
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS
Int. J. Numer. Meth. Fluids 2008; 56:209–232
Published online 30 May 2007 in Wiley InterScience (www.interscience.wiley.com). DOI: 10.1002/fld.1526
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SUMMARY

An incompressible-smoothed particle hydrodynamics (I-SPH) formulation is presented to simulate im-
pulsive waves generated by landslides. The governing equations, Navier–Stokes equations, are solved
in a Lagrangian form using a two-step fractional method. Landslides in this paper are simulated by a
submerged mass sliding along an inclined plane. During sliding, both rigid and deformable landslides
mass are considered. The present numerical method is examined for a rigid wedge sliding into water
along an inclined plane. In addition solitary wave generated by a heavy box falling inside water, known
as Scott Russell wave generator, which is an example for simulating falling rock avalanche into artificial
and natural reservoirs, is simulated and compared with experimental results. The numerical model is also
validated for gravel mass sliding along an inclined plane. The sliding mass approximately behaves like a
non-Newtonian fluid. A rheological model, implemented as a combination of the Bingham and the general
Cross models, is utilized for simulation of the landslide behaviour. In order to match the experimental
data with the computed wave profiles generated by deformable landslides, parameters of the rheological
model are adjusted and the numerical model results effectively match the experimental results. The results
prove the efficiency and applicability of the I-SPH method for simulation of these kinds of complex free
surface problems. Copyright q 2007 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Underwater landslides can generate surface water waves that have a high potential to cause damage
and loss of life in coastal areas. Predicting the damage of these waves is of importance when
assessing risk and magnitude of flooding in these areas.
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Due to the importance of waves generated by underwater landslides, researchers have accom-
plished many experimental studies of this phenomenon. Wiegel [1] generated water waves in
constant depth channel by allowing rigid bodies to slide down a 22–54◦ inclined plane from the
horizontal. Iwasaki [2] measured water wave heights resulting from horizontal motion of a sloping
incline in a constant depth channel. Heinrich [3] conducted an underwater landslide experiment
with a weighted block sliding down a 45◦ incline. Watts [4] described general features of water
waves generated by under water landslides and scaled these features based on actual experimental
results. Fritz et al. [5] investigated near-field characteristics of landslide generated impulsive waves
in a two-dimensional physical laboratory model based on the generalized Froude similitude. More-
over, many numerical studies of landslide waves have been carried out by researchers. Jiang and
LebLond [6] developed a fluid model to simulate water waves generated by deformable underwater
landslides. Rzadkiewicz et al. [7] simulated an under water landslide by introducing a two-phase
description of sediment motion and using the volume of fluid (VOF) technique. Grilli and Watts
[8] simulated waves due to moving submerged body using a boundary element method.

A comprehensive review on the experimental and numerical studies about landslide waves have
been provided by Ataie-Ashtiani and Najafi-Jilani [9, 10]. Moreover, Ataie-Ashtiani and Malek-
Mohammadi studied the validity and accuracy of the existing empirical equations for predicting
impulsive wave amplitude for the real cases [11].

Due to the complex motion of an underwater body of arbitrary geometry and interaction of waves
with shoreline which results in non-linear governing equations, surface waves due to landslide are
difficult to simulate. Recently, numerical models that do not use a grid have been used to overcome
such difficulties. Moving-particle semi-implicit (MPS) is a mesh-less method in which each particle
is followed in a Lagrangian manner leading to complete elimination of numerical diffusion problem
that is usual in grids of Eulerian methods [12]. In MPS, the fluid is represented with particles. The
motion of each particle is calculated through interactions with neighbouring particles by means of
a kernel function. MPS has been successfully used to simulate a wide variety of problems such
as dam breaks [13], solitary wave breaking on mild slopes [14] and vapour explosion [15]. The
MPS model has been improved by Gotoh and Sakai [16] and later Gotoh et al. [17] applied the
model for the wave generation due to large-scale landslides. In spite of the extensive applications
of MPS method, still there are limitations for getting a stable solution. Ataie-Ashtiani and Farhadi
[12] investigated the kernel functions for improving the stability of MPS method.

Smoothed particle hydrodynamics (SPH) is a mesh-less method introduced by Lucy [18] in
astrophysics to study the collision of galaxies. Later Monaghan [19] extended the method and used
it to deal with free surface problems. The SPH formulation is obtained as a result of interpolation
between a set of disordered points known as particles. The interpolation is based on the theory of
integral interpolants that uses a kernel function similar to a Gaussian which approximates a delta
function. Each particle carries a mass, a velocity and all the properties of fluid with it.

