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This paper introduces a well-balanced second-order finite volume scheme, based on the Q-scheme of Roe,
for simulating granular type flows. The proposed method is applied to solve the incompressible Euler
equations under Savage–Hutter assumptions. The model is derived in a local coordinate system along
a non-erodible bed to take its curvature into account. Moreover, simultaneous appearance of flowing/
static regions is simulated by considering a basal friction resistance which keeps the granular flow from
moving when the angle of granular flow is less than the angle of repose. The proposed scheme preserves
stationary solutions up to second order and deals with different situations of wet/dry transitions by a
modified nonlinear wet/dry treatment. Numerical results indicate the improved properties and robust-
ness of the proposed finite volume structure. In addition, the granular flow properties are estimated with
a computational error of less than 5%. These errors are consistently less than those obtained by using
similar existing finite volume schemes without the proposed modifications, which can result in up to
30% overestimation.

� 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Natural granular flows like landslides, mudslides, snow
avalanches and rockslides are natural hazards that may impose
fatalities and significant economical damages. These flows are
associated with soil erosion and sedimentation into rivers and
valleys [1,18,33], seabed topography change, and soil or surface/
ground water contamination [64]. Moreover, on the shores of a
water body, they may be followed by resulting impulsive waves
and their subsequent dam overtopping [6,7,9–11,14,63,82] or
run-up to coastal areas [36,80] as a secondary hazard. In order to
conduct hazard analysis and protect settled areas, predictions of
the flow thickness and velocity of the slide are needed
[58,62,72]. To this end, a number of numerical studies have been
performed based on different numerical approaches.

Savage and Hutter [70] pioneered the study of rock, snow and
ice avalanches based on shallow water equations under hydro-
static assumption, using two finite difference methods, one of
Lagrangian and the other of Eulerian. Their theory was verified to
be in an excellent agreement with laboratory experiments
[39,46,52,70]. Many of the available numerical models apply the
Savage–Hutter (SH) type considerations to describe the behavior
of granular type flows [30,44,45,58,65,75,81]. This fact also con-
firms the ability and efficiency of these assumptions in recitation
of the granular flow behavior [51]. SH type models are based on
the shallow water equations considering a Coulomb friction term
as the flow/bottom interaction [70]. The constitutive relation of
the granular material is also defined based on the Mohr–Coulomb
criteria; i.e. the normal stresses are related to the longitudinal
stresses by a factor K (the earth pressure coefficient) [70]. In
1991, the SH formulation was transferred to a local coordinate sys-
tem for considering the bed curvature effects [71]. Gray et al. [38]
extended this model to two dimensions. Wieland et al. [81] used a
mixed FVM–FDM (Finite Volume Method–Finite Difference
Method) to discretize the two dimensional SH model. The effects
of the bed erosion were inserted in this model by Pitman et al.
[65] who applied a Godunov type FVM to discretize the model
equations. Denlinger and Iverson [31] extended the three dimen-
sional version of a SH type model using Harten, Lax and Van Leer
contact (HLLC) finite volume scheme. More studies have been
performed on behavior of granular type flows based on different
rheologies and governing equations using FDM [2,42,49,62,75],
FVM [23,32,53,58,61,83], FEM (Finite Element Method)
[4,27,28,35], SPH (Smoothed Particle Hydrodynamics) [59], or a
combination of these schemes [3,81].

A comprehensive review of these studies is summarized in
Table 1. This table shows the previous numerical models including
their governing equations, considered rheology, numerical
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Nomenclature

A coefficient matrix
b bottom level
c characteristic wave velocity
D diagonal matrix of eigenvalues
df generalized Roe flux difference
Err computational error
F numerical flux matrix
G source term matrix
G1 source term matrix concerning bed level
G2 source term matrix concerning bed curvature
G3 first h related part of the flux term
G4 second h related part of the flux term
~g gravitational acceleration vector
g gravitational acceleration
H granular flow depth vertical to the bed
H0 characteristic depth
h granular flow depth (h0)/cos2h
h0 granular flow depth
I computational cell
Id identity matrix
J Jacobean of transformation matrix
K earth pressure coefficient
j eigenvector
L characteristic length
m number of computational grids
n number of time steps
ns unit normal vector of flow surface
nb unit normal vector of bottom
P pressure tensor
PXX normal pressure along X
PZZ normal pressure along Z
PZX longitudinal stress along X
PXZ longitudinal stress along Z
Pxx normal pressure along x
Pzz normal pressure along z
Pzx longitudinal stress along x
Pxz longitudinal stress along z
P1 jDj�1

P± projection matrixes 1/2j(Id ± sgn(D))j�1

Q matrix characteristic of a Q scheme
q flow discharge hu
q
^

depth-averaged flow discharge h u
^

q⁄ predicted flow discharge in the first step
r Dt/Dx
S numerical source term matrix

