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Real world models of seawater intrusion (SWI) require high computational efforts. This creates compu-
tational difficulties for the uncertainty propagation (UP) analysis of these models due the need for
repeated numerical simulations in order to adequately capture the underlying statistics that describe
the uncertainty in model outputs. Moreover, despite the obvious advantages of moment-independent
global sensitivity analysis (SA) methods, these methods have rarely been employed for SWI and other
complex groundwater models. The reason is that moment-independent global SA methods involve
repeated UP analysis which further becomes computationally demanding. This study proposes the use
of non-intrusive polynomial chaos expansions (PCEs) as a means to significantly accelerate UP analysis
in SWI numerical modeling studies and shows that despite the highly non-linear and non-smooth
input/output relationship that exists in SWI models, non-intrusive PCEs provide a reliable and yet
computationally efficient surrogate of the original numerical model. The study illustrates that for the
considered two and six dimensional UP problems, PCEs offer a more accurate estimation of the statistics
describing the uncertainty in model outputs compared to Monte Carlo simulations based on the original
numerical model. This study also shows that the use of non-intrusive PCEs in the estimation of the
moment-independent sensitivity indices (i.e. delta indices) decreases the computational time by several
orders of magnitude without causing significant loss of accuracy. The use of non-intrusive PCEs for the
generation of SWI hazard maps is proposed to extend the practical applications of UP analysis in coastal
aquifer management studies.
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UP analysis allows for possibilistic or probabilistic representa-
tions of SWI model outputs in the form of probability density func-
tions (PDFs), prediction intervals (PIs), probability of exceedance of
critical thresholds, fuzzy numbers, etc. Note that UP analysis is of

1. Introduction

After several decades of research, the subject of seawater intru-
sion (SWI) numerical modeling has reached a level of maturity so

as to allow for a more in depth evaluation of the critical issue of
simulation under uncertain conditions. Addressing this subject
involves, among other things, understanding and considering two
key issues: first, how the uncertainty in model structure and inputs
propagates through the model and leads to uncertainty of the
output quantities. Quantifying this uncertainty is known as
uncertainty propagation (UP) analysis (Brown and Heuvelink,
2006). Second, how the uncertainty in the outputs of the model
can be allocated to different sources of uncertainty in the model
inputs. This is known as sensitivity analysis (SA) (Saltelli, 2002).
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particular importance in SWI modeling studies because the estima-
tion of some SWI model inputs (such as longitudinal and trans-
verse dispersivities, recharge rate and boundary conditions), is
almost always accompanied by a relatively large level of uncer-
tainty (Carrera et al., 2010; Rajabi and Ataie-Ashtiani, 2014). On
the other hand, SWI models are extensively used in the framework
of decision support systems, combined simulation-optimization
approaches and risk analysis, as tools to derive optimal coastal
aquifer management strategies (Werner et al, 2013; Ataie-
Ashtiani et al., 2014; Ketabchi and Ataie-Ashtiani, 2014). Without
proper UP analysis, models could lead to unrealistic predictions
of the coastal aquifer system response and hence ineffective man-
agement strategies.

The UP analysis procedure is conceptually illustrated in Fig. 1.
The procedure starts by the identification and characterization of
model input uncertainties and subsequently propagates these
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Nomenclature

x, X uncertain input variable(s)

Nymc number of Monte Carlo realizations

X1,X2,...,XNy Nmc realizations of x

y(x) a random variable representing the output quantity of
interest

E() expected value

y(x) Monte Carlo estimate of E(y(x))

) (unconditional) probability density function of the out-

. put y(x)

fr) kernel density estimate of fy(y)

K() kernel function

h kernel bandwidth

a a real number

gy the standard deviation of y(x)

Pr{] probability

13 a random variable

o mode strength

Vi mode function

p: probability density function of ¢

He,x) Hermite polynomial of order n

fal) truncated polynomial chaos expansion representing f(¢)

P& mode function for the multivariate case

m number of components of ¢ vector in the multivariate
case

d order of polynomial chaos expansions

D number of polynomial chaos expansion terms

q number of regression points

LC least squares criterion

e realizations of the random input variable ¢

y(e®)  exact solutions based on X

u mean

a? variance

fyix=x,(¥) conditional probability density function of the output
y(x) for X = x;

s(x;) the difference between the areas under the conditional
(fyx=x (¥)) and unconditional (f«(y)) probability density
functions

Ox delta indices

NLy, NL, number of sample points in the two loops of the double-
loop Monte Carlo method

np number of uncertain inputs in the double-loop Monte
Carlo method

NL number of simulations in the single-loop Monte Carlo
method

fyx, joint probability density function of the model output
and each of the input variables

k permeability of the aquifer

Q total constant fresh-water inflow on the inland bound-
ary

N1, Ny, N3, N4, Nges, Ng monitoring points in the Henry problem
domain

Qr freshwater inflow in the small island problem

G freshwater inflow solute concentration in the small is-
land problem

G seawater solute concentration

KH, horizontal permeability of the upper layer in the small
island problem

KV vertical permeability of the upper layer in the small is-
land problem

KH, horizontal permeability of the lower layer in the small
island problem

KV vertical permeability of the lower layer in the small is-
land problem

LDH longitudinal dispersivities for horizontal flows in the
small island problem

LDV longitudinal dispersivities for vertical flows in the small

island problem
W3, W, W3, Wger monitoring wells in the small island problem

URef mean values in the reference solution
aﬁef variance values in the reference solution
e(w) normalized deviations of mean estimates from the ref-

erence solutions

€(a?) normalized deviations of variance estimates from the
reference solutions

std(;r)  normalized internal standard deviations of i

std(¢)  normalized internal standard deviations of o

K kurtosis

Prexa the probability of exceedance of salinity concentration
from 2000 mg/1

Nmicc>2000) the number of Monte Carlo simulations resulting in
salinity concentrations above 2000 mg/1

Niep number of repetitions of the uncertainty propagation
methods

input uncertainties through the computational model in order to
quantify their impact on the output quantities of interest (Qol).
There are numerous methods for the propagation of uncertainty.
These methods can be classified based upon how they characterize
uncertainty, their input information requirements, the information
that they provide regarding outputs, the necessity to reformulate
the governing equations of the model and their mathematical
basis. Based on these criteria, at least five different classifications
of UP methods have been presented in the literature, which are
reviewed in Table 1. The appropriate UP method that fits for a spe-
cific problem should be selected based on the characteristics of the
uncertainty sources, the required level of uncertainty quantifica-
tion, accuracy and confidence level, as well as computational cost
or efficiency (Liu and Gupta, 2007; Lee and Chen, 2009). No
approach to the propagation and analysis of uncertainty can be
optimum for all needs (Helton and Davis, 2002). However, for sev-
eral reasons reviewed by Rajabi and Ataie-Ashtiani (2014), Monte
Carlo simulations (MCSs) are the most commonly used method

of UP in mathematical and computational models used in almost
every field of engineering and applied science, including SWI mod-
eling. Examples of Monte Carlo based UP analysis in SWI modeling
studies include Darvini et al. (2002), Lecca and Cao (2004, 2009),
Prieto et al. (2006), Kerrou and Renard (2010), Kerrou et al.
(2010), and Herckenrath et al. (2011).

SA is an important tool in model simplification, importance
ranking, risk reduction, managing the data collection process and
other purposes (Wei et al., 2013). There are several methods of
SA, many of which are summarized in Fig. 2. A review of literature
illustrates that SA in groundwater and SWI modeling studies has
traditionally relied on local methods (examples in SWI modeling
include Sanz and Voss (2006) and Ataie-Ashtiani et al. (2013)). This
widespread use of local SA method is due to: (1) the high
computational cost of global SA methods, (2) the simplicity of local
methods, and (3) the capabilities of generic codes such as PEST
(Doherty, 2005) and UCODE (Poeter and Hill, 1999) in the estima-
tion of local sensitivity indices. A number of more recent studies in
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(2009)
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Fig. 1. The UP analysis procedure. (See above-mentioned references for further
information.)

groundwater modeling have employed derivative-based (e.g.,
Malaguerra et al., 2013) and variance-based (e.g., Oladyshkin
et al.,, 2012) global SA methods.

A basic question is that within the context of uncertainty anal-
ysis, which SA method is best suited for SWI modeling studies
regardless of the computational and practical difficulties of some
SA methods. It has been argued that SA methods used within the

Table 1
Review of UP methods.

framework of uncertainty analysis should have the following four
attributes: (1) they should be quantitative, (2) global, (3) model
independent (i.e. include no assumptions on the functional rela-
tionship between model inputs and outputs), and (4) moment
independent (Saltelli, 2002; Borgonovo, 2007). The fourth require-
ment implies that a sensitivity indicator should not be based on a
single moment of the output distribution (such as the variance),
because mapping the distribution into a single value leads to the
inevitable loss of resolution (Helton and Davis, 2003). The second
attribute leaves out the local SA methods. Note that some input
parameters of SWI models (such as dispersivity and hydraulic
conductivity) can vary within large ranges and it would be of
great interest to consider the entire uncertainty range of these
parameters. Moreover, possible interactions between different
input parameters can be taken into account by evaluating the
sensitivity indices of a given parameter while all other parameters
are simultaneously varying (Haro Sandoval et al., 2012). Both of
these objectives can be accomplished through the use of global
SA. Within the framework of global SA, non-parametric meth-
ods often do not satisfy the model independence requirement
because they are frequently bound to cases where a linear or
monotone input/output relationship exists (Saltelli and Sobol’,
1995; Borgonovo, 2007). Non-parametric methods are particularly
not suitable for SWI modeling studies because in general, SWI
model outputs are nonlinear and non-monotonic functions of the
model inputs. Variance-based and derivative-based methods do
not comply with the moment-independence requirement and
hence, moment independent methods are generally the best option
for SA in the framework of uncertainty analysis. This applies to
SWI simulations as well. Moment independent SA methods (along
with other global methods) involve the propagation of uncertainty
through the model (Borgonovo, 2007) and therefore often
incorporate MCSs. Note that due to the complex nature of SWI
models, it is very difficult, if not impossible, to analytically derive
the moment-independent sensitivity indices.