Two different approaches have been used to extend SPH method to incompressible or nearly
incompressible flows. In the first approach, real fluids are treated as compressible fluids with a sound
speed which is much greater than the speed of bulk flow [19]. Pressure of particles in this method
is computed by a stiff equation of state. This artificial compressibility can cause problems with
sound wave reflection at boundaries and high sound speed leads to a stringent Courant–Friedrichs–
Lewy (CFL) time step constraint [20, 21]. In the second approach, called incompressible-SPH
(I-SPH) [14, 20, 21], unlike compressible SPH method, the pressure is directly obtained by solving
a Poisson equation of pressure that satisfies incompressibility. The advantage of I-SPH lies in its
ease and efficiency of free surface tracking using Lagrangian particles and the straightforward
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treatment of wall boundaries [20]. The first approach is known as SPH and the second one as
I-SPH.

SPH and I-SPH have been used by many researchers to investigate different hydrodynamic
problems such as the study of dam breaks [19, 21], gravity current descending a ramp [22], solitary
wave breaking in mild slopes [14, 20], wave impact on tall structures [23], wave overtopping a
deck [24], non-Newtonian flows with free surface [21] and incompressible separated flow [25].
For the impulsive and landslides water waves, SPH has also been used by De Girolamo et al. [26],
Panizzo and Dalrymple [27], Panizzo et al. [28], Gallati and Braschi [29], Gallati et al. [30] and
Monaghan et al. [31].

In this paper an I-SPH is introduced with the aim to enhance its stability and accuracy for
free surface problems in comparison with the conventional I-SPH method. The objective of this
work is to simulate waves generated by underwater landslide using I-SPH method and to show the
efficiency and success of application of this method in simulation of these kinds of complex free
surface problems. To the authors’ knowledge, the I-SPH methods have not been used for the cases
of the waves generated by landslides, especially when the landslide deformations are simulated
simultaneously.

In Section 2 the governing equations are given and in Section 3 the I-SPH method and the
imposed modifications on it are presented. Section 4 provides numerical examples and the com-
parison of numerical results with experimental and analytical results to examine the performance
of the I-SPH.

2. GOVERNING EQUATIONS

The governing equations of viscous fluid flows that are mass and momentum conservation equations
are presented in the following:

1

�

D�

Dt
+ ∇.u= 0 (1)

Du
Dt

= −1

�
∇P + g + �

�
∇2u (2)

where � [ML−3] is the density, u [LT−1] is the velocity vector, P [ML−1T−2] is the pressure and
g [LT−2] is the gravitational acceleration.

The computation of the I-SPH method is composed of two basic steps [20, 21]. The first step
is the prediction step in which the velocity field is computed without including pressure gradient
term in the momentum equation (Equation (2)):

�u∗ =
(
g + �

�
∇2u

)
�t (3)

u∗ =ut + �u∗ (4)

r∗ = rt + u∗�t (5)

where ut [LT−1], rt [L] are the particle velocity and position at time t ; u∗[LT−1], r∗[L] are the
temporary particle velocity and position, respectively; �u∗[LT−1] is the change in the particle
velocity during the prediction step.
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Incompressibility is not satisfied in this step and the fluid density �∗ which is calculated based
on the temporary particle positions deviates from the constant density (�0).

In the second correction step, the pressure term is used to enforce incompressibility in the
calculations:

�u∗∗ = −1

�∗
∇Pt+1�t (6)

ut+1 =u∗ + �u∗∗ (7)

where �u∗∗ is the changed particle velocity during the correction step, Pt+1 the particle pressure
at time t + 1 and ut+1 the velocity at time t + 1.

