation. The result indi-
cates that for the pressure form, a small time step and a fine grid
are required to obtain an accurate mass balance and for larger time
steps, the mass balance error exceeded 15%. While the two other
schemes yield superior mass balance results, even for large time
steps and grid sizes.
5 3

Pressure form (t=1000 sec)

Pressure form (t=4000 sec)

Pressure form (t=7000 sec)

Modified Picard (t=1000 sec)

Modified Picard (t=4000 sec)

Modified Picard (t=7000 sec)

Mixed form (t=1000 sec)

Mixed form (t=4000 sec)

Mixed form (t=7000 sec)

Analy�cal (t=1000 sec)

Analy�cal (t=4000 sec)

Analy�cal (t=7000 sec)

pressure form, modified Picard, mixed form and analytical solutions.



Table 7
Mcwhorter problem: water mass balance errors for the pressure form, modified Picard and the mixed form (N = 20).

Simulation time 100 s 500 s 1000 s 4000 s

Time step 5 s 10 s 5 s 10 s 5 s 10 s 5 s 10 s

Pressure form 0.1524 0.1831 0.09036 0.114 0.06975 0.08977 0.04013 0.05233
Modified Picard 0.00033 0.00035 0.0004 0.00043 0.0002 0.0004 0.0005 0.0004
Mixed form 0.00018 0.00024 0.0003 0.00031 0.00033 0.00033 0.00033 0.00034

30 R. Asadi, B. Ataie-Ashtiani / Computers and Geotechnics 67 (2015) 17–32
4.1.4. Mcwhorter problem: Initially saturated with an incompressible
wetting fluid

In this example, Mcwhorter problem is considered for the case
in which the column is initially saturated with the wetting phase
[27,59]. In this model, the oil phase infiltration through the
deformable soil column with the length of 10 m has been simulat-
ed. For the left boundary condition at oil infiltration point, water
saturation is equal to 0.525 and no water flow condition is pre-
scribed. Also for the mechanical problem, the same boundary con-
ditions are employed as in the last test case. The fluid and solid
matrix properties are summarized in Table 8. The domain is subdi-
vided into 50 control volumes and the time discretization is done
with constant time step of 100 s. Fig. 18 illustrates the agreement
between the numerical models and analytical solution for the
Table 8
Mcwhorter problem: hydraulic and mechanical para-
meters of the porous medium (test case 4).

Parameters Values

Intrinsic permeability k ¼ 5� 10�11 m2

Viscosity of water lw ¼ 0:001 Pa s
Viscosity of oil lnw ¼ 0:0005 Pa s
Water density qw ¼ 1000 kg=m3

Oil density qnw ¼ 1000 kg=m3

Biot coefficient a ¼ 1:0
Porosity / ¼ 0:35
Young’s modulus E ¼ 5� 106 Pa
Poisson’s ratio # ¼ 0:4
Residual water saturation Srw ¼ 0:05
Residual oil saturation Srnw ¼ 0:05
Entry pressure pd ¼ 2000 Pa
Pore size distribution index k ¼ 2
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Fig. 18. Mcwhorter problem: effective saturation profiles at selected times f
distribution of fluid saturations in the column at various times
for all of the three schemes.

As the previous examples, mass balance analysis has been per-
formed for the different strategies with various mesh sizes and
time steps. As a result, the maximum mass balance error for the
mixed form and the modified Picard scheme is limited to 0.1%,
throughout the simulation, while for the pressure form it exceeds
5%.
4.2. Comparison of the coupling schemes

In this section the fixed-stress algorithm has been implemented
to the finite volume simulator for the different forms of the equa-
tions. Accuracy, rate of convergence and efficiency of this iterative-
ly coupled method have been investigated. For this purpose, two
kinds of boundary conditions have been considered for the
mechanical equation. First is the boundary condition in which
the vertical load is constant. According to this assumption and
under uniaxial strain condition, the volumetric strain is equal to
the vertical strain and can be obtained in terms of the average pore
pressure from the mechanical equation. For the boundary condi-
tion type 2, vertical displacement is imposed on both ends of the
geomechanical domain. In this kind of boundary condition the ver-
tical stress is calculated from the boundary values of the displace-
ment and the pressure variation through the domain [54]. The first
and second test cases in this study including Liakopoulos [7,51]
drainage test and the partially saturated consolidation problem
[6,51], have been simulated using a boundary condition type one
due to the prescribed vertical traction. While, in both Mcwhorter
problems [59], boundary condition type 2 (constant vertical dis-
placement) is assumed and imposed. To perform comparative
analysis between coupling schemes, the partially saturated con-
solidation problem and the Mcwhorter problem (Initially saturated
10

Pressure form (t=1000 sec)
Pressure form (t=50000 sec)
Pressure form (t=250000 sec)
Pressure form (t=500000 sec)
Pressure form (t=900000 sec)
Analy�cal (t=1000 sec)
Analy�cal (t=50000 sec)
Analy�cal (t=250000 sec)
Analy�cal (t=500000 sec)
Analy�cal (t=900000 sec)
Modified Picard (t=1000 sec)
Modified Picard (t=50000 sec)
Modified Picard (t=250000 sec)
Modified Picard (t=500000 sec)
Modified Picard (t=900000 sec)
Mixed form (t=1000 sec)
Mixed form (t=50000 sec)
Mixed form (t=250000 sec)
Mixed form (t=500000 sec)
Mixed form (t=900000 sec)

or pressure form, modified Picard, mixed form and analytical solutions.