S1 numerical source term matrix related to bed level
S2 numerical source term matrix related to bed curvature
S3 1st numerical h related part of the flux term matrix
S4 2nd numerical h related part of the flux term matrix
T Coulomb friction matrix
T⁄ Coulomb friction matrix of the corrector step
t time
U flow velocity parallel to the bottom
Ub sliding velocity along bottom
U
^

depth-averaged velocity parallel to bottom
u horizontal flow velocity
�u Roe-averaged velocity
V flow velocity perpendicular to the bottom
V0 flow velocity vector (u,v)
v vertical flow velocity
W unknown matrix [hq]
W⁄ predicted values in the first step [hq⁄]
W+ exact solution of nonlinear Riemann problem in the

right edge of wet/dry transition intercell
W� exact solution of nonlinear Riemann problem in the left

edge of wet/dry transition intercell
X local coordinate component along non-erodible bed
~X cartesian coordinate vector (x,z)
~X0 local coordinate vector (X,Z)
x horizontal component of Cartesian coordinate system
Y1 a state value
Y2 a state value
Z local coordinate component perpendicular to the bed
z vertical component of Cartesian coordinate system
q density of granular mass
h local slope angle of the bed
d basal friction angle
d0 angle of repose
/ internal friction angle of granular material
/0 a numerical flux function
e small parameter of dimensional analysis
I Coulomb friction term
rc critical friction resistance of bottom
k eigenvalue
Dx computational cell size
Dt computational time step
scrit critical longitudinal stress of the bottom
r gradient vector (@/@x, @/@z)
c a small parameter 2 (0, 1)
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approaches and numerical schemes. Based on this review, FVM and
FEM have been more popular than FDM because of using the inte-
gral form of conservation laws which is closer to the physics
[55,73]. FVM has also the advantage of preserving conservation
of mass and momentum in multidimensional physical systems like
granular avalanches where rapid transitions between flowing and
static states are common [55]. The new approach of SPH, which
has been lately used by many researchers, e.g. [5,8,12,13,59], is
not efficient in simulating the situations where flow encounters
unexpected corners or constrictions [30].

The SH type formulations are applied in the present model to
describe the behavior of the granular flow. The present SH type
model has two special properties. It takes bed curvature effects
and flow dynamic/static regions into account. Based on the previ-
ous studies, bottom curvatures have noticeable effects on the
behavior of granular type flows [20,30,34,42,67]. Lately, two new
SH models have been introduced by Bouchut et al. [20] over a
general bottom. The first model considers small variations of the
bed curvature and the second one is dealing with general bottom
topographies. The present SH type model applied the first hypoth-
esis, i.e. a small variation of the curvature. Accordingly, the model
equations are derived in a local coordinate system along with the
bed to take its curvature into account. This model differs from ori-
ginal SH model through a new curvature term which is required to
obtain the energy inequality and to satisfy the stationary solutions
regarding water at rest [20]. Moreover, in the present model, a
critical stress is defined to stop the granular layer from moving
when its angle is less than the angle of repose [19,34]. This second
property is especially important when the flow is supposed to be
shallow which results in simultaneous existence of the flowing
and the static regions [72].

Effective and robust numerical solution of the system of model
equations described above is the main focus of this paper. A well-
balanced finite volume scheme is proposed which minimize the



Table 1
A review of the numerical studies on granular flows.

Ref.
no.

Developer
name

Year Rheology Governing
equations

Numerical
method

Numerical
scheme

Model
dim.

Application Case
study

70 Savage & Hutter 1989 Coulomb friction SWE FDM L 1D Rock, snow and ice
avalanches

–

45 Hutter & Greve 1993 Coulomb friction SWE FDM – 2D Rock, snow and ice
avalanches

–

42 Hungr 1995 Vary along the slide path SWE FDM L 1D Granular flow 1
53 Laigle &

Coussot
1997 Herschel-Bulkley SWE FVM Godunov 1D Mudflow –

81 Wieland et al. 1999 Coulomb friction SWE M FV-FD L 2D Granular avalanche –
38 Gray et al. 1999 Coulomb friction SWE FDM L 2D Granular avalanche –
23 Brufau et al. 2000 Manning’s Eq. SWE FVM Roe 1D Debris flows –
49 Imran et al. 2001 Herschel-Bulkley/bilinear PSFA FDM L 1D Muddy debris flows –
30 Denlinger &

Iverson
2001 Coulomb friction SWE FVM HLLC 3D Debris flows/rock

avalanches
–

35 Frenette et al. 2002 Drucker-Parger type NSE FEM Galerkin 1D Granular flow –
2 Aranson et al. 2002 Bagnold SWE FDM – 1D/2D Partially fluidized

granular flows
–

83 Zanuttigh &
Lamberti

2003 Bingham/Herschel–Bulkley/
Visco-plastic

SWE FVM WAF 1D Debris flow –

65 Pitman et al. 2003 Coulomb friction SWE FVM Godunov 2D Granular avalanche/
landslides

1

58 Mangeney et al. 2003 Coulomb friction SWE FVM K 1D Granular avalanche –
28 Chen & Lee 2003 Voellmy SWE LFEM – 3D Landslide 1
59 McDougall &

Hungr
2004 Bingham/Voellmy/frictional/

plastic
SWE SPH – 3D Landslide –

31 Denlinger &
Iverson

2004 Coulomb friction SWE FVM HLLC 3D Granular avalanche –

75 Toni & Scotton 2005 Coulomb friction SWE FDM L 2D Snow avalanche 1
61 Medina et al. 2008 Bingham/Herschel–Bulkley/

Voellmy
SWE FVM Godunov 2D Debris flows 3

62 Moriguchi et al. 2009 Bingham NSE FDM THINC 2D Debris flow –
3 Armanini et al. 2009 Grain-inertial SWE H FV-FE – 2D Debris flow 2