By combining Equations (6) and (1) in order to set D�/Dt = 0 at each particle according to
the mass conservation equation after the prediction step, the Poisson equation is formulated as
follows:

∇ ·
(

1

�∗
∇Pt+1

)
= �0 − �∗

�0�t2
(8)

Finally, the new positions of particles are calculated by centred in time approximation:

rt+1 = rt + ut+1 + ut
2

�t (9)

3. SPH FORMULATION

The key idea in this method, which is based on integral interpolant, is to consider that a function
A(r) can be approximated by [23]

A(ra) = ∑
b
mb

Ab

�b
W (|ra − rb|, h) (10)

where a is the reference particle and b is its neighbouring particle. mb [M] and �b[ML−3]
are mass and density, respectively, W is interpolation kernel, h [L] is the smoothing length
which determines width of kernel and ultimately the resolution of the method. Thus, by sum-
ming over the particles the fluid density at particle a, �a[ML−3], is evaluated according to
Equation (10):

�a = ∑
b
mbW (|ra − rb|, h) (11)

Kernel (weight) functions that directly affect the results of SPH method should have specific
properties such as positivity, compact support, normalization, monotonically decreasing and delta
function behaviour [23]. Many different kernel functions satisfying the required conditions have
been proposed by researchers. The following kernel based on the spline function is widely used
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in the SPH formulation [32]:

W (r, h) = 10

7�h2

(
1 − 3

2
q2 + 3

4
q3
)

, q�1

W (r, h) = 10

28�h2
(2 − q)3, 1<q�2

W (r, h) = 0, q>2

(12)

where h [L] is the smoothing length, r [L] is distance between particles and q = r/h. In this paper
this kernel function is used.

The gradient term in the Navier–Stokes (N–S) equation can have different forms in SPH formu-
lation. Monaghan [32] proposed a model of gradient that conserves linear and angular momentum:(

1

�
∇P

)
a

= ∑
b
mb

(
Pa
�2a

+ Pb
�2b

)
∇aW (13)

Laplacian will lead to the second derivative of the kernel function that is very sensitive to particle
disorder and can cause pressure instability. Thus, developing a model of Laplacian that prevents
this instability is very important. The following model of Laplacian has specific characteristic and
is stable [20, 21]:

∇ ·
(
1

�
∇P

)
a

= ∑
b
mb

8

(�a + �b)2
Pabrab.∇aWab

|rab|2 + �2
(14)

where Pab[ML−1 T−2] = Pa − Pb, rab[L] = ra − rb and � [L]= 0.1 h.
The corresponding coefficient matrix of the linear equations (Equation (14)) is scalar, symmetric

and positive definite and can be efficiently solved by an iterative scheme.
By using the same approach, viscosity term is formulated as(

�

�
∇2u

)
a

= ∑
b

4mb(�a + �b)rab.∇aWab

(�a + �b)2(|rab|2 + �2)
(ua − ub) (15)

where � [ML−1 T−2] is the viscosity coefficient.
After employing the SPH formulation Equation (14) for the Laplacian operator, the corresponding

coefficient matrix of linear equations is symmetric and positive definite and can be efficiently solved
by available solvers.

In spite of the robustness of I-SPH in solving N–S equations with the incompressibility assump-
tion, some errors are generated due to the discretization of the governing equations, the method
of imposing boundary conditions and also the system of linear equations solvers. These errors
prevent completely satisfying incompressibility conditions. Due to these errors, at each time step,
a density error is generated and accumulated to the errors generated in the previous time steps.

If density of a single particle denoted with a at time t = 0 is �0, due to the above-mentioned
errors the density of this particle at time t will be

�0 = �ta + ��ta (16)

where �ta, ��t are density of particle a and density error at time t . At the prediction step of time t ,
the temporary density of the particle is indicated as �∗. At the correction step after including
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the gradient pressure term in Equation (2)

�t+1
a = �∗ + ��∗ (17)

�0 = �t+1
a + ��t+1

a (18)

By combining Equations (17) and (18)

�0 = �∗ + ��∗ + ��t+1
a (19)

where ��∗ is the deviation of density due to not including pressure term in Equation (2) at the
prediction step.

In I-SPH method, the source term of the Poisson equation (Equation (8)) for the particle is
computed by

�0 − �∗
�0�t2

= ��∗ + ��t+1
a

�0�t2
(20)

In the source term only ��∗ should contribute, but in the I-SPH both parts of ��∗ and ��t+1
a are

considered. In our work a modification in this regard has been applied by including only ��∗ in
the source term. This means that the previous density errors are not allowed to affect the source
term.