MCSs employed within the framework of both UP analysis and
SA require a large ensemble of deterministic simulations to provide
a reliable estimate of model uncertainties. Hence, they become
computationally expensive when the computational demand of a
single deterministic run is sufficiently high. This is particularly
problematic in real world numerical models of SWI and must be
somehow confronted in order to facilitate the successful
implementation of UP analysis and SA in such models. A review
of literature illustrates that four primary approaches have previ-
ously been employed in SWI modeling studies to tackle this prob-
lem: (1) parallelization and grid computing (e.g., Kerrou et al.,
2010; Lecca and Cao, 2009), (2) using more efficient sampling

Categorization presented by Category

Examples of methods

Possibilistic methods
Probabilistic methods

Mulani (2006)

N o=

Lee and Chen (2009) Simulation based methods

Intrusive methods
Non-intrusive methods

Loeven et al. (2007)

Perez (2008) Sampling based methods

Spectral methods

Cullen and Frey (1999) Analytical methods
Approximation methods

Numerical methods

WN= N= NMN= UhWN-=

Local expansion-based methods

Most probable point based methods
Functional expansion-based methods
Numerical integration-based methods

Alpha-cuts method
Monte Carlo methods

Monte Carlo methods

Taylor series, Perturbation methods

First-order and second-order reliability methods
Neumann expansion, Polynomial chaos expansions
Dimension reduction method

Intrusive polynomial chaos expansions
Monte Carlo methods, non-intrusive polynomial chaos expansions

Monte Carlo methods
Polynomial chaos expansions

Transformation of variables method
Taylor series
Monte Carlo methods
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SENSITIVITY ANALYSIS

O

1

LOCAL
» Involve taking the partial derivative of the
output y; with respect to an input x; (Slooten

etal,, 2010):
Sy = % (€Y)

» The sensitivity (Sjj) is estimated around a
nominal value of x; (Sudret, 2008; Zio and
Pedroni, 2012) and is hence called a "local
sensitivity/importance indicator" (Borgonovo,
2007).

» S; is an inclusive description of model
sensitivity only if model output is a linear
function of input parameters, otherwise it
depends on the actual parameter values
(Slooten et al., 2010).

» Includes finite-difference schemes, direct
differentiation and adjoint differentiation
methods (Cacuci, 2003).

VARIANCE-BASED or ANOVA

» Decompose the variance of the output y;

the of each
combinations of inputs (Sudret, 2008).

» Includes the  Fourier amplitude
sensitivity test (FAST) indices (Cukier
et al., 1978; Saltelli et al., 1999) and the
Sobol’ indices (Sobol, 1993; Saltelli
and Sobol, 1995; Archer et al., 1997).

to contributions or

MOMENT-INDEPENDENT or

DENSITY BASED

» Involves the estimation of moment-
independent (or delta) indices by
calculating the shift in the PDF of model
output considering that the input is fixed
at its distribution range (Borgonovo,
2007; Wei et al., 2013).

@

GLOBAL

» The influence of an input x;on the output y; is
averaged both on the probability distribution
of x; itself and on the probability distributions
of all remaining parameters (Saltelli, 1993)
(i.e. all other inputs are simultaneously
varying).

» The outcome is expressed as global SA
indicators or global/ uncertainty importance
measures (Homma and Saltelli, 1995; Chun et
al., 2000; Borgonovo, 2007).

O

1
NON-PARAMETRIC and
REGRESSION-BASED
the of
standardized regression coefficients
(SRC) by fitting a linear regression
to the model output (Sudret, 2008).

» Generally not suitable for non-linear
and non-monotonic models (Saltelli ,
1995; Borgonovo, 2007).

» Involves estimation

DERIVATIVE-BASED
» Defined as the integral of the squared
derivatives of the model output over
the domain of the inputs (Iooss et al.,
2012).
_e_ » Uses the second moment of model
derivatives as importance measure
(Iooss et al., 2012).
» A generalization of the Morris
method (Morris, 1991).

Fig. 2. A review of SA methods. (See above-mentioned references for further information.)

strategies such as Latin hypercube sampling (LHS) and optimized
Latin hypercube sampling (OLHS) (e.g., Rajabi and Ataie-Ashtiani,
2014), (3) lower-fidelity modeling, that is, developing simplified
and less-detailed versions of the original model while retaining
the key physical characteristics (e.g., Kerrou and Renard, 2010),
and (4) response surface surrogate modeling (i.e. developing
data-driven and physics-free approximations of the model
response (Razavi et al., 2012)). An example of the latter approach
is the use of genetic programming by Sreekanth and Datta (2014).

An alternative surrogate modeling approach which has received
no attention in the SWI modeling community is the use of
non-intrusive polynomial chaos expansions (PCEs). Non-intrusive
PCEs offer a number of benefits compared to other response sur-
face surrogates previously used in SWI modeling studies such as
artificial neural networks and genetic programming. First, PCEs
are more than just an approximation of the simulator, they allow
for a fully probabilistic prediction of what the simulator would

produce. In fact, the full randomness of the response is contained
within the set of the expansion coefficients (Haro Sandoval et al.,
2012). Second, with the use of PCEs the mean and variance of the
output Qol are available in closed-form (Oladyshkin and Nowak,
2012). Third, PCEs can be used with any second-order random pro-
cess (i.e. processes with finite variance, which applies to most
physical processes including SWI) (Xiu and Karniadakis, 2003a).
Fourth, with the introduction of generalized PCEs (gPCE) (Xiu
and Karniadakis, 2002, 2003a), multi-element gPCEs (Wan and
Karniadakis, 2006; Prempraneerach et al., 2010) and arbitrary PCEs
(aPCEs) (Oladyshkin and Nowak, 2012), PCEs can handle many
probability distribution types (e.g., normal, gamma, beta, Poisson,
etc.) as well as arbitrary distributions with arbitrary probability
measures specified either analytically or numerically. Fifth, PCEs
are transparent, simple to implement and have a strong mathe-
matical basis (Cameron and Martin, 1947; Xiu and Karniadakis,
2003a; Lee and Chen, 2009). Finally, non-intrusive PCEs reach fast
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Table 2
Review of the applications of non-intrusive PCEs in hydrogeology.

Reference Objective Type of problem Number/name of uncertain Uncertain Type of Order  Method for Method for the
of PCE inputs output(s) polynomial of selection of estimation of PCE
application PCE(s) data points coefficients

Li and upP Flow in saturated 6, 7/hydraulic conductivity Hydraulic heads = Hermite 2,3,4 Deterministic PCM

Zhang media (1D, 2D/HE) field (KLE)
(2007)
Li et al. upP Flow in unsaturated 150/unsaturated conductivity  Pressure heads, Hermite 2 Deterministic =~ PCM?
(2009) media (2D/HE) (KLE) effective
saturation

Fajraoui Global SA Non-reactive solute 4, 6/inlet flow rates, Solute Legendre 4 Deterministic =~ PCM

et al. (VB) transport in saturated  permeability, transverse and concentrations
(2011) media (2D/LE) longitudinal dispersivities
Sochala Global SA Flow in unsaturated 3, 5/water content, hydraulic ~ Position and Legendre 1,2,3 Deterministic =~ SPM
and Le (VB) media (1D/HE) conductivity spreading of the
Maitre wetting front
(2013)
Laloy et al.  BI Flow in saturated 102/hydraulic conductivity Hydraulic heads  Legendre, 1 Deterministic =~ PCM
(2013) media (3D/RP) field (KLE) Hermite

Ciriello Global SA Radionuclide transport  3/hydraulic conductivity, Peak Legendre 2,3,4 Deterministic RM

et al. (VB) in saturated media partitioning coefficient, concentrations
(2013) (2D/HE) dispersivity

UP: Uncertainty propagation.
SA: Sensitivity analysis.
BI: Bayesian inference.
VB: Variance based (Sobol indices).
HE: Hypothetical Example.
LE: Laboratory experiments.
RP: Real-world problem.
D: Dimensional.
KLE: Parameterized using the Karhunen-Loéve expansion.
PCM: Probabilistic collocation method.
SPM: Spectral projection method.
RM: Regression method.
2 Used leading term approximation to reduce the number of PCE coefficients.

convergence when the solutions are sufficiently smooth in the ran-
dom space (Haro Sandoval et al., 2012).