32 Domnik et al. 2013 Coulomb-Viscoplastic NSE FVM MC 2D Granular flow –
27 Chauchat &

Medale
2014 l(1) SWE FEM – 3D Dense granular flow –

4 Armanini et al. 2014 Modified Coulomb type SWE FEM Galerkin – Satu. granular flow –

FVM: Finite Volume Method, NSE: Navier–Stokes Equations, HLL: Harten, Lax and Van Leer, FDM: Finite Difference Method, SWE: Shallow Water Equations, LHLL: Lateralized
HLL, FEM: Finite Element Method, PSFA: Prandtl’s Slender Flow Approximations, HLLC: HLL Contact, LFEM: Lagrangian FEM, M FV-FD: Mixed FV-FD method, MC: Marker and
Cell method, H FV-FE: Hybrid FV-FE method, WAF: Weighted Average Flux method, L: Lagrangian, SPH: Smoothed Particle Hydrodynamics, THINC: Tangent of Hyperbola for
Interface Capturing, K: Kinetic.
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appearance of negative flow depth, spurious waves and artificial
dispersion, especially in the situations involving shocks, disconti-
nuities, high gradients or wet/dry fronts [55,76]. In simulating
the granular type flows, we are dealing with a hyperbolic system
of conservation laws with source terms to solve a series of the Rie-
mann problems and determine the local wave structure [55]. The
most frequent approximate Riemann solvers are Roe scheme [68]
and Harten, Lax and Van Leer (HLL) scheme [40]. A difficulty of
HLL type models is modeling the full Riemann solution by only
two waves based on approximate speeds of the fastest and slowest
waves in each cell [76]. Therefore, in the present study, the pro-
posed numerical framework is been developed based on a Roe type
scheme as a better choice, especially for the systems with more
than two equations like Euler equations or multi dimensional flows
[55,76].

One of the main challenges related to the discretization of a
hyperbolic system of conservation laws with source terms is deal-
ing with the heterogeneous part; i.e. the source terms. In the pres-
ent model due to considering an arbitrary topography, there are
three different source terms involving the bottom geometry, the
bed curvature and the basal friction. Centered discretization of
the source terms yields to appearance of spurious numerical waves
[16,69,79]. Upwinding the source terms in a similar way to the
numerical flux can overcome this deficiency [16]. This idea was
introduced by Roe [69] in 1986 and was applied into Saint–Venant
equations by Glaister [37]. With upwinding the source terms the
numerical scheme will have a bigger stable region [69]. Bermudez
and Vazquez-Cendon [16] applied this idea for shallow water
equations using the Q-scheme of Roe and Van Leer. Vázquez-
Cendón [79] extended this model with considering three source
terms including the bottom level, the breadth function and the
bed friction, in a rectangular open channel. He showed that cen-
tered discretization of each source term can be a source of appear-
ance of artificial waves [79]. The second complexity related to the
numerical treatment of the source terms is discretization of the
Coulomb friction term; particularly, with considering no move-
ment for granular material in the cells where its angle is less than
the angle of repose. It can originate numerical instabilities during
the simulation [34]. This problem is solved by applying a two-step
semi-implicit method proposed by Mangeney-Castelnau et al. [58]
and applied by Fernández-Nieto et al. [34].

The second numerical intricacy is appearance of wet/dry fronts
during the simulation of the shallow granular type flows. Wet/dry
fronts appear along numerical domain where the avalanche depth
vanishes, due to initial condition or as a consequence of the land-
slide motion (Fig. 3a) [25]. These fronts may originate negative
values of flow thickness which yields to numerical instabilities
[56]. Besides, the numerical scheme may not be able to preserve
steady or near steady flows including wet/dry fronts [24,25].
Bermudez and Vazquez-Cendon [16] introduced a concept called
conservation property (C-property). A numerical scheme satisfies
this condition if it correctly solves the steady state solutions
related to water at rest [16]. Hence, a well balanced numerical
scheme should satisfy the C-property condition. In the present



Fig. 1. Schematic definition of the present model parameters.
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study, the proposed method of Castro et al. [25] is applied as a new
treatment of wet/dry fronts. In this method, at every intercell with
wet/dry transition a nonlinear Riemann problem is considered
which is easy to solve. The exact solutions of these nonlinear Rie-
mann problems are employed to calculate the numerical fluxes.
Although a big variety of wetting and drying algorithms have been
proposed before, most of them are not general [15,22,24,77], or lin-
early extrapolate the flow depth onto dry cells [17,60]. The applied
method of Castro et al. [25] has two distinctive advantages: using
nonlinear Riemann problem instead of a usual linear one at inter-
cells where a wet/dry transition happens and modifying the
numerical scheme at all related situations not only when the bot-
tom emerges at intercell [25]. We have modified this wet/dry algo-
rithm for dealing with the bed curvature source term in the present
model.

Finally, for the sake of simplicity, the problems are simulated in
one dimension. However, the proposed scheme can be extended
for more general one dimensional or multi dimensional flows.
The only drawback is complication of using the considered wet/
dry method for multi dimensional flows. In these situations, the
wet/dry fronts can be treated by an approximation of the present
wet/dry algorithm proposed by [24].