Table 9
Run-time information for boundary condition type 1.

Comparison factors Iteratively coupled method Fully coupled method

Pressure form Modified Picard Mixed form Pressure form Modified Picard Mixed form

Total iteration 86,894 86,899 87,202 91,036 91,035 87,244
CPU Time (s) 407.76 461.62 472.30 1127.55 1124.28 1097.83

Table 10
RMSE for boundary condition type 1.

Comparison factors Iteratively coupled method

Pressure form Modified Picard Mixed form

RMSE-pw (Pa) 0.3688 4.6203 0.6041
RMSE-pnw (Pa) 0.0007 0.0088 0.0012
RMSE-Sw 2.57E�07 3.2E�06 4.2E�07
RMSE-u (m) 6.15E�09 3.98E�08 7.551E�09

Table 12
RMSE for boundary condition type 2.

Comparison factors Iteratively coupled method

Pressure form Modified Picard Mixed form

RMSE-pw (Pa) 2.944494 4.61742 26.25074
RMSE-pnw (Pa) 1.343311 1.45464 3.225233
RMSE-Sw 1.49742E�05 1.51276E�05 0.000187
RMSE-u (m) 3.35283E�06 2.50173E�06 7.19263E�07
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with the non-wetting phase) are used for the boundary conditions
type 1 and 2, respectively.
4.2.1. Boundary condition type 1: Partially saturated consolidation
problem

The run-time information and accuracy of the results for the
pressure form, mixed form and mixed form with a modified Picard
linearization are presented in Tables 9 and 10, respectively. For the
results listed in these two tables, simulations have been performed
with a time step of 0.1 s, with 80 control volumes and at time
t ¼ 0:1 day. The number of total iterations of the iteratively cou-
pled method, for all of the numerical schemes are fewer than the
fully coupled method. Since, the fixed-stress split supposes that
the rate of the volumetric stress is constant during the flow step,
for the boundary condition type 1, this restriction is satisfied auto-
matically. So, the problem converges with less iteration numbers
than the fully coupled method. As a consequence, CPU time
decreases significantly due to the less number of iterations and
the matrices with smaller dimensions.

In Table 10, root mean square errors (RMSE) of the pressures,
saturation and displacement values are calculated to compare
the sequential methods with the fully coupled solution. As the
results indicate, all of the numerical models are very accurate.
4.2.2. Boundary condition type 2: Mcwhorter problem (Initially
saturated with the non-wetting phase)

In the following simulations, results are obtained at t = 1000 s,
with a time step which varies between 0.01 s to 1 s in the first
10 s and then remains constant. Also 80 nodes are considered for
spatial discretization. As shown in Table 11, the iteratively coupled
methods required less number of iterations to converge, in all of
the cases. The resulting large sparse and ill-posed matrix obtained
from the fully coupled method incurs higher computational cost
especially in terms of CPU time. The values of RMSE in Table 12,
show that the iteratively coupled solution predicts the same result
as the fully coupled method and retains accuracy for all of the
numerical methods.
Table 11
Run-time information for boundary condition type 2.

Comparison factors Iteratively coupled method

Pressure form Modified Picard Mixe

Total iteration 2067 2045 3158
CPU time (s) 6.28 6.22 10.0
5. Conclusions

In this study, three forms of the coupled multiphase flow
and geomechanics including pressure form, mixed form and
mixed form with a modified Picard linearization are developed
and assessed. A finite volume method is used to enforce local
conservation for discretization of the governing equations.
Although, these forms of equations are mathematically equiva-
lent, they lead to different numerical results. Therefore, these
models have been studied according to the different aspects
such as stability, convergence and mass conservation. The
mass conservation is the issue which has not been investigat-
ed in the case of the deformable porous media. The proposed
models are verified against different examples. Also, an itera-
tive coupling technique based on fixed-stress algorithm is
employed to solve the coupled equations. The fully coupled
and the iteratively coupled methods have been compared with
two types of boundary conditions for the mechanical equation.
From these test cases, the following conclusions can be
drawn:

– The choice of water degree of saturation in the mixed form, as a
primary variable leading to convergence problems in transition
from saturated to unsaturated regimes. The pressure form and
the mixed form with a modified Picard linearization show good
convergence even near the fully saturated conditions.

– Despite the pressure form has been widely used in the geotech-
nical engineering, it provides poor mass balance, while the two
other methods exhibited excellent mass balance accuracy over
any spatiotemporal mesh in all of the test cases.

– A comparison analysis for the fixed-stress split as an iteratively
coupled method demonstrated the accuracy, robustness and
efficiency of this method due to the reduced CPU time and
low values of RMSE. So this method is also highly recommended
in the case of multiphase fluid.
Fully coupled method

d form Pressure form Modified Picard Mixed form

2068 2048 3176
0 41.5 39.12 63.16
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