Changes in the fluid density can be computed through

d�a
dt

= ∑
b
mb

d(Wab)

dt
(21)

and also changes in the values of the kernel function:

dW (xab, yab)

dt
=
(

�Wab

�x
dxab
dt

+ �Wab

�y
dyab
dt

)
=∇aWabuab (22)

where u is velocity and uab = ua − ub.
Change in the density of the particle at the prediction step is

��∗
�0�t2

= 1

�0 dt

d�

dt
(23)

By combining Equations (21) and (23), the new source term is described with

1

�0 dt

∑
b
mb(ua − ub)∇aWab (24)

And finally the Poisson equation of pressure is described as

∇ ·
(

1

�∗
∇Pt+1

)
= 1

�0 dt

∑
b
mb(ua − ub)∇aWab (25)

The same procedure can be used for all particles.
In this form of Poisson equation of pressure, the numerical density errors generated in the

previous time steps do not affect the source term and stability and accuracy of I-SPH method are
improved [33].
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3.1. Numerical treatment of free surfaces and wall boundaries

3.1.1. Solid walls. Solid walls are simulated by particles where the Poisson equation of pressure
is solved. This balances the pressure of inner fluid particles and prevents them from accumulating
in the vicinity of solid boundary. Also several lines of dummy particles are placed outside walls
according to the initial configuration to keep the fluid particle density near walls consistent with
inner fluid particles. The homogeneous Neumann boundary conditions are enforced when solving
the equation of pressure [20]. In other words, the pressure of a dummy particle is set to that of a
wall particle in the normal direction of the solid walls.

3.1.2. Free surface. Since there are no particles in the outer region of free surface, the particle
density decreases on this boundary. A particle which satisfies the following equation is considered
to be on the free surface, � being the free surface parameter:

�∗<��0 (26)

where 0.8<�<0.99 [13]. In this paper � = 0.95 and h = 1.2l0 are used, where l0 is the initial
particle spacing.

In the conventional I-SPH method, after recognizing the particles on the free surface, zero
pressure is assigned to them. Since the particles density on free surface decrease discontinuously,
spurious pressure gradients occurs if Equation (13) is used. To avoid this problem, special treatments
should be considered when computing gradient operator for free surface particles. Let us assume
that s is a surface particle with zero pressure and i is an inner fluid particle with pressure Pi.
In order to calculate the pressure gradient between these two particles, a mirror particle, m, with
pressure, Pi, should be placed in the direct reflection position of inner particle i through the surface
particle s (Figure 1). In this way, the zero pressure condition on the free surface is satisfied [20].

The gradient of the pressure between the free surface particle s, mirror particle m and inner
particle i is expressed as

(
1

�
∇P

)
s

=m

(
Ps
�2s

+ Pi
�2i

)
∇aW + m

(
Ps
�2s

+ Pm
�2m

)
∇aW (27)

s

i

m

Ps = 0

Pm = −Pi

Pi

free surface

Figure 1. Free surface boundary treatment relationship between inner, mirror and free surface particle.
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Pm = −Pi

Ps = 0

∇sWsm = −∇sWsi

(28)

Combining Equations (27) and (28) gives

(
1

�
∇P

)
s

= 2m

(
Pi
�2i

)
∇aW (29)

Therefore, the computed amount of gradient for free surface particles is double. In I-SPH method
there is no control over incompressibility condition for the free surface particles as the Poisson
pressure equation is not solved for these particles. Using Equation (14) for these particles leads
to instability in computations. Regarding Equation (29), it is deduced that the Laplacian between
free surface particle s and inner fluid particle i is expressed as

∇ ·
(
1

�
∇P

)
si

= 2

(
ms

8

(�s + �i)2
Psirsi.∇sWsi

|rsi|2 + �2

)
(30)

By employing these modifications, satisfying directly incompressibility condition for free surface
particles and the new form of source term of pressure Laplace equation, stability and accuracy of
the present method are improved. The effects of these modifications have been tested for some
problems such as dam break, evolution of a drop, breaking waves on mild slopes [33]. Here, the
modified method has been called the present I-SPH.

4. TEST PROBLEMS

In this section three experimental cases are numerically simulated using the present numerical
model. In Section 4.1, the experimental results of Heinrich [3] for landslides waves generated by
rigid bodies (landslides) are used to compare with those of I-SPH. In Section 4.2, solitary waves
due to a heavy box falling into water, known as Scott Russell wave generator, are computationally
simulated and results are compared with the experimental data of Monaghan and Kos [34]. In
Section 4.3 the deformation of landslides is simulated and the landslide behaviour is considered
as non-Newtonian fluids [7].