The core objective of this work is to introduce a robust and
effective Roe type finite volume method for granular flow mod-
eling so that improves the shortcomings of previous similar for-
mulations. The key novelty of this work is implementing an
effective combination of the state of the art of numerical meth-
ods such as: numerical treatment of non-homogeneous source
terms, wet/dry fronts, and friction term considering flowing/
static regions. The resulting method is a well-balanced scheme
that minimizes the appearance of negative flow depths and spu-
rious numerical waves or dispersion which are likely to appear
during the simulation of landslides where flow moves on a dry
bed and may encounter with many natural or man-made obsta-
cles or adverse slopes. The paper is organized as follows: Section
2 provides the governing mathematical equations. In Section 3,
we present a well-balanced finite volume scheme based on the
Q-scheme of Roe, to discretize the system of model equations.
Section 4 is devoted to performing a series of numerical and
experimental tests to illustrate the improved properties of the
proposed numerical scheme in preserving the stationary
solutions, treating wet/dry fronts and estimating the granular
flow properties. It is also shown that how upwinding the source
term related to the bed curvature helps the numerical stability
of the proposed scheme. Finally, the concluding results will be
discussed in the last section.

2. Mathematical model equations

The following incompressible Euler equations are considered to
derive the system of model equations [76].

r � V 0 ¼ 0
q@tV

0 þ qV 0 � rV 0 ¼ �r � P þ qrð~g �~XÞ

�
ð1Þ

where V0 = (u, v) is the velocity vector with the horizontal and the
vertical components u and v. q is the constant density of the gran-

ular material, P ¼ Pxx Pxz

Pzx Pzz

� �
is the pressure tensor with Pxz = Pzx

and ~g ¼ ð0;�gÞ is the vector of gravitational acceleration.
~X ¼ ðx; zÞ represents Cartesian coordinate. r ¼ @

@x ;
@
@z

� �
is the

gradient vector. t is time and @t ¼ @
@t. The model parameters are

illustrated in Fig. 1.
Eq. (1) is transferred to a local coordinate system over the non-

erodible bed defined by z = b(x), based on the following transfor-
mation matrix [34]
r~XðX; ZÞ ¼
1
J

cos h sin h

�J sin h J cos h

� �
; J ¼ 1� ZdXh ð2Þ

X and Z are the components of this local coordinate system. X
denotes the arc’s length of the bottom and Z is measured perpendic-
ular to the bed (Fig. 1). J is the Jacobian of the change of variables. It
should be noticed that for a non-erodible bed, the depth of the
sliding mass cannot exceed the local radius of the bed curvature
for J – 0 [71]. The incompressible Euler equations in the new coor-
dinate system are [34]

@XUþ@ZðJVÞ¼0

q@tðJUÞþq@XðU2Þþq@ZðJVUÞþq@Xð~g �~X0Þ
¼�@XðPXXÞ�@ZðJPZXÞ
þqVð@XðUhÞþ@ZðJVhÞÞþPXZdXh

q@tðJVÞþq@XðUVÞþq@ZðJV2ÞþqJ@Zð~g �X 0Þ
¼�@XðPXZÞ�@ZðJPZZÞ
�qUð@XðUhÞþ@ZðJVhÞÞ�PXXdXh

8>>>>>>>>>>><>>>>>>>>>>>:
ð3Þ

where U and V are the flow velocity components parallel and per-
pendicular to the bottom, respectively. h is the local bed slope.

@Z = @/@Z, @X = @/@X and ~X0 ¼ ðX; ZÞ represents the local coordinate
system.

The following kinematic (K.C.) and boundary (B.C.) conditions
are considered at the granular flow surface [70]

@tH þ U@XH � V ¼ 0 K:C:
P � nS ¼ 0 B:C:

�
ð4Þ

and at the bottom [70]

V ¼ 0 K:C:
P � nb � nbðnb � P � nbÞ ¼ �ðUb=jUbjÞðnb � P � nbÞ tan d B:C:

�
ð5Þ

where nS and nb are the exterior unit normal vector of the flow sur-
face and the bottom, respectively. H is the granular flow thickness
vertical to the bed. The second equation of Eq. (5) describes the
interactions between the granular flow and the non-erodible bot-
tom based on a Coulomb type friction law [70]. In this relation, Ub

is the sliding velocity along the stationary bed and d is the basal fric-
tion angle.

In the next step, the system of model Eq. (3) and the boundary
conditions (4) and (5) are given in dimensionless form, using two
characteristic lengths of L and H0 in the X and Z direction, respec-
tively. The non-dimensional variables are as follows [34]:

ðX; Z; tÞ ¼ ðLeX ;H0eZ ; ffiffiffiffiffiffiffiffi
L=g

p
~tÞ; ðU;VÞ ¼

ffiffiffiffiffi
Lg

p
ðeU ; eeV Þ;

ðPXX ; PZZÞ ¼ gH0ðePXX ; ePZZÞ; PXZ ¼ gH0 tan d0
ePXZ ; H ¼ H0 eH
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d0 is the angle of repose of the granular material [34]. e = H0/L is sup-
posed to be a small value due to considering a shallow domain.
Based on this change of variables, the non-dimensional system of
model Eq. (3) will be [34]