PCEs have been previously used in UP studies in a variety of
fields, such as structural dynamics (Sarkar and Ghanem, 2002), heat
conduction (Xiu and Karniadakis, 2003b), air pollution dispersion
(Konda et al., 2010) and fluid dynamics problems (Knioa and Le
Maitre, 2006). A number of studies related to hydrogeology have
also used PCEs for UP analysis, which we will review in the follow-
ing. The earliest example of the application of PCEs in problems
involving transport in porous media is the study of Ghanem
(1998). In his study, the Karhunen-Loéve expansion (KLE) is used
to represent the spatial randomness in the physical parameters of
the porous medium (including dispersion and permeability), in a
problem involving the transport of Trichloroethylene in the unsat-
urated zone. The resulting concentrations and effective heads
throughout the domain are subsequently expanded by relying on
the intrusive PCEs of the stochastic processes. Subsequent applica-
tions of PCEs in hydrogeology have mostly relied non-intrusive
PCEs as a meta-modeling approach. Table 2 presents a review of
such studies. The studies reviewed in Table 2 illustrate that non-
intrusive PCEs can accurately estimate model output statistics
and PDFs several orders of magnitude faster than conventional
MCSs in applications involving flow and solute transport in
saturated or unsaturated porous media. PCEs have not previously
been used for UP analysis of density-dependent SWI numerical
models. Note that the input-output relationship in density-
dependent groundwater models is highly non-linear and non-
smooth (Bear, 1999; Carrera et al., 2010; Werner et al., 2013) as
compared to test case problems that have been previously used in
the application of non-intrusive PCEs. This is important, because
the PCE accuracy is known to crucially depend on the model
smoothness and linearity with respect to its parameters, and build-
ing an accurate non-intrusive PCE for largely nonlinear models

might be out of computational reach even in low dimensions
(Chen et al., 2005; Oladyshkin and Nowak, 2012; Sochala and Le
Maitre, 2013). On the other hand, if the function to be represented
with the non-intrusive PCE is smooth, the estimation of a small
number of PCE coefficients and hence a small number of determin-
istic simulations, is enough to provide a reliable estimate of that
function (Haro Sandoval et al.,, 2012). This is the case in many
groundwater flow models. For example, Laloy et al. (2013) argued that
a non-intrusive order-one PCE can adequately estimate the model out-
put statistics of a three dimensional real-world groundwater flow
model with 102 uncertain input variables, in an application involving
screening of good candidates within a Bayesian inversion procedure. In
such cases, non-intrusive PCEs provide the most advantage in UP
analysis over MCSs based on the original model. However, for
density-dependent SWI problems which are well known for their high
non-linearity and non-smoothness, the extent to which non-intrusive
PCEs can accurately estimate the output statistics and the degree to
which they reduce the computational time is unknown.

PCEs were introduced to global sensitivity analysis by Sudret
(2008). He proved that the variance-based Sobol’ sensitivity indices
can be computed analytically from the expansion coefficients, after
a proper PCE has been constructed for the desired model. Thus the
computational cost is transferred to the estimation of the PCE coef-
ficients, leaving the subsequent SA almost computationally cost-
less. Since then, a number of other studies have used PCEs for
the estimation of variance-based sensitivity indices (e.g., Blatman
and Sudret, 2010; Sochala and Le Maitre, 2013; Garcia-Cabrejo
and Valocchi, 2014). The possibility of employing non-intrusive
PCEs to provide a computationally efficient estimation of
moment-independent sensitivity indices has not previously been
assessed. This is important as it paves the way for the use of
moment-independent method in the SA of computationally
demanding models such as numerical models of SWI.
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In view of these facts, the current study tends to answer the fol-
lowing questions: (1) Can non-intrusive PCEs provide a reliable
estimate of model uncertainties in SWI numerical modeling stud-
ies? (2) To what extent do non-intrusive PCEs decrease the compu-
tational efforts of UP analysis in SWI numerical models compared
to MCSs based on the original models? As discussed in the paper,
the answer to this question depends on a number of factors such
as the order of polynomial which could accurately estimate the
model output statistics in density-dependent SWI models, the
number of data points needed for the estimation of PCE coeffi-
cients, and the sampling method used in MCSs. (3) Can non-intru-
sive PCEs provide a computationally efficient estimation of
moment-independent sensitivity indices without significant loss
of accuracy? Even though our focus is on SWI modeling, the answer
to the third question is of interest in a much wider spectrum of
applications involving computationally extensive simulations.

A number of points should be addressed here to clarify the
study objectives and scope: (1) we assume that the predictive
uncertainty is governed by the uncertainty of input parameters
and hence the structural uncertainty is neglected. (2) Unlike meth-
odologies such as the generalized likelihood uncertainty estima-
tion (GLUE) (Beven and Binley, 1992), the outcome of the UP
analysis is not constrained to any observed system responses. (3)
Here, we focus on the key uncertain input parameters of SWI mod-
els, namely permeability, dispersivity and recharge rate. In real
world problems, the estimation of these parameters is almost
always faced with aleatory and epistemic uncertainty. Further-
more, it is assumed that the uncertainty of these parameters can
be represented by log-normal distributions, and so the Hermite
polynomial basis is employed for PCEs (refer to Section 2.2 for
more details). It is common practice to employ a log-normal distri-
bution to represent uncertainty in permeability in relatively homo-
geneous aquifers (Meerschaert et al., 2013). It has also been shown
that the uncertainty in the recharge rate can be characterized by
log-normal distributions (e.g., Hassan et al., 2009). Moreover, some
studies have employed log-normal distributions to characterize
uncertainty in dispersivities (e.g., Chaudhuri and Sekhar, 2005).
Hence, many previous studies involving UP analysis in groundwa-
ter and SWI modeling applications are based on log-normal prob-
ability assumptions for the uncertain inputs (examples include
Prieto et al. (2006), Lecca and Cao (2009), and Rajabi and Ataie-
Ashtiani (2014)). Nevertheless, the basic findings of these studies
are equally applicable for other uncertain input parameters, prob-
ability distribution types and related polynomial basis functions.
(4) There are several methods for estimating the non-intrusive
PCE coefficients which are reviewed in Section 2.2. The aim here
is not to address all of them or present a comparative study of their
performance. This has been previously done, to some extent, by a
number of studies including Eldred et al. (2008). We have chosen
a rather simple method of PCE construction (in terms of the
involved coding effort) to show the practical advantages of PCEs
in SWI UP and SA studies.

We will start by reviewing the theoretical background of MCSs,
PCEs and moment-independent SA in Section 2. Two test cases of
SWI are introduced in Section 3 which form the basis of the subse-
quent analysis presented in Section 4.

2. Theoretical framework
2.1. UP using MCSs

MCSs rely on repeated random sampling from the hypothetical
PDFs of the uncertain input variables. These random samples are
then employed to build and run an ensemble of deterministic sim-
ulations. These simulations result in a number of realizations of the
output Qol which are subsequently used for the approximation of

the output statistics. For example, if we denote the uncertain input
variable(s) by x, the Ny random samples of x by (x1,X2,...,Xn,)
and the output Qol by y(x), the expected value of y(x) is approxi-
mated by (Dimov, 2008):

1 Nuc

E(y(x)) =y(x) :NTICD(X") (1)
i=1

The PDF of the output Qol (denoted here as fy(y))) can also be
estimated by its Monte Carlo realizations through a number of
methods. In the current study, we use the non-parametric kernel
density estimation (KDE) method. Given Ny realizations of the
output Qol (¥;,¥5,---,Yn,.)» the basic KDE fy(y) of fy(y) is given
by (Scott, 1992):

N 1 Nmc —y;
Fot) = e 2K O 2)

In Eq. (2), K() is the kernel function and h is the bandwidth. We
choose our kernel function to be Gaussian. In this study, a Matlab
toolbox developed by Botev (2011) is used for KDE.

The statistics (such as mean and variance), computed on the
basis of a finite number of realizations of the uncertain output
Qol are themselves uncertain quantities. This implies that we can
define confidence intervals for mean, variance and other output
statistics in order to provide the order of magnitude of uncertainty
associated with them. For example, the confidence interval for the
mean estimates (y(x)) can be approximated by the Chebyshev
inequality assuming that y(x) has an unknown probability distribu-
tion (Ballio and Guadagnini, 2004):

O'y 1
=>1-—= 3
N p 3)

% <E(y(x) <J(X) +a

Priy(x)—a
Y —ag=

where oy is the standard deviation of y(x) for several repetitions of
MCSs and (1 — 1/a?) is an estimation of the probability that E(y(x))
lies within the confidence interval around y(x). The Chebyshev
inequality can also be used to estimate the confidence interval for
variance and higher moments. These confidence intervals can be
used to analyze the convergence of Monte Carlo estimates of mean
and variance, and to identify a criterion for the reliable choice of
Ny for a desired level of accuracy (Ballio and Guadagnini, 2004).

In this study, the implementation of MCSs is based on the capa-
bilities of the SENSAN code (within the framework of the PEST
suite (Doherty, 2005)) to carry out multiple model runs without
user intervention.