4.1. Underwater rigid landslide

In this section, the present numerical model is used for simulating waves generated by a rigid
wedge sliding into water along an inclined plane which is a laboratory experiment performed
by Heinrich [3]. In this experiment water waves were generated by allowing a wedge to freely
slide down a plane inclined 45◦ on the horizontal. The wedge was triangular in cross section
(0.5m× 0.5m) and with a density of 2000 kg/m3. Water depth was 1m and the top of the wedge
was initially 1 cm below the horizontal free surface. The computational domain shown in Figure 2
was 4m by 1.3m in the x and y directions. A constant time step (�t = 0.001 s) and initial particle
spacing (l0 = 0.04m) were used in the computations.
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d = 1m

L = 3m

0.5m

0.5m

V

θ = 45ο

Figure 2. Initial conditions of the rigid wedge sliding down a plane inclined 45◦ on the horizontal.

Figure 3. Comparison between I-SPH (continuous line) and experimental (circle) water surface elevations
at t = 0.5 and 1 s for the rigid wedge sliding down a plane inclined 45◦ on the horizontal.

After an acceleration phase lasting about 0.4 s, the box reached a terminal velocity of 0.6m/s.
The vertical velocity of the wedge during the acceleration phase can be described by [8]

u(t) = c1 tanh(c2t), t�0.4 s

u(t) = 0.6, t>0.4 s
(31)

c1 and c2 are constant values that in our computations were 86 and 0.0175, respectively.
At each time step the velocity of the wedge is known and based on that the position of the

wedge is determined. The same procedure is also used for test Problem 4.2.
Comparison between the experimental and the simulated wave profiles at t = 0.5 and 1 s is

shown in Figure 3. The good agreement between experimental data [7] and computational results
proves the ability of the present method to successfully simulate such flows. The maximum height
of the water above the still water level at t = 0.8 s is about 7 cm.

Particle configuration due to sliding of the rigid wedge is presented at different times until
t = 3 s in Figure 4, showing the stability of the present method to simulate the problems for long
times. There is no experimental data [7] for t>1 s. The generated wave moves towards the left
wall and at about t = 1.5 s the wave reflects from the wall and at about t = 3 s the water surface

Copyright q 2007 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 2008; 56:209–232
DOI: 10.1002/fld



218 B. ATAIE-ASHTIANI AND G. SHOBEYRI

Figure 4. I-SPH particles configuration for the rigid wedge sliding down a plane inclined 45◦ on
the horizontal at different times.
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Figure 5. Velocity field for the rigid wedge sliding down a plane inclined 45◦ on the horizontal at different
times computed by the present method.

is nearly horizontal. The elevation of water at t = 1.5 s near the left wall is about 106.6 cm. In
Figure 5 the velocity field of the problem is presented at different times. At t = 1 s a vortex is being
generated above the wedge and at t = 1.5 s the water is changing its direction and the intensity
of velocity field is decreased after the wedge has reached the bottom, as expected. As shown in
Figure 6, the pressure field computed for different times by the I-SPH method indicates that, due
to the occurrence of zero velocity of particles far from the box, the pressure of these particles is
nearly hydrostatic. In Figure 7 the water surface elevation for two fixed points located at x = 1 and
2m measured from the left wall is recorded. The maximum elevation of the first point (x = 2m,
t ≈ 1 s) is about 107.4 cm and for the second point (x = 1m, t ≈ 1.3 s) is about 106.8 cm. Both
maximum surface elevations are close to the maximum water elevation derived from experimental
data [7] at t = 1 s and x ≈ 2m, showing the accuracy of the present method.

4.2. Scott Russell wave generator

In the previous section, the wave generated due to sliding of a submerged wedge was analysed. In
this section, solitary waves generated by a heavy box falling vertically into water are considered.
Monaghan and Kos [34] examined this problem both experimentally and numerically (using the
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Figure 6. Pressure field for the rigid wedge sliding down a plane inclined 45◦ on the horizontal at different
times computed by the present method.

SPH method). The experiment involved a weighted box dropping vertically into a wave tank. The
box was 0.3m× 0.4m. Three different water depths were considered in the experiment but in this
paper we will only consider the case with water depth equal to 0.21m. The initial condition of the
problem is shown in Figure 8. It should be noted that the horizontal length of the numerical tank
is assumed to be 2m, much shorter than the experimental tank (9m). However, we believe that
the difference in the length of tanks does not influence the results. To prevent splash, the bottom
of the box was initially placed 0.5 cm below the water surface in the experiment [34]. The vertical
velocity of the box is expressed by [34]

V√
gD

= 1.03
Y

D

(
1 − Y

D

)0.5

(32)

where D is the depth of the water, Y the height of the bottom of the box above the bottom of
the tank at time t , g the acceleration of gravity and V the falling vertical velocity of the box at
time t . Time step in this case is controlled with Courant number (�t<0.1l0/Vmax) where Vmax is
maximum velocity of particles at each time step [21].
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Figure 7. I-SPH water surface elevations at 1m (circles) and 2m (black squares) from the
left end of the tank at different times.

d = 0.21m

0.3m

0.4m

L = 2m

V

Figure 8. Initial conditions of Scott Russell wave generator test case.

The profile of the solitary wave generated by the falling box into the water can be expressed
by [20]

H(x, t) = a sech2
[√

3a

4d3
(x − ct)

]
(33)

where H is the water surface elevation, a is the wave amplitude, d is the water depth and
c=√

g(d + a) is the solitary wave celerity.
The horizontal velocity underneath the wave profile is given by [20]

u = H

√
g

d
(34)
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Figure 9. Particle configurations computed by the present method at different times for Scott Russell wave
generator problem (l0 = 0.015m).

In Figure 9 particle configuration simulated by the present method shows the formation of a solitary
wave and a plunging wave following the solitary wave down the tank. At t = 0.7 s the vortex is
about approximately 23 cm far from the right box wall.

In Figure 10 the solitary wave generated by the falling box is shown and the profile of the wave
is compared with Equation (33). The agreement between the analytical profile of the wave and
the simulated free surface is good. It should be noted that the term ‘x-ct’ in this equation is set so
that the crest of the analytical corresponds to the crest of the numerically simulated wave and also
the wave amplitude a (Equation (33)) is assumed to be 11 cm computed by the present method
(using initial particle spacing l0 = 0.015m). Monaghan and Kos [34] solved the problem by SPH
method. In their computation the computed amplitude was 10.8 cm (using l0 = 0.00525m) which
is very close to the value gained in this paper. The experimental result for the wave amplitude is
about 10 cm. These results show that in spite of much fewer particles used in the computations,
the present method can simulate the problem properly.

In Figure 11 the horizontal velocity of free surface particles is compared with the analytical
solution (Equation (34)) that once again demonstrates the accuracy of the model. Figure 12 shows
some characteristic lengths, measured at t = 0.285 s [34] associated with the reverse plunging
wave. The computed values of these parameters, for the present method and SPH method [34],
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Figure 10. Comparison between computed wave profile by the present method and solitary wave analytical
solution for Scott Russell wave generator problem at t = 0.7 s (l0 = 0.015m).

Figure 11. Comparison between the horizontal velocities of free surface particles computed by the present
method and analytical solution of Scott Russell wave generator problem at t = 0.7 s (l0 = 0.015m).

are given in Table I. It should be considered that two different particles spacing have been used
and for the present I-SPH, the number of particle is almost eight times less than that used in
simulations presented in Monaghan and Kos [34]. In spite of the fewer particles employed in the
present model, the computed value of these characteristic lengths are the same as those gained
by SPH method. In the experiment parameter Y at t = 0.285 s was about 0.094m, while in our
computation using Equation (32) Y was about 0.088m. To evaluate the goodness and accuracy of
I-SPH simulations, we refer to parameter h rather than R (see Figure 12).

In Figure 13 the computed pressure field of this problem for different times is presented. At
t = 0.05 s the maximum pressure is on the left corner of the tank and is about 4000 Pa showing
significant deviation from hydrostatic pressure and under the box the maximum pressure is about
3400 Pa. Obviously, it is due to the dynamic pressure caused by the impact of box. At t = 0.1625 s
the maximum pressure is about 4270 Pa and under the box the maximum pressure is 3200 Pa. At this
time the pressure of the particles located between the box and the tank is approximately uniform. At
t = 0.285 s the high-pressure region has moved and is about at x = 0.6m with pressure of 2700 Pa
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Figure 12. Definitions of the parameters of Scott Russell wave generator problem [34].

Table I. Comparison between the length h, H , B, R computed by the present method,
SPH [34] and experimental results.

Initial particle spacing l0 (m) Method H (m) R (m) h (m) B (m)

0.015 I-SPH 0.329 0.13 0.218 0.255
0.01 I-SPH 0.3301 0.146 0.234 0.268
0.0105 SPH 0.308 0.075 0.169 0.273
0.007 SPH 0.308 0.099 0.193 0.261
0.00525 SPH 0.309 0.109 0.203 0.273
0.0042 SPH 0.3086 0.114 0.208 0.272
— Experimental 0.333±0.01 0.1333±0.02 0.2273±0.02 0.303±0.02

and the maximum pressure under the box is about 890 Pa. Although the dynamic pressures under
the box are still greater than those of the high-pressure region (around x = 0.6m) but since the
hydrostatic pressures at this region are much greater than those under the box therefore the total
pressures around x = 0.6m are greater. Far from the box, due to the disappearance of dynamic
pressure, pressure is hydrostatic. In Figure 14 velocity field for the problem at t = 0.285 s is shown.
As shown, particles around x = 0.3m have a high velocity and the particles on the free surface
have negligible velocity.

4.3. Deformable landslides

Section 4.1 showed results of the simulation of the water surface elevation due to the motion of a
rigid body along an inclined surface. However, in real phenomena, deformation of a sliding mass
cannot be neglected. In the next sub-sections the deformation of a sliding mass is simulated using
a rheological model.

4.3.1. Rheological model. Following the approach of [7], it is here assumed that the sliding mass
which represents the landslide behaves as a non-Newtonian fluid. There are many rheological
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Figure 13. Pressure field computed by the present method at different times for Scott Russell wave
generator problem (l0 = 0.01m).

models to simulate these fluids. The Bingham model is the simplest and the most known and it is
expressed as [21]

�eff = �B + �B
�̇

(35)

where �B, �B and �̇ are viscosity, Bingham yield stress and shear rate, respectively. In two
dimensions, the shear rate �̇ simplifies to

�̇ =
√
2

(
�u
�x

)2

+ 2

(
�v

�y

)2

+
(

�u
�y

+ �v

�x

)2

(36)

where u and v are the components of the velocity vector.
In this model, the fluid behaves like a rigid body at shear rates below the yield stress, while it

behaves like a Newtonian fluid at shear rates greater than the yield stress [21]. The general Cross
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Figure 14. Velocity filed computed by the present method for Scott Russell wave generator
problem at t = 0.285 s (l0 = 0.01m).

1.6m

3m

1m

0.1m

0.65m

0.65m

θ = 45ο

Figure 15. Initial conditions of the deformable landslide test case.

model is another rheological model that effectively simulates non-Newtonian fluids [35]:
�0 − �eff
�eff − �∞

= (K �̇)m (37)

where �0, �∞ are viscosity at very low and very high shear rates, respectively; K and m are
constant parameters. It should be noted that �∞ = �B [21].

By combining Equations (35) and (37) and taking m as unity, the effective viscosity in the Cross
model is defined as

�eff =
�0 + �0�∞

�B
�̇

1 + �0
�B

�̇
(38)
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Figure 16. Comparison between computed (the present method, VOF [7]) and experimental
wave profile for different cases of parameters of the rheology model for the deformable

landslide problem at t = 0.4 and 0.8 s.

In order to avoid numerical instability, �0 is frozen at a fixed high value (1000�∞) [21]. It should
be noted that under this condition, the Cross model, unlike the Bingham model, is a continuous
variable.
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Figure 17. The shape of the sliding mass for different cases of parameters of the rheology model for the
deformable landslide problem at t = 0.4 and 0.8 s computed by the present method.

4.3.2. Sand flows and associated water waves. A deformable landslide is simulated in the experi-
ment carried out at CEMAGREF institute [7]. In the experiment a mass of sand with a mean density
of 1950 kg/m3 slides down an inclined plane with a slope of 45◦ on the horizontal. The initial
condition of the problem is shown in Figure 15. An initial particle spacing equal to l0 = 0.05m
and a constant time step �t = 0.005 s are used in the computations.

In the first simulation, the sliding mass is modelled as an ideal fluid without rheological law.
This means that in Equation (2) the viscosity term is not considered. Rzadkiewicz et al. [7] used
the VOF method to solve the problem under this condition. As it can be seen in Figure 16(a), the
agreement between the wave profiles at t = 0.4 and 0.8 s computed by the present method and the
VOF is good but results of both methods do not match with the experimental data indicating that
it is not correct to assume that the sliding mass behaves like an ideal fluid.
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Figure 18. Velocity fields for the deformable landslide problem at t = 0.4 and 0.8 s for two cases of the
rheology model computed by the present method.