@eX eU þ @eZ ðJeV Þ ¼ 0

~J@tðqeUÞ þ qeU@eX ðeUÞ þ q~JeV@eZ ðeUÞ þ q@eX ðbþ eZ cos hþ ePeXeX=qÞe
¼ � tan d0@eZ ð~JePeXeZ Þ þ qeV eeUdeX hþ e tan d0

ePeXeZ@eX h

e½~J@tðqeV Þ þ qeU@eX ðeV Þ þ qeV@eZ ðeV Þ þ @eX ðePeXeZ Þ � ePeXeX@eX h� PeZeZ deX h�

þq~J@eZ ðbþ cos heZÞ ¼ �J@eZ ðePeZeZ Þ � qeU2deX h

8>>>>>>>>>><>>>>>>>>>>:
ð6Þ

The dimensionless form of the exterior unit vector of the granular

flow surface is ns ¼ ð�e@eX eH;1Þ=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ e2ð@eX eHÞ2

r
. Therefore, the

non-dimensional boundary and kinematic conditions at the flow
surface from Eq. (4) are [34]

@t
eH þ eU@eX eH � eV ¼ 0 K:C:

�e@eX eHePeXeX þ tan d0
ePeZeX ¼ 0 B:C:

�e tan d0@eX eHePeXeZ þ ePeZeZ ¼ 0 B:C:

8>>><>>>: ð7Þ

and at the bottom from Eq. (5) [34]

eV ¼ 0 K:C:
tan d0

ePeXeZ ¼ �ðeUb=jeUbjÞePeZeZ tan d0 B:C:

(
ð8Þ

In the following equations tilde ( ) is omitted for simplicity. In the
present model, the constitutive behavior of the granular material is
defined as PXX = KPZZ, where K represents the earth pressure coeffi-
cient as [70]

K ¼ 2 1� sgnð@U=@XÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� ðcos /= cos dÞ2

q� �
= cos2 /� 1 ð9Þ

/ represents the internal friction angle of the granular material. In
this equation, the ‘‘active’’ and ‘‘passive’’ states of the earth pressure
coefficient are correspond to the maximum and minimum values of
K which are distinguished by the sign of the longitudinal strain
(sgn(@U/@X)) [70]. There are additional improved techniques for dis-
tinction between the two states like the gradual transition intro-
duced by Hungr [42,59] which improves the numerical model
stabilities. In the present study, we have applied a two step scheme
to satisfy numerical stability of the proposed scheme regarding the
Coulomb friction term.

Now, the third relation of Eq. (6) is integrated along the flow
depth. As it mentioned in Section 1, dXh is considered to be O(e)
[20,34]. Therefore,

PZZ ¼ qðH � ZÞ cos h ð10Þ

With substituting Eqs. (9) and (10) into the first two relations of Eq.
(6), we have

@tðqUÞ þ q@XU2 þ q@ZðUVÞ þ q@Xðbþ Z cos hþ KðH � ZÞ cos hÞe
¼ � tan d@ZðPXZÞ ð11Þ

In the next step, the equations are depth-averaged in perpendicular
direction to the bottom. The averaged values of velocity are defined

as U
^

¼ 1
H

R H
0 UðX; ZÞdZ and U

^
2 ¼ 1

H

R H
0 U2ðX; ZÞdZ [70].

Now, the constitutive relations, boundary and kinematic condi-
tions are substituted into the system of model Eq. (6) to obtain the
depth-averaged system of model equations. dXh is considered to be
O(e) [20]; therefore, J = 1 � ZdXh � 1 [34]. The coulomb friction
term is also assumed to be order of some c 2 (0, 1); this is tand0 =
O(ec). Based on these considerations, the depth-averaged form of
the system of model equations is

@tH þ @XðH U
^

Þ ¼ 0

@tðH U
^

Þ þ @XðHU
^

2 þ eKðH2=2Þ cos hÞ
¼ �eHdXbþ eðH2=2Þ sin hdXh

�ðH cos hþ H U
^

2dXhÞðUb=jUbjÞ tan dþ Oðe1þcÞ

8>>>>>><>>>>>>:
ð12Þ

Now, the system of model Eq. (12) is rewritten with original vari-
ables as the system of model Eq. (13). In this form, the terms of
order e1+c are neglected and the profile of the flow velocity is con-
sidered to be constant [34].

@tH þ @XðH U
^

Þ ¼ 0

@tðH U
^

Þ þ @X HU
^

2 þ gK H2

2 cos h

 �

¼ �gHdXbþ g H2

2 sin hdXh

�ðgH cos hþ HU
^

2dXhÞðUb=jUbjÞ tan d

8>>><>>>:
ð13Þ

As the final step, the system of model Eq. (13) is returned to the glo-
bal Cartesian coordinate system using the following relations [34].

@=@X ¼ cos h@=@x; h ¼ H= cos h; q
^
¼ h u

^

Consequently, the final system of model equations will be

@thþ @xðq
^

cos hÞ ¼ 0

@t q
^
þ@xðhu

^2 cos hþ gKh2
=2 cos3 hÞ

¼ �gh cos hdxbþ gh2
=2 sin h cos2 h@xhþ I= cos h

8>><>>: ð14Þ

where I represents the Coulomb friction term which is defined as
follows [34]

I ¼ �ðgh cos2 hþ h cos hu
^2dxðsin hÞÞ q

^

j q
^
j

tan d jIjP rc

q ¼ 0 jIj < rc

8<: ð15Þ

where rc is the basal critical stress which is defined based on the
angle of repose of the sliding mass as rc = gh cos2h tand0 [34]. Eq.
(15) shows that when the basal friction term is less than the critical
basal stress, jIj < rc , the granular mass stops moving, u = 0. This
condition happens when the granular mass angle is smaller than
the angle of repose [34].