2.2. PCEs

PCEs provide the means to represent a random variable (y) as a
function (f{)) of another random variable (&) with a “predefined
probability distribution”:

y=f() (4)

Note that Eq. (4) cannot be merely interpreted as an equation
relating specific values of the two random variables. What it really
implies is that y has the same probability distribution as f{(¢) (in
statistical notation: y ~ f(¢)). The PCE seeks an appropriate func-
tion f(), by decomposing y into separate deterministic and stochas-
tic components as follows (Ghanem, 1998):

y=F& = oah(®) (5)
i=0
In Eq. (5), o; is the deterministic component or the mode
strength, and /; is the stochastic component which is also called
the mode function. y; is a polynomial of order i that satisfies the
orthogonality condition:
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W) = / U Op()dE =0 j#k (6)

where (;, Yy) is the inner product of ; and y, and p; is the PDF of
¢. Based on the Wiener theory (Wiener, 1938) and the generalized
Cameron-Martin theorem (Cameron and Martin, 1947), any second
order random process y can be expanded by polynomial function
series in the form of Eq. (5), and the resulting expansion is conver-
gent in the mean square sense. The choice for the type of orthogonal
polynomial used in the construction of PCEs is dictated by the prob-
ability distribution of ¢. The classification tree that maps the distri-
bution of ¢ to the corresponding “optimal” orthogonal polynomial is
called the Askey scheme (Askey and Wilson, 1985) and is presented
in Table 3. Note that sub-optimal convergence rates will result
when the optimal Askey polynomials are not employed (Xiu and
Karniadakis, 2002). In case the uncertain inputs have different
probability distributions, PCEs can still be used for the hybrid prop-
agation of uncertainty (see Ayres et al. (2014)). In order to use the
PCEs, the uncertain input parameters must be statistically indepen-
dent. Linear correlation between the uncertain input variables
can be removed prior to the construction of the PCE by employing
adequate linear transformations, for example through the use of
principal component analysis (Oladyshkin and Nowak, 2012).

This study is based on the assumption of lognormal distribu-
tions for the uncertain input variables. These log-normal distribu-
tions are converted to the standard normal distribution, prior to
employing the Hermite polynomials. The Hermite polynomials
are described as (Xiu and Karniadakis, 2003a):

Ho(®) =1, He(x) =x,

’ 7
He,,,(X) = xHe,(x) — nHe, , (x) @)

forn=1,2,...

For practical reasons, Eq. (5) is often truncated and only a
limited number of terms are considered (Li and Zhang, 2007):

D
YFu(&) = ouhi(9) 8)
i-0
For the multivariate situation, ¢ is a vector and the polynomial
i(¢) (usually denoted as ¥y(¢) in the multivariate case) is a tensor
product of the polynomial bases for each component of ¢, given
that the components of ¢ are independent and identically distrib-
uted (i.i.d.) random variables:

i) = vy (©) 9

In Eq. (9), m is the number of components of ¢ Hence, the
number of order d multivariate polynomials of m variables is
p—("77) -

In order to implement the PCEs, the mode strengths should be
estimated by intrusive or non-intrusive (i.e. black box) methods
(Perez, 2008; Oladyshkin and Nowak, 2012). In the intrusive
method, the random model inputs are replaced with their PCEs
in the governing equations of the model. The resulting stochastic
equations are then solved by the same numerical methods applied
to the original deterministic system. However, the procedure may
become analytically cumbersome (Oladyshkin and Nowak, 2012).
On the contrary, the non-intrusive methods do not require any
modifications to the deterministic code and hence give rise to
the use of PCEs as meta-models. Non-intrusive methods may be
classified as projection methods (Ghiocel and Ghanem, 2002; Le
Maitre et al., 2002), stochastic or probabilistic collocation methods
(Xiu and Hesthaven, 2005), gradient-based methods also known as
collocation methods coupled with sensitivity derivatives (Perez,
2008), and regression methods (Berveiller et al., 2006). In the

current study we focus on the regression method. This method
consists of the following steps: (1) choosing a set of g regression
points in the probability space of the random input variable(s)
(&%, k=1,...,q), through deterministic or random sampling
methods. In the current study, the choice of regression points is
based on random sampling. Random selection of regression points
has the advantage of being more flexible in selecting the number of
required simulations (Eldred et al., 2008). Random sampling is per-
formed by the use of OLHS based on the centered L,-discrepency
(CLD) criterion and the enhanced stochastic evolutionary (ESE)
optimization algorithm (here denoted as the CLD-ESE sampling
strategy). This choice has been made due to the superior space-
filling properties of sample designs based on the CLD-ESE strategy.
For more details the reader is referred to Rajabi and Ataie-Ashtiani
(2014). This study employs the R open source statistics software
(http://www.r-project.org/) and the software package ‘DiceDesign’
(see http://cran.r-project.org/web/packages/DiceDesign/index.
html) by Franco, Dupuy and Roustant to implement the CLD-ESE
sampling strategy. (2) Using these regression points to perform g
deterministic simulations of the model. The resulting exact solu-
tions are denoted here as y ;““‘)2]. (3) Estimating the non-intrusive
PCE coefficients by minimizing the following least square criterion:

uriib(é”)—ﬁim¢(é“ﬂz (10)
k=1 i=0

Note that Eq. (10) is the regression of the exact solution with
respect to the PC basis (Sudret, 2008). Eq. (10) can be solved by opti-
mization algorithms such as pattern search (Hooke and Jeeves,
1961). Alternatively, Eq. (10) can also be written as a system of q
nonlinear equations. The latter approach becomes computationally
more efficient as the dimensions of the problem increase with
increasing values of g and d, and hence this approach has been
employed in the current study. The resulting systems of nonlinear
equations are solved using the Levenberg-Marquardt (Levenberg,
1944) algorithm.

If necessary, the parameters should be mapped onto the
required intervals given in Table 3. There are many possible PCEs
of a given y with respect to a given &, which differ only in the series
of mode strengths. Once the PCEs are built, the mean (u) and
variance (¢2) of y can be obtained in closed-form using properties
of the orthogonal polynomials (Oladyshkin and Nowak, 2012):

u(Y) = o (11-a)

()= o
i=1

Higher moments and the PDF of y can be estimated by applying
MCSs with the non-intrusive PCEs as the surrogate model.

(11-b)

2.3. Moment-independent SA

As previously described, the PDF of an output Qol can be
estimated through UP analysis. If all defined uncertain input
variables are varied simultaneously over their range of uncer-
tainty, the resulting PDF of the output Qol is called the uncon-
ditional PDF and is denoted here as fy(y). Now consider the case
in which one of the uncertain input variables (X) is fixed at a
specific value (X = x;) while the other uncertain inputs vary over
their respective ranges. The UP analysis procedure can still be
used to estimate the PDF of the output Qol, which in this case
is called the conditional PDF. We denote the conditional PDF
as fyx(¥), and estimate the difference between the areas
under the two PDF curves as follows (Liu and Homma, 2009;
Wei et al., 2013):


http://www.r-project.org/
http://cran.r-project.org/web/packages/DiceDesign/index.html
http://cran.r-project.org/web/packages/DiceDesign/index.html

108 M.M. Rajabi et al./Journal of Hydrology 520 (2015) 101-122

Table 3
The relationship between the probability distribution of the uncertain inputs and the
type of Wiener-Askey polynomial (Xiu and Karniadakis, 2003a).

Distribution Polynomial Support
type
Continuous Normal® Hermite (—o0, +00)
distribution Log-normal®
Gamma Laguerre [0, +c0)
(exponential)
Beta Jacobi [a, b]
Uniform Legendre [a, b]
Discrete distribution  Poisson Chalier {0,1,2,...}
Binomial Krawtchouk {0,1,2,...,N%}
Negative binomial ~ Meixner {0,1,2,...}
Hypergeometric Hahn {0,1,2,..,N%}

2 Gaussian anamorphosis or normal score transformation can be used to convert
other distribution types to normal distribution (Wackernagel, 1998), so that the
Hermite polynomial can be used. However, this could lead to slow convergence of
the expansion (Oladyshkin and Nowak, 2012).

" The log-normal distribution should be transformed to normal distribution using
exponential transformation prior to the successful application of the Hermite
polynomials.

¢ Nis a finite integer.

S(x;) = / Fy ) Frxn ) Idy (12)

By re-calculating s(x;) for different values of x; over the entire
range of X, the expected shift between the unconditional and con-
ditional PDFs can be estimated (Liu and Homma, 2009; Wei et al.,
2013):

Ex[s(xi)] = / Fx(xi)s(xi)dx; (13)

Finally, the delta indices for the uncertain input X can be esti-
mated by (Liu and Homma, 2009; Wei et al., 2013):

ox = %Ex[s(xi)] (14)

The following is always true for dx (Wei et al., 2013):

dx €10,1] (15-a)

If y is independent of X = dx =0 (15-b)

In practice, delta indices are estimated by a number of numerical
methods including the PDF-based method (Borgonovo, 2007), the
CDF-based method (Liu and Homma, 2009) and the double-loop
and single-loop Monte Carlo methods proposed by Wei et al.
(2013). These methods are all, to different extents, computationally
extensive because they employ repeated MCSs. For example, Wei
et al. (2013) employed 6,001,000 simulations within the framework
of the double-loop Monte Carlo methods, and 3000 simulations
within the context of the single-loop Monte Carlo methods, to esti-
mate the delta indices of six uncertain input parameters of a canti-
lever beam structure problem.

In order to solve this computational problem, Borgonovo et al.
(2012) proposed the meta-modeling approach for accelerating
the computation of delta indices. Their study was based on the
application of the state dependent parameter (Ratto et al., 2007)
and kriging emulator. Here we propose the use of non-intrusive
PCEs to accelerate the calculation of delta indices. The methodol-
ogy is applied to the double-loop and single-loop Monte Carlo
methods of Wei et al. (2013), although it can similarly be applied
to other methods of calculating the delta indices. The algorithm
behind the double loop Monte Carlo method is illustrated in
Fig. 3. The method involves two ensembles with NL; and NL, sam-
ple points. The total number of simulations in the double loop
Monte Carlo method (as well as the PDF-based and CDF-based

methods) is (npNL, + 1)NL;, where n,, is the number of uncertain
inputs (Wei et al., 2013). Compared with the PDF-based and CDF-
based methods, the double-loop MCS method does not require
the computation of the intersection points between fiy(y) and
fyix=x (¥), and is therefore more accurate (Wei et al., 2013).