In the absence of measurement of viscosity, the set of parameters used in the Cross model is
adjusted by trial and error. In the second simulation, �B and �B are assumed to be 0.1 Pa s and
250 Pa, respectively. For this case, the VOF results have not been presented in [7]. The water
surface elevation computed for this condition is shown in Figure 16(b). It is visible that the
agreement between the computed and experimental wave profiles is satisfactory but in order to
match the result better, a third simulation has been carried out by assuming �B = 0.15 Pa s and
�B = 750 Pa. As illustrated in Figure 16(c), the larger value of yield stress (�B) and viscosity
(�B) generate smaller waves which closely match the experimental results. This problem was
solved by Rzadkiewicz et al. [7] with setting the parameters of the Bingham model (�B = 1000 Pa,
�B = 0 Pa s, D§ = 0.004 Pa s). The computational results of simulating this problem using the VOF
method are shown in Figure 16(c). By comparing the computational results using the VOF [7]

§Diffusion coefficient.
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and the present I-SPH method with the experimental data, the capability of the present method to
simulate complex problems efficiently and accurately is visible.

The shape of the sliding mass at t = 0.4 and 0.8 s for three simulations are shown in Figure 17.
Figure 17(a) (real fluid) for t = 0.8 s shows that most of the mass is concentrated at the mud front
but in the experiment [7] most of the sliding mass remains near the initial position. In the second
simulation (�B = 0.1 Pa s, �B = 250 Pa) with including the Cross model parameters, the mass keeps
its initial shape at t = 0.4 s (Figure 17(b)) and t = 0.8 s most of the mass remains close to the initial
position. The same conclusion can be observed in Figure 17(c) for the third simulation. As at the
beginning of the slide motion, velocity and shear rate (see Equations (36) and (38)) are small and
it means that �eff is approximately similar for the second and third simulations. Therefore, shapes
of the mass at t = 0.4 s are about the same (Figure 17(b) and (c)). The same conclusion can also
be inferred for the water wave surface (see Figure 16(b) and (c)). A vortex moving along the slope
during sliding of the mass at t = 0.4 and 0.8 s for the first and second simulation can be seen in
Figure 18. For the first simulation the vortex is strong compared with the vortex of the second
simulation. This is because of large viscosity in the second simulation leads to lower velocity.

It should be noticed that the numerical simulations were carried out considering no friction at
the interface between ambient water and the mass.

5. CONCLUSION

In this paper the application of an incompressible SPH (I-SPH) method for numerical simulation
of submarine landslide generated waves is presented. SPH is a mesh-less method in which particles
are used to simulate the fluid. The method has the advantage of solving the governing equations
by a Lagrangian approach. By employing a new form of source term to the Poisson equation of
pressure and enforcing incompressibility to free surface particles, stability and accuracy of this
method are improved.

The present I-SPH method is used to simulate a submerged rigid wedge sliding along an inclined
surface. Also solitary waves generated by a heavy box falling into water, which is a good example
for simulating falling avalanche in dam reservoirs and the behaviour of waves due to landslides
near slopes are efficiently examined by the present method. The computational I-SPH results were
in good agreement with the experimental data.

Then, the present model is used to simulate flow of gravel mass sliding along an inclined
plane. Gravel mass is modelled as a non-Newtonian fluid. Comparison between the computed and
experimental wave profiles generated by both the sliding rigid box and the deformable landslide
shows the ability of the present method to successfully simulate such kind of complex problems.

NOMENCLATURE

c solitary wave celerity
d water depth
h Kernel smoothing length
K constant parameter in Cross model
l0 initial particle spacing
m particle mass
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P pressure
q = r/h non-dimensional distance between particles
r distance between particles
r Position vector
u velocity vector
Vmax maximum velocity
W Kernel function
�̇ shear rate
�t time step
�u changed velocity
� small number to avoid singularity
� constant viscosity of water
�0(�∞) viscosity at very low (high) shear
�B Bingham viscosity
�eff effective viscosity
� fluid density
�0 initial density
�B Bingham yield stress
∇ gradient operator
∇2 Laplacian operator∑

summation operator
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