3. Numerical model formulations

In this section, we propose a modified Q-scheme of Roe to dis-
cretize the system of model Eq. (14). Eq. (14) can be re-written in
the form of a hyperbolic system with a conservative product, F and
three source terms, G1, G2 and T corresponding to the bed level, the
bed curvature and the basal friction, respectively. It should be
noticed that the tilde ð :̂ ) has been omitted in the following
equations.

@tW þ @xFðh;WÞ ¼ G1ðx;WÞ þ G2ðx;WÞ þ T ð16Þ

where

W ¼
h

q

� �
; Fðh;WÞ ¼

q cos h
q2

h cos hþ gK h2

2 cos3 h

" #

G1 ¼
0

�gh cos hdxb

� �
; G2 ¼

0
�g h2

4 cos h@xðcos2 hÞ

" #
and

T ¼
0

I= cos h

� �
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As it mentioned in the introduction section, the source terms G1 and
G2 are upwinded in the same way of the flux term, F. For numerical
discretization of the Coulomb friction term T, a two-step semi-
implicit approach is applied [34,58]. In the first step, the unknowns
are calculated without considering the basal friction effects. Then,
in the second step, the predicted flow velocity is modified based
on Eq. (15) [34]. In this stage, if the granular material angle is less
than the angle of repose, the flow velocity becomes zero.

Definition of the flux term, F, shows that it is not only a function
of the vector of unknowns, but also a function of the bed slope, h(x).
The system of model Eq. (14) can be expanded as

@thþ @xðqÞ cos h ¼ �q@xðcos hÞ
@tqþ @xðhu2Þ cos hþ @xðgKh2

=2Þ cos3 h

¼ �hu2
@xðcos hÞ � 3gKh2

=4 cos h@xðcos2 hÞ
�gh cos hdxb� gh2

=4 cos h@xðcos2 hÞ þ I= cos h

8>>>><>>>>: ð17Þ

The non-conservative form of the model Eq. (17) is

@tW þ Aðh;WÞ@xW ¼ Gðh;WÞ ð18Þ

where G(h, W) = G1 + G2 + @hF + T and @hF = G3 + G4.

G3 ¼
0

�3gk h2

4 cos h@xðcos2 hÞ

" #
; G4 ¼

�q@xðcos hÞ
� q2

h @xðcos hÞ

" #

A(h, W) is the Jacobean matrix of the system of model Eq. (14) as

Aðh;WÞ¼
0 cosh

�u2 cos2 hþgkh2 cos3 h 2ucosh

� �
¼

0 1
�u2þc2 2u

264
375cosh

ð19Þ

In this matrix u = q/h is the averaged velocity of the flow. The local
eigenvalues, kl, and the local eigenvectors, jl, of the coefficient
matrix A can be calculated as

kl ¼ ½u� c� cos h and jl ¼
1

u� c

� �
ð20Þ

where c = (gKh cos2h) is a specific wave speed and l = 1, 2.
The computational domain is subdivided into constant intervals

of size Dx as shown in Fig. 2. The ith grid cell is denoted by Ii = [xi�1/

2, xi+1/2] [55]. For the sake of simplicity, the time step, Dt, is also
supposed to be constant and tn = nDt. xi+1/2 = iDx and xi = (i � 1/
2)Dx is the center of the cell Ii. Wn

i denotes the numerical approx-
imation of the average value over the ith cell at time tn as [55]

Wn
i ffi

1
Dx

Z xiþ1=2

xi�1=2

Wðx; tnÞdx ð21Þ
Fig. 2. Illustration of the proposed finite volume method for updating the cell
average Wn

i by the intermediate values of fluxes f nþ1=2
i�1=2 at the cell edges, shown in x–

t space.
3.1. Modified Q-scheme of Roe

The Q-schemes are a family of three point upwind schemes cor-
responding to numerical fluxes, /0, of the form [16]

/0ðY1; Y2Þ ¼
FðY1Þ � FðY2Þ

2
� 1

2
jQðY1; Y2ÞjðY1 � Y2Þ ð22Þ

For each Q-scheme, Q is a matrix characteristic having a continuous
dependence on the two state values of Y1 and Y2. For example, in the
Roe scheme which is based on a linearization of the flux, Q is a diag-
onalizable matrix which satisfies the property of conservation
across discontinuities as follows [76],

FðY1Þ � FðY2Þ ¼ QðY1;Y2ÞðY1 � Y2Þ ð23Þ

Roe proposed to define Q as the Jacobian matrix, A, evaluated at

some state W
_

¼W
_

ðY1;Y2Þ known as the Roe average of Y1 and Y2

[76].
3.1.1. First step
The primitive form of the proposed modified Q-scheme of Roe

with upwinding the source terms for the system of model Eq.
(14) is [31,38]

W�
i ¼Wn

i þ r Fnþ1=2
i�1=2 � Fnþ1=2

iþ1=2


 �
þ r Pþi�1=2Sn

i�1=2 þ P�iþ1=2Sn
iþ1=2


 �
þr Pþ2;i�1=2Tn

i�1=2dxþ P�2;iþ1=2Tn
iþ1=2dx


 �
ð24Þ

Wi ¼ hi qi½ � is the unknown matrix, W�
i ¼ hnþ1

i q�i

h i
is the pre-

dicted states at the first step and r = dt/dx. The numerical fluxes
are calculated as [16]