The algorithm of the single-loop Monte Carlo method is demon-
strated in Fig. 4. The number of simulations required by the single-
loop Monte Carlo method (denoted here by NL), does not increase
with respect to the number of the input variables. This method has
been shown by Wei et al. (2013) to be much more efficient than the
double-loop Monte Carlo method, most notably in problems with
high number of uncertain parameters. An important aspect of the
single-loop method is the use of bivariate KDE.

3. Test cases

Two hypothetical test cases of SWI are described in this section.
The first test case, based on the Henry problem, involves SWI in a
two-dimensional cross section of a confined coastal aquifer under
steady-state conditions. The second test case is a three dimen-
sional transient problem involving SWI due to over-pumping in a
small island aquifer system.

3.1. The Henry problem

The Henry problem (Henry, 1964) is a classic example of vari-
able density SWI. The simplicity and minute simulation time of
the Henry problem numerical model has made it an ideal test case
for studies involving large numbers of SWI numerical simulations.
As a result, it has been previously applied to the study of SA (e.g.,
Sanz and Voss, 2006) and Monte Carlo based UP analysis (e.g.,
Kerrou and Renard, 2010; Rajabi and Ataie-Ashtiani, 2014) in
SWI simulations. The Henry problem (illustrated in Fig. 5) consid-
ers a two-dimensional cross section of a rectangular confined
coastal aquifer system. The inland boundary condition consists of
freshwater inflow, while SWI occurs from the seaward boundary
on the other side. The top and bottom of the aquifer are assumed
to be impermeable. Here, the 2 x 1 units of length model domain
is discretized into 20 x 10 square elements using a nodal spacing
of 0.1 units of length. The system is initially filled with freshwater
and the simulation is continued long enough for the concentration
distribution to become steady. In the numerical simulations, the
system reaches steady state after 100 one minute time steps. The
numerical simulation of the Henry problem is carried out by
employing the USGS SUTRA finite element code (Voss and
Provost, 2010). The input parameter values are listed in Table 4.

Two of the input parameters of the Henry problem are assumed
to be uncertain: (1) the permeability of the aquifer (k), and (2) total
constant fresh-water inflow on the inland boundary (Q). The uncer-
tainty of k and Q are characterized by log-normal distributions
described in Table 5. These probability distributions are purely
hypothetical and serve for illustrative purposes. The output Qol
are the concentration (of total dissolved solids) and pressure in
the monitoring points which are illustrated in Fig. 5.

3.2. The small island problem

The second test case involves SWI into the unconfined aquifer
system of a small oceanic island. In such islands, fresh groundwa-
ter usually forms a convex-shaped fresh groundwater lens, which
floats on the underlying seawater. This freshwater lens is highly
vulnerable to salinization from SWI due to excessive groundwater
extraction and climate variability (Falkland, 1991; Mahmoodzadeh
et al,, 2014). Many real cases of small islands involve two-layer
hydrogeological conceptualizations (Ketabchi et al, 2014;
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Mahmoodzadeh et al, 2014) and this concept has been
incorporated into the current case study by using two different
permeabilities for the two layers. Fig. 6 illustrates the hydrogeo-
logic layering in a radial cross-section of the small island problem.
The permeability is anisotropic in both layers. We also assume that
the permeability of the upper layer is greater than the base layer
which is often the case in sandy islands (Falkland, 1991). Here,
we simulate a quadrant of a circular island undergoing SWI as a
result of over-pumping. Simulations are performed in transient
mode using the USGS SUTRA finite element code. The shape of
the model, numerical discretization, boundary conditions and
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constant input parameter values are adapted from Voss and
Provost (2010). The model proposed by Voss and Provost (2010)
has been modified to include the described two-layer hydrogeol-
ogy, and four pumping wells illustrated in Fig. 7. The input param-
eter values for the small island problem are presented in Table 6. In
order to generate the initial conditions for the transient simula-
tions, we start with saline water conditions everywhere beneath
the land surface and simulate the formation of the freshwater lens
as a result of saline water being flushed out by freshwater recharge
from the island’s surface. The simulation continues to run for a
time that is long enough to reach equilibrium. The resulting
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Fig. 3. The double-loop Monte Carlo method for the estimation of the moment independent delta indices (Liu and Homma, 2009; Wei et al., 2013).
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Fig. 4. The single-loop Monte Carlo method for the estimation of the moment independent delta indices (Wei et al., 2013).

pressure and salinity distributions (refer to Fig. 8) are used as the
initial conditions for the transient simulations in which groundwa-
ter extraction starts through four pumping wells and continues for
a period of 15 years. In the transient simulation, the following six
input parameters are assumed to be uncertain: the horizontal
and vertical permeabilities of the upper layer (KH; and KV, respec-
tively), the horizontal and vertical permeabilities of the lower layer
(KH, and KV, respectively), and longitudinal dispersivities for hor-
izontal and vertical flows (LDH and LDV respectively). The uncer-
tainties of these six inputs are characterized by log-normal
distributions described in Table 7. These probability distributions
are purely hypothetical and serve illustrative purposes. The output
Qol are the concentration (of total dissolved solids) and pressure in
the monitoring wells illustrated in Fig. 7. The numerical model of
the small island problem has 42,432 nodes and 80 time steps
and so the computational time is much higher than the Henry
problem.

4. Results and discussion
4.1. Monte Carlo based UP analysis

In the first step, MCSs based on the original numerical model of
the two test case problems are used for UP analysis. The aim is
twofold: (1) to provide a reference solution in order to assess the
accuracy and computational efficiency of non-intrusive PCEs, and
(2) to study the characteristics of the PDFs of the output Qol in
the test case problems. In order to address the first objective, a con-
vergence analysis of MCSs has been performed. Accordingly, the
number of numerical simulations within the context of MCSs
(Numc) has been steadily increased from 10 to 20,000 for the Henry
problem, and from 10 to 1000 for the small island problem. This
has been repeated in 12 parallel sets of independent chains to
allow for the reliable estimation of confidence intervals. These

MCSs have been performed using the simple random sampling
(SRS) method. Fig. 9a and b depicts the Monte Carlo estimates of
mean (u) and standard deviation (o) for pressure and concentra-
tion in the Nge monitoring point of the Henry problem against
the size of the Monte Carlo samples. Fig. 9c and d shows the same
graph for the Wk monitoring well of the small island problem. In
these figures, the bold lines illustrate an average of ¢ and ¢ for the
12 repetitions of MCSs of a specific sample size. The dotted lines
demonstrate the respective 96% estimated confidence intervals.
The results have been plotted in semi-log scale to provide a better
visual assessment of convergence. It is observed that after
Ny =1000 the ¢ and o estimates for pressure and concentration
solutions relatively stabilize. In the Henry problem test case, the
width of the confidence interval decreases to less than 107> times
the i and o estimates after Ny, = 10,000. Consequently, the results
of MCSs based on 10,000 numerical simulations are chosen as the
reference solution in the Henry problem test case for all subse-
quent comparisons. In the small island problem, the computational
cost of numerical simulations is several orders of magnitude larger
than the Henry problem. Hence, we suffice to 1000 MCSs for the
reference solutions. In the majority of UP studies involving MCSs,
convergence analysis is either entirely omitted (e.g., Prieto et al.,
2006; Kerrou et al., 2010; Herckenrath et al., 2011) or assessed
qualitatively by means of visual inspection of sample moments
vs. number of simulations graphs plotted in natural scale (e.g., Li
et al., 2003; Lecca and Cao, 2009). However as indicated by Ballio
and Guadagnini (2004), a convergence analysis of MCSs must be
performed both qualitatively and quantitatively in order to make
sure that the results have converged to a stable solution, and to
identify the order of magnitude of uncertainty associated with
Monte Carlo estimates. In terms of the number of MCSs required
to reach stable solutions and the magnitude of uncertainty
associated with Monte Carlo estimates, the outcome of this study
is comparable to those obtained by Ballio and Guadagnini (2004)
for the MCS of a two dimensional problem involving horizontal
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Fig. 5. Problem domain, boundary conditions, numerical grid, reference nodes, concentrations and velocity vector field for the steady state solution of the Henry problem

(Henry, 1964).

Table 4
Constant input parameter values for the Henry problem (Henry, 1964; Sanz and Voss,
2006; Rajabi and Ataie-Ashtiani, 2014).

Parameter Value Unit
Longitudinal and transverse dispersivities 0.0 m
Porosity 0.35 -
Molecular diffusion 1.88571 x 107>  m?[s
Viscosity 1x1073 kg/m s
Freshwater solute concentration 0.0 kg/kg
Total dissolved solute concentration of seawater  0.0357 kg/kg
Density of freshwater 1000 kg/m>
Density of seawater 1024.99 kg/m?

groundwater flow to a well. Similar to the Monte Carlo conver-
gence analysis of this study, Ballio and Guadagnini (2004) used
SRS for the generation of sample points.

The normalized PDFs of pressure and concentration solutions
are illustrated in Fig. 10a and b for the six monitoring points of
the Henry problem, and in Fig. 10c and d for the four monitoring
wells of the small island problem. These PDFs are derived from

the reference MCSs. A number of conclusions can be drawn
with respect to Fig. 10: (1) the results of Lilliefors test
(Lilliefors, 1967) (with 90% confidence) show that none of the
illustrated PDFs for the Henry problem can be considered normally
or log-normally distributed from a statistical point of view. This
conclusion can be extended to pressure and concentration solu-
tions of all 231 nodes of the Henry problem numerical grid. In
the small island problem, the PDFs for concentration solutions
are not normal or log-normal. However, the PDFs for pressure
solutions are close to the normal distribution. Some of the pressure
PDFs, such as the one for Wk, can be considered normally
distributed with respect to the Lilliefors test. These comparisons
show that in UP analysis of SWI numerical models, the PDFs of
pressure and concentration solutions may not have the same shape
as the PDFs of the uncertain inputs. (2) Qualitatively speaking, the
PDFs of pressure solutions are generally smoother than concentra-
tion solutions most notably for points within the SWI transition
zone. (3) The shape of the PDFs for pressure and concentration
solutions varies significantly through the problem domain in both
test cases.

Table 5
Characteristics of the hypothetical PDF for the uncertain input parameters of the Henry problem (Rajabi and Ataie-Ashtiani, 2014).
Parameter PDF Mean Variance Unit
Isotropic permeability Log-normal 1.020408 x 107° 9.5 x 107" m?
Total constant freshwater inflow on the inland boundary Log-normal 0.06 0.0008 kg/s
Z
? Freshwater recharge (Qr,Cr)
5 (m) HlHHHHHHHiHHHH Seawater (C;)
0 (m)
Upper layer
(KH; , KV))
5(m)”
x
Lower layer
(KH, , KV,)
-100 (m)
0 (m) 20 (m) 400 (m) 500 (m) 67 (m) 800 (m)

Fig. 6. Numerical grid (Voss and Provost, 2010) and hydrogeologic layering in a radial crosssection of the small island problem.
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Fig. 7. The location of the pumping and monitoring wells in the plan view of the
small island problem. The depth of the pumping and monitoring wells are 20 and
30 m respectively.

Table 6
Constant input parameter values for the small island problem (Voss and Provost,
2010).

Parameter Value Unit
Transverse dispersivities 0.1 m
Freshwater inflow 75 cm/yr
Porosity 0.1 -
Molecular diffusion 1x107° m?/s
Viscosity 1x1073 kg/m's
Freshwater solute concentration 0.0 kg/kg
Total dissolved solute concentration of seawater 0.0357 kg/kg
Density of freshwater 1000 kg/m*

Density of seawater 1024.99 kg/m>

Concentrations (kg/kg)

0.00 0.02 0.04

Fig. 8. The problem domain and initial concentrations in the small island problem.

4.2. PCE based UP analysis

Based on the steps described in Section 2.2, non-intrusive PCE
are constructed for the pressure and concentration solutions of
the two test case problems. Two key questions arise here. First,
what is the proper order for the PCEs to obtain the most accurate
results? Second, how many regression points should be used in

construction of the PCE to obtain the optimal results in terms of
accuracy. As described in the following paragraphs, the answers
to these questions are not straightforward. We will focus our
analysis here to the Ng, monitoring point of the Henry problem
and the Wk, monitoring well of the small island problem. We
denote polynomial order as d and the number of regression points
as q. The accuracy is expressed as the normalized deviations from
the reference solutions. The normalized deviations of p and o
estimates of the output Qol are calculated from (Janssen, 2013;
Rajabi and Ataie-Ashtiani, 2014):

Hi — Hrer

€i(U) = )7 (16-a)
:uRef

(o) = 9= 9wl (16-b)
URef

where pger and oger are the mean and standard deviation of the ref-
erence solutions and y; and g; are the mean and standard deviation
derived from a desired UP method. The results of an UP method are
considered to be more accurate when their normalized deviations
from the reference solution are smaller. Moreover, for a specified
number of deterministic simulations, the UP method with smaller
normalized deviations from the reference solutions is more effi-
cient. As previously described, the current study employs random
sampling for the selection of regression points. Hence, in order to
dampen the effect of stochastic variations in the generation of ran-
dom numbers, N, distinct PCEs have been built for each d and g,
based on different sets of regression points derived from the
CLD-ESE sampling strategy. The arithmetic mean of € (u) and
€i(o) for the N, PCEs subsequently represents the average normal-
ized deviations of PCE outputs for a given d and q. These arithmetic
means are denoted here as €(ut) and €(o). The value of Ny, is eight
for the Henry problem and four for the small island problem.

In order to additionally compare the robustness of different UP
methods, the normalized internal standard deviations of y and o
have been estimated using the following equations (Janssen,
2013; Rajabi and Ataie-Ashtiani, 2014):

1

std(u) =0 o (17-a)
std(a):% nrz_ 1+n£, (17-b)

U, o and k are the mean, standard deviation and excess kurtosis of
Nyep repetitions of each UP strategy respectively. For a specified
number of sample points, the sampling strategy that results in u
and o with smaller normalized internal standard deviations is more
robust.

Figs. 11 and 12 compare the accuracy and robustness of ¢ and o
estimates of pressure and concentration solutions for different
orders of PCEs (from d = 1 to d = 6) and different numbers of regres-
sion points (for g = 10, 30, 60 and 100) in the Henry problem test
case. The numbers of PCE coefficients for the bivariate polynomial
ordersd=1, 2, 3,4,5and 6 are 3, 6, 10, 15, 21 and 28, respectively.
These figures also show the accuracy of the corresponding esti-
mates obtained from MCSs based on the original numerical model
with three different sampling strategies, namely SRS, LHS and CLD-
ESE. Figs. 11 and 12 highlight a number of interesting results which
we will review in the following.

(1) The relative deviations of i and ¢ estimates from the refer-
ence solutions highly increase when the number of regres-
sion points is smaller than the number of PCE coefficients.
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Table 7
Characteristics of the hypothetical PDF for the uncertain input parameters of the small island problem.
Parameter PDF Mean Variance Unit
Upper layer horizontal permeability Log-normal 5x 10712 1x10724 m?
Upper layer vertical permeability Log-normal 5x10° 1 1x10°% m?
Lower layer horizontal permeability Log-normal 5x10°13 1x1072 m?
Lower layer vertical permeability Log-normal 5x 10714 1x10728 m?
Longitudinal dispersivity for horizontal flow Log-normal 15 4 m
Longitudinal dispersivity for vertical flow Log-normal 5 0.4 m
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Fig. 9. Convergence analysis of MCSs for (a) pressure and (b) concentration solutions in the Henry problem, and (c) pressure and (d) concentration solutions in the small
island problem.
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This is also true for the normalized internal standard devia-
tions of u and ¢ estimates. Hence, the system of equations
for the estimation of PCE coefficients must be over-deter-
mined. This conclusion is in accordance with previous stud-
ies such as Karagiannis and Lin (2014) and Hosder et al.
(2007) which recommends that the number of regression
points be at least two times the number of PCE coefficients.

(2) After the system of equations becomes over-determined,
further increasing the number of regression points mostly
results in lower accuracy and robustness for PCE of d = 1.
For PCE of higher orders, the accuracy and robustness
generally (but not necessarily) improves by increasing the
number of regression points. Increasing the number of
regression points not only requires further simulations using
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Table 8
1 and o and their confidence intervals estimates in the Henry problem test case: MCSs vs. PCEs.
Qol UP method u estimate 96% confidence interval for o estimate 96% confidence interval for o
Png (kg/m s?) MC (Nyc=10,000) 6053.483 6053.472-6053.495 49.308 49.274-49.343
PCE (d =4, q=30) 6053.513 6053.391-6053.635 48.796 48.479-49.112
Ciey (%salinity) MC (Nyc=10,000) 35.107 35.104-35.110 27.944 27.943-27.946
PCE (d =4, q=30) 35.183 34.941-35.424 27.676 27.584-27.768
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Fig. 13. PDFs of the (a) pressure and (b) concentration solutions in the monitoring
point Ngs of the Henry problem: Monte Carlo vs. non-intrusive PCE estimates.

the original numerical model, but also exponentially
increases the computational time for the estimation of the
PCE coefficients. The number of regression points should
therefore be selected to reflect accuracy needs and computa-
tional constraints.

(3) The relative deviations from the reference solutions and the

internal standard deviations generally decrease with increas-
ing PCE order fromd = 1 to d = 4 for both pressure and concen-
tration. Higher orders of PCEs (d = 6 for pressure solutions and
d =5 and 6 for concentration solutions) illustrate higher rela-
tive deviations. Hence, as stated by some previous studies
such as Eldred et al. (2008), higher order expansions can in
fact be less accurate and robust than the lower order expan-
sions. In theory, higher degree expansions should capture
more model nonlinearities compared to smaller degree
expansions and therefore be more accurate. However, two
factors prohibit this: first, constructing an accurate higher
order expansion may require much more data points than a
lower order expansion. When constructed using the same
given set of data points, there will always be an expansion
order for which the associated expansion performs worse
than lower order expansions. Second, the dimension of the
optimization problem (or the associated system of non-linear
equations depending on how Eq. (10) is solved in the regres-
sion method) increases with increase in the order of the
PCE, leading to a potential increase in estimation errors.

(4) The relative deviations for pressure solutions (most notably

for u estimates) are in most cases smaller than concentra-
tion solutions. This could reflect the smoother nature of
pressure PDFs.