Fi�1=2 ¼
1
2
fFðWi�1Þ � FðWiÞ � P1;iþ1=2dWiþ1=2g ð25Þ

where P1;iþ1=2 ¼ jiþ1=2jDiþ1=2jj�1
iþ1=2; dWiþ1=2 ¼Wiþ1 �Wi and

jDiþ1=2j ¼
jk1;iþ1=2j 0

0 jk2;iþ1=2j

� �
. In this diagonal matrix kiþ1=2, and

ji+1/2, are the local eigenvalues and eigenvectors of the Jacobean
matrix Ai+1/2 which is

Aiþ1=2 ¼¼
0 1

��u2
iþ1=2 þ c2

iþ1=2 2�uiþ1=2

" #
cos hiþ1=2 ð26Þ

The coefficient matrix A is evaluated at the Roe’s intermediate
states:

�uiþ1=2 ¼
ffiffiffiffiffiffiffiffiffi
hiþ1

p
uiþ1 þ

ffiffiffiffi
hi

p
uiffiffiffiffiffiffiffiffiffi

hiþ1

p
þ

ffiffiffiffi
hi

p ; hiþ1=2 ¼
hiþ1 þ hi

2
;

cos hiþ1=2 ¼
cos hi þ cos hiþ1

2
; cos2 hiþ1=2 ¼

cos2 hi þ cos2 hiþ1

2
;

cn
iþ1=2 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gK

hn
iþ1 þ hn

i

2
cos2 hiþ1=2

s
The numerical source term is given by

Siþ1=2 ¼ S1;iþ1=2 þ S2;iþ1=2 þ @hFiþ1=2

¼ S1;iþ1=2 þ S2;iþ1=2 þ S3;iþ1=2 þ S4;iþ1=2 ð27Þ

where

S1;iþ1=2 ¼
0
�ghiþ1=2 cos hiþ1=2

" #
dbiþ1=2;

S2;iþ1=2 ¼
0
�gh2

iþ1=2=4 cos hiþ1=2

" #
dðcos2 hÞiþ1=2;

S3;iþ1=2 ¼
0

�3gKh2
iþ1=2=4 cos hiþ1=2

" #
dðcos2 hÞiþ1=2;

S4;iþ1=2 ¼
�qiþ1=2

�q2
iþ1=2=hiþ1=2

" #
dðcos hÞiþ1=2
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and

dbiþ1=2 ¼ biþ1 � bi; dðcos hÞiþ1=2 ¼ cos hiþ1 � cos hi; dðcos2 hÞiþ1=2

¼ cos2 hiþ1 � cos2 hi

The numerical source term, Gi+1/2, is upwinded by applying the pro-
jection matrices [38]

P�iþ1=2 ¼
1
2
jiþ1=2ðId� sgnðDiþ1=2ÞÞj�1

iþ1=2 ð28Þ

where Id is the identity matrix and

sgnðDiþ1=2Þ ¼
sgnðk1;iþ1=2Þ 0

0 sgnðk2;iþ1=2Þ

� �
:

Ti+1/2 is the Coulomb friction term defined as

Tiþ1=2 ¼
o

Iiþ1=2= cos hiþ1=2

� �
, where [34]

Iiþ1=2 ¼
I1;iþ1=2 þ I2;iþ1=2

scrit;iþ1=2

�
if jqiþ1=2j >

Dtrc;iþ1=2

cos hiþ1=2

otherwise
ð29Þ

and [34]

I1;iþ1=2 ¼ �ghiþ1=2 cos2 hiþ1=2sgnð�uiþ1=2Þ tan d

I2;iþ1=2 ¼ �hiþ1=2�u2
iþ1=2

sin hiþ1 � sin hi

Dx
sgnð�uiþ1=2Þ tan d cos hiþ1=2

rc;iþ1=2 ¼ ghiþ1=2 cos2 hiþ1=2 tan d0

scrit;iþ1=2 ¼ ghiþ1=2 cos2 hiþ1=2fKðbiþ1 � bi þ hiþ1 cos2 hiþ1

�hi cos2 hiÞ=Dxþ ð1� KÞððbiþ1 � biÞ=Dx
þðhiþ1=2=4Þðcos2 hiþ1 � cos2 hiÞ=Dxg

In the first step, the Coulomb friction term is only included in the
Roe correction part [34] with the projection matrix:

P�2;iþ1=2 ¼ �
1
2
jiþ1=2sgnðDiþ1=2Þj�1

iþ1=2 ð30Þ

The proposed Q-scheme of Roe can be re-written in a more general
form as

W�
i ¼Wn

i þ r df nþ1=2;þ
i�1=2 � df nþ1=2;�

iþ1=2


 �
ð31Þ

where Wnþ1=2
i is supposed to be the vector of unknowns computed

at the first step for dt
2 Wnþ1=2

i ¼Wn
i þ r

2 df n;þ
i�1=2 � df n;�

iþ1=2


 �
 �
and

df nþ1=2;	
i�1=2 ¼ df	i�1=2 Wnþ1=2

i ;Wnþ1=2
i�1


 �
is a generalized Roe flux differ-

ence computed as

dfnþ1=2;	
iþ1=2 ¼ 1

2
f�Fnþ1=2

iþ1 	 Fnþ1=2
i � Sn

iþ1=2 � P1;iþ1=2dWnþ1=2
iþ1=2

þ P2;iþ1=2ðSn
iþ1=2 þ Tn

iþ1=2dxÞg ð32Þ

The vector of unknowns, W�
i ¼ h�i q�i

� 

, is calculated by Eq. (32)

without considering the interaction between the granular material
and the non-erodible bed which is defined by the Coulomb friction
term, T. In the second step, the granular flow heights remain the

same, i.e. hnþ1
i ¼ h�i , but the predicted values of flow velocity, q�i ,

will be modified based on the effects of the Coulomb friction to
compute the state values corresponding to the next time step,

Wnþ1
i ¼ hnþ1

i qnþ1
i

h i
.

3.1.2. Second step
In this step, the state values, W�

i ¼ h�i q�i
� 


, predicted in the
first step, are applied to calculate the updated values of flow veloc-
ity qnþ1

i , based on the following equations [34].
qnþ1
i ¼ ðq�i þ I�1;i þ I�2;i


 �
Dt= cos hi

0

(
if jq�i j > r�c;iDt= cos hi

otherwise
ð33Þ

where [34]

I�1;i ¼ �0:5fðc�i�1=2Þ
2 þ ðc�iþ1=2Þ

2g cos hisgnðq�i Þ tan d

I�2;i ¼ �0:5ðh�i�1=2 þ h�iþ1=2Þu�
2

i ðsin hiþ1=2 � sin hi�1=2Þsgnðq�i Þ

 tan d cos hi=Dx

r�c;i ¼ 0:5fðc�i�1=2Þ
2 þ ðc�iþ1=2Þ

2g cos hi tan d0; c�iþ1=2

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh�i þ h�iþ1Þ=2 cos hiþ1=2

q
Now the state values of the next time step, Wnþ1

i ¼ hnþ1
i qnþ1

i

h i
,

are calculated. Observe that when the Coulomb friction term is less
than the critical resistance of the bottom against the flow, |T| < rc,
the granular material stops moving, q = 0. In fact, the numerical
treatment of the Coulomb friction term acts like a predictor–correc-
tor method. In the first step, this term is only considered in the unc-
entered part of the scheme. Then, the predicted value of q�i is
corrected using Eq. (33) in the second step.

3.2. Numerical scheme properties

More considerations and properties of the proposed numerical
scheme are as follows:

3.2.1. Order of accuracy
The scheme introduces a second-order approximation of the

system of model Eq. (14) in both space and time,
Wnþ1

i ¼Wn
i þ OðDx2;Dt2Þ. To achieve the second order of accuracy

in time, the intermediate values of fluxes at tn+1/2, Fnþ1=2
iþ1=2 and

Fnþ1=2
i�1=2 , are applied for updating the state values, Wn

i , based on the
numerical approach introduced by Lax and Wendroff in 1960 [54].

3.2.2. CFL condition
Regarding the stability requirements, the following CFL (Cou-

rant–Friedrichs–Lewy) condition is applied in the present model
[29]

maxfkkl;i�1=2k1;1 6 l 6 2;0 6 i 6 mgDt=Dx 6 c ð34Þ

where 0 < c 6 1 is a constant, kl;i�1=2 is the eigenvalues of the Jaco-
bean matrix A and m is the number of computational cells.

3.2.3. Critical flow fix
In Roe-type schemes, the fluxes may not be computed correctly

when the flow is critical [21] or more generally when one of the
eigenvalues of the Jacobean matrix A goes to zero [26]. As it is well
known, the Froude number of a critical flow, Fr = u/c, is equal to
one [55]. It means that one of the eigenvalues, k1 ¼ ðu� cÞ cos h,
of the Jacobean matrix A vanishes in the intercells where the flow
is critical. When any of the eigenvalues of the Jacobean matrix A
are zero, the numerical viscosity of the scheme disappears which
may cause inappropriate numerical behavior in these situations
[26]. The most applied correction for these situations is the Harten
regularization [41]. He proposed to increase the near zero eigen-
values based on the following equation by choosing a small param-
eter e0 [41].

jkj� ¼ jkj þ 0:5 ð1þ sgnðe0 � jkjÞ k2 þ e02

2e0
� jkj

 !( )
ð35Þ
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In this method e0 should be selected arbitrary. In the present model,
a better numerical solution is applied which increases the near zero
eigenvalues in critical cells based on the right, kR, and the left, kL,
eigenvalues of the critical cell [78] as

jkj� ¼ k2

Dk
þ Dk

4
When � Dk=2 < k < Dk=2 ð36Þ

where Dk ¼ 4ðkR � kLÞ [78]. Then, the flux terms are computed
based on these modified eigenvalues jkj�.

3.2.4. Wet/dry treatment
As it mentioned before, the proposed method of Castro et al.

[25] is employed for numerical treatment of wet/dry fronts, in
the present model. In this approach, a simple nonlinear Riemann
problem will be considered at intercells where wet/dry transitions
happen. The exact solutions of this problem are applied to calculate
the numerical fluxes at the related intercell [25].

In Roe type schemes, with Roe linearization of the Jacobean
matrix a linear Riemann problem is considered in each intercell,