(5) Polynomial orders equal to 3 or 4 permit to finely obtain the
first two moments of pressure and concentration solutions
in the Henry problem. Table 8 compares the y and o esti-
mates of pressure and concentration as well as their confi-
dence intervals for the reference solutions and the PCEs
(d =4 and g = 30). The table demonstrates that the outcomes
of PCEs are very much identical to those of the reference
solutions. Note that previous studies such as Laloy et al.
(2013) have shown that PCEs of order one can accurately
represent the output statistics of pressure solutions in con-
ventional groundwater flow problems with high number of
uncertain inputs. However as illustrated by this study, the
highly non-linear nature of the input-output relationships
in density-dependent SWI simulation requires higher order
PCEs for accurate estimation of the output statistics of pres-
sure solutions.

(6) In terms of accuracy and robustness, the non-intrusive PCEs
of order 3 and 4 generally outperform MCSs based on all
three sampling strategies. However, the difference between
the accuracy and robustness of PCEs and MCSs decreases
with increasing number of deterministic simulations. For
100 deterministic simulations, the accuracy of non-intrusive
PCEs and MCSs based on the CLD-ESE sampling strategy are
nearly identical. According to Figs. 11 and 12, the efficiency
improves by 79-98% with the use of non-intrusive PCEs
(with d = 4) compared with MCSs based on SRS, by 49-95%
compared with MCSs based on LHS, and —-6% to 89%
compared with MCSs based on CLD-ESE (the minus sign
illustrates decreased efficiency).
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Fig. 14. SWI hazard map derived from MCSs based on (a) non-intrusive PCEs, (b)
the numerical model in the Henry problem test case.
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Fig. 15. Average normalized deviations from the reference solutions of (a) mean pressure, (b) standard deviation of pressure, (c) mean concentration, and (d) standard

deviation of concentration for various UP methods in the small island problem.

Hence, the type of sampling strategy used in MCSs significantly
affects the degree to which PCEs improve efficiency as compared to
MCSs. Fig. 13a and b compares the reference PDFs of the pressure
and concentration solutions with PDFs derived from non-intrusive
PCEs (with d=4 and g =30) and also the data set used for the
construction of the PCE surrogates which is based on 30 MCSs with
CLD-ESE sampling. All three PDFs are built using KDE. As
illustrated, the PDFs resulting from the PCEs compare well with
the reference solutions. Interestingly, the PCE density functions

—— 1,000 MCSs (reference solution)
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3 _—
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Fig. 16. PDFs of the (a) pressure and (b) concentration solutions in the monitoring
well Wk, of the small island problem: Monte Carlo vs. non-intrusive PCE estimates.

comply better with the reference solutions compared with PDFs
of the data set used for their construction.

To make sure that non-intrusive PCEs can provide reliable
solutions for the entire domain of the test case problem, PCEs (with
d=4 and g =30) have been constructed for all 231 nodes of the
Henry problem numerical grid. These PCEs were then used to gen-
erate the SWI hazard map of the Henry problem. We define the
SWI hazard as the probability of exceedance of salinity concentra-
tions from 2000 mg/l. We denote this probability by Pr4, the total
number of MCSs (based either on the numerical model or the non-
intrusive PCE surrogate) by Ny, and the number of MCSs resulting
in salinity concentrations above 2000 mg/l in a specific node as
Nuic(c>2000)- Prexq (expressed in percentage) can be estimated using
the following equation:

Priyg = MME(C2000) 0 (18)
NMC

Fig. 14a illustrates the SWI hazard map derived from 10,000 MCSs
based on the non-intrusive PCE surrogate model. Fig. 14b demon-
strates the same SWI hazard map obtained from 10,000 MCSs based
on the original numerical model. These two figures are very much
identical, illustrating the ability of PCEs to map the uncertainty of
the entire domain without introducing any bias.

We now move to the second test case, namely the small island
problem. Sets of 20, 80, 240 and 720 regression points are first gen-
erated using the CLD-ESE sampling strategy. These regression
points are then used for constructing PCEs of order 1-4. The num-
bers of PCE coefficients for the six variable polynomial orders d = 1,
2,3 and 4 are 7, 28, 84 and 210 respectively. Fig. 15 compares the
accuracy of ¢ and ¢ estimates of pressure and concentration solu-
tions for different orders of PCEs and different numbers of regres-
sion points in the small island problem. The accuracy of the
corresponding estimates obtained from MCSs based on the original
numerical model with SRS, LHS and CLD-ESE sampling strategies
are also shown in Fig. 15. As described in the beginning of this sec-
tion, €(u) and €(o) estimates are based on four repetitions of each
UP method in the small island problem. The normalized internal
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Table 9

1 and ¢ and their confidence intervals estimates in the small island problem: MCSs vs. PCEs.

Qol UP method 1 estimate 96% confidence interval for u o estimate 96% confidence interval for o
Pw,,, (kg/m s%) MC (Nyc=1000) 252435.11 252,434.45-252,435.78 323.34 322.72-323.97
PCE (d = 3, q = 240) 252435.00 252434.72-252435.27 320.97 320.87-321.07
Cw,, (%salinity) MC (Nyc=1000) 16.85 16.83-16.86 7.87 7.86-7.88
PCE (d = 3, q = 240) 16.75 16.74-16.76 7.89 7.88-7.90
(a K (©)K
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Fig. 17. Comparison of various method for the estimation of the delta indices for (a) K and (b) Q with respect to pressure solutions, and (c¢) K and (d) Q with respect to

concentration solutions in the Henry problem test case.

deviations are not calculated for the small island problem due to
the relatively small number of repetitions. The conclusions drawn
for the second test case are very much similar to the Henry prob-
lem. We again see that polynomial orders equal to 3 or 4 can finely
capture the first two moments of pressure and concentration solu-
tions in the small island problem. This can be well understood from
a comparison of reference PDFs with PDFs derived from non-intru-
sive PCEs (with d = 3 and q = 240), which is illustrated in Fig. 16. As
demonstrated, the PDFs resulting from the PCEs compare well with
the reference solutions. This conclusion can also be drawn from an
analysis of Table 9 which compares the p and ¢ estimates of
pressure and concentration and their confidence intervals for the
reference solutions and the PCEs (d = 3 and q = 240).

Similar to the Henry problem, the accuracy of pressure esti-
mates obtained through the use of PCEs are in most cases higher
than concentration estimates due to the smoother nature of pres-
sure PDFs. Moreover, despite the fact that the small island problem
is three dimensional, conceptually more complex and has more
uncertain inputs than the Henry problem; the pressure and con-
centration PDFs in the small island problem are relatively
smoother than the Henry problem (refer to Fig. 10), thus allowing
for a more accurate estimation of the first two moments using PCE
methodology.

We can now answer the first two objective questions of this
study:

e Can non-intrusive PCEs provide a reliable estimate of model
uncertainties in SWI numerical modeling studies?

Based on the two test cases the answer is “yes”, provided that
sufficient number of regression points (that is if the regression
method is employed) and a proper order of PCE is used. A similar
conclusion has been reported in previous studies involving
groundwater flow in saturated and unsaturated porous media
(e.g., Li and Zhang, 2007; Sochala and Le Maitre, 2013; Laloy
et al., 2013). However as illustrated, due to the highly non-linear
and non-smooth input-output relationship in SWI models, higher
order polynomials are needed for accurate estimation of model
output statistics as compared to conventional groundwater flow
problems.

As demonstrated by this study and a number of previous stud-
ies such as Xiu and Karniadakis (2003a), the accuracy of PCEs can
in fact be higher than MCSs based on the original numerical model
if the number of uncertain inputs is small. Our study shows that
this conclusion is most notably true when only a very limited num-
ber of model simulations are affordable. As the number of simula-
tions increases, MCSs based on non-intrusive PCEs and the
numerical model illustrate nearly identical accuracies.

e To what extent do non-intrusive PCEs decrease the computa-
tional cost of UP analysis in SWI numerical models compared
to MCSs based on the original models?

PCE simulations are almost computationally costless compared
to numerical models of SWI, and the computational cost associated
with the use of PCEs in UP analysis is due to the generation of
regression points. For example our studies show that a MCS that
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Table 10

Comparison of the delta indices estimates and their respective standard deviations for the Henry problem.

Qol Input parameter Double-loop MCSs based Double-loop MCSs based Single-loop MCSs based Single-loop MCSs based
on the original model on PCE (d=4, g=30) on the original model on PCE (d =4, q=30)
Estimate o Estimate a Estimate o Estimate o
Pryy k 0.3145 0.0012 0.3291 0.0056 0.3000 0.0076 0.3016 0.0051
Q 0.1877 0.0072 0.1772 0.0062 0.1702 0.0029 0.1630 0.0017
Chgyr k 0.3663 0.0073 0.3507 0.0086 0.3267 0.0048 0.3315 0.0019
Q 0.1837 0.0026 0.1828 0.0093 0.1709 0.0094 0.1524 0.0025
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Fig. 18. Comparison of various method for the estimation of the delta indices for (a) KHy, (b) KV3, (c) KH,, (d) KV5, (e) LDH and (f) LDV with respect to pressure in the small

island problem.

involves 10,000 simulations by a non-intrusive PCE surrogate
model (with d =4 and q =30), takes less than 15s on a 2.17 GHz
dual-core personal computer (PC). The computational time
required by MCSs (with a comparable level of accuracy) relying
on the original numerical model may take several days for a com-
plex three dimensional model of SWI such as the small island prob-
lem presented in this paper. Hence, PCEs can decrease the
computational time of UP by several orders of magnitude depend-
ing on the computational cost of a single deterministic simulation
by the groundwater model. This conclusion is similar to those
reported by previous studies involving groundwater modeling
applications (e.g., Li and Zhang, 2007; Sochala and Le Maitre,
2013). Moreover, as illustrated by this study, the type of sampling
strategy used in MCSs significantly affects the degree to which
PCEs improve efficiency as compared to MCSs.

4.3. Moment Independent SA

In this subsection, we apply PCEs to accelerate the estimation of
delta indices by the single-loop and double-loop Monte Carlo

methods (Wei et al., 2013). Reference solutions based on the
numerical models are initially produced in order to provide bench-
marks for the assessment of the accuracy of PCE based solutions. In
the Henry problem, we apply the double-loop Monte Carlo meth-
ods to generate this reference solution. A convergence analysis is
done in which the values of NL; and NL, in the double-loop Monte
Carlo method are gradually increased until the estimated delta
indices stabilize. The sample points are selected by the CLD-ESE
sampling strategy and the estimation of delta indices has been
repeated 8 times for each value of NL; and NL,. The resultant mean
values of the delta indices for the 8 repetitions are illustrated in
Fig. 17. The figure shows that for NL; = NL, = 250 the resulting delta
indices have converged to the correct output. This choice of NL;
and NL, leads to a total of 125,250 deterministic simulations with
a computational time of around 70 h on a 2.17 GHz dual-core PC.
Note that this rather long computational time is associated with
a simple two-dimensional test case problem, and the computa-
tional time of complex three dimensional numerical models may
be several orders of magnitude higher, which becomes prohibitive
unless massive parallel computing facilities are available. In a
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Fig. 19. Comparison of various method for the estimation of the delta indices for (a) KHy, (b) KV;, (c) KH,, (d) KV5, (e) LDH and (f) LDV with respect to concentration in the

small island problem.

similar convergence analysis of delta indices estimates by Wei
et al. (2013), a value of 1000 was chosen for NL; andNL,. However
they used the less efficient SRS method for the generation of
sample points.

We have also estimated the delta indices for the Henry problem
using the single-loop Monte Carlo method for NL = 50-8000. It is
observed in Fig. 17 that the single-loop method arrives at nearly
the same delta indices (the difference being less than 10%), with
less than 0.064 the number of simulations required by the dou-
ble-loop method. This comparison confirms the conclusions put
forward by Wei et al. (2013) regarding the superior efficiency of
the single-loop Monte Carlo method.

The numerical model is subsequently replaced by the non-intru-
sive PCE surrogate models (with d = 4 and q = 30) in both the dou-
ble-loop and single-loop Monte Carlo algorithms. In this case, only
30 deterministic simulations are needed for the estimation of the
PCE coefficients and the subsequent simulations required for the
calculation of the delta indices are done by use of the computation-
ally cheap PCEs. For example, the computational time of the double-
loop Monte Carlo method with non-intrusive PCEs as the surrogate
model and NL;=NL,=1000 decreases to around 80 min on a
2.17 GHz dual-core PC. The delta indices estimates obtained
through the use of PCEs are demonstrated in Fig. 17. Moreover,
Table 10 compares the delta indices estimates along with their
respective standard deviations across 8 replicates for the double-
loop and single-loop Monte Carlo methods based on the original
numerical model and the non-intrusive PCEs. Fig. 17 and Table 10
illustrate that: (1) the difference amongst the mean estimates of
delta indices for the two strategies (i.e. using the original numerical
model vs. the PCE surrogate) in the double-loop Monte Carlo
method is small (less than 6%) and they lead to the same importance
ranking (k > Q) for both pressure and concentration solutions. (2)

The average deviation of delta indices obtained through the use of
PCEs with the single-loop Monte Carlo method from the respective
solution obtained from the double-loop and single-loop Monte
Carlo methods with the original numerical model is 11% and 4%
respectively, with the same importance ranking. (3) As illustrated
in Table 10, using the original numerical model or the PCE surrogate
model with both the double-loop and single-loop Monte Carlo
methods lead to small standard deviations for the delta indices
and the standard deviations are of the same order of magnitude.
(4) When using PCE surrogates, the difference between the robust-
ness and computational efficiency of the double-loop and single-
loop Monte Carlo methods are much less significant. The reason is
that the computational time of PCE simulations are so small that
even the computationally less efficient double-loop Monte Carlo
method wraps up in a small time frame.

For the small island problem, the reference solutions for the
delta indices are obtained through the use of the original numerical
model with the single-loop Monte Carlo method. The use of dou-
ble-loop method is not computationally feasible for this test case.
A convergence analysis is done in which the values of NL is gradu-
ally increased until the estimated delta indices stabilize. Similar to
the Henry problem, the sample points are selected by the CLD-ESE
sampling strategy and the estimation of delta indices has been
repeated 8 times for each value of NL. The resultant mean values
of the delta indices for the 8 repetitions are illustrated in Figs. 18
and 19. We take the delta indices obtained from NL = 1000 as the
reference solution. The delta indices are subsequently estimated
by using PCEs (with d =3 and q = 240) with both the double-loop
and single-loop Monte Carlo methods. We observe that the average
deviations of the resulting delta indices from the respective refer-
ence solutions are around 7% for both pressure and for concentra-
tion solutions (see Table 11).
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Table 11

Comparison of the delta indices estimates and their respective standard deviations for the small island problem.

Qol Input parameter Single-loop MCSs based on the original Double-loop MCSs based on PCE (d = 3, Single-loop MCSs based on PCE (d = 3,
model q =240) q =240)
Estimate 4 Estimate 4 Estimate 4
Pw,, KH 0.0333 0.0035 0.0372 0.0013 0.0385 0.0007
KV, 0.0337 0.0040 0.0394 0.0025 0.0393 0.0017
KH, 0.0827 0.0036 0.0831 0.0007 0.0791 0.0015
KV, 0.4321 0.0036 0.4073 0.0039 0.4284 0.0028
LDH 0.0433 0.0026 0.0456 0.0023 0.0432 0.0008
LDV 0.0402 0.0093 0.0403 0.0038 0.0429 0.0017
Cwyy KHi 0.0475 0.0184 0.0462 0.0037 0.0487 0.0076
KVy 0.0439 0.0036 0.0354 0.0085 0.0392 0.0032
KH, 0.2533 0.0138 0.2689 0.0102 0.2607 0.0083
KV, 0.2037 0.0067 0.1922 0.0093 0.1832 0.0148
LDH 0.0521 0.0199 0.0447 0.0064 0.0483 0.0046
LDV 0.0521 0.0094 0.0565 0.0119 0.0540 0.0088

We now address the third objective question of this study: can
non-intrusive PCEs provide a computationally efficient estimation
of moment-independent sensitivity indices without significant loss
of accuracy? With respect to the outcome of this study, we can
conclude that replacing the numerical model with the non-intru-
sive PCE surrogate model in the estimation of the delta indices
does not affect the resulting importance ranking and only intro-
duces a small deviation in the estimated indices. However, esti-
mating the delta indices through the use of PCEs is several orders
of magnitude (depending on the computational cost of the deter-
ministic model) faster than the case in which the numerical model
is employed. Furthermore, using the double-loop Monte Carlo
method for computational demanding models can be made possi-
ble with the use of PCEs.

5. Conclusions

Real world models of SWI are characterized by high computa-
tional demands. This, in addition to the inherently complex, non-
linear and non-monotonic input/output relationship of these mod-
els, creates computational difficulties in UP analysis. These difficul-
ties arise due to the need for extensive repeated simulations by the
numerical model in order to adequately capture the underlying
statistics that describe the uncertainty in model outputs. More-
over, despite the obvious advantages of moment-independent glo-
bal methods, these methods have rarely been employed for the SA
of SWI and other complex groundwater models. The reason is that
moment-independent global SA methods involve repeated UP
analysis which further becomes computationally problematic
unless massive parallel computing facilities are available. This
study proposes the use of non-intrusive PCEs as a means to signif-
icantly accelerate UP analysis in SWI numerical modeling studies.
The study shows that non-intrusive PCEs can provide a reliable
and yet computationally efficient surrogate of the original numer-
ical model which can be used in UP analysis, SA, simulation-opti-
mization schemes and stochastic inverse modeling applications.
The study also illustrates that for the considered two and six
dimensional UP problems, PCEs offer a more accurate estimation
of the statistics describing the uncertainty in model outputs com-
pared to Monte Carlo simulations based on the original numerical
model. We also proposed the use of non-intrusive PCEs for the gen-
eration of SWI hazard maps, based on the ability of PCEs to map the
uncertainty of the entire domain without introducing any bias. The
proposed methodology can extend the practical applications of UP
analysis in coastal aquifer management studies.

This study further illustrated that the use of non-intrusive PCEs
in the estimation of the moment-independent sensitivity indices

can decrease the computational time by several orders of magni-
tude without causing significant loss of accuracy. The proposed
methodology is based on replacing the numerical model with the
non-intrusive PCE surrogate model in the single-loop and dou-
ble-loop Monte Carlo methods for the estimation of the delta sen-
sitivity indices. This methodology can make the use of double-loop
Monte Carlo method for computational demanding SWI models
possible.

The two case studies in this paper were chosen to be rather sim-
ple SWI models with affordable simulation time in order to provide
the tools for the more than 2,000,000 and 28,000 numerical simu-
lations (for the first and second test case respectively) of the refer-
ence solutions used in the evaluation of the results obtained by
PCEs. However, the true benefits of PCEs are obtained when real
world SWI models with extremely high computationally demands
are evaluated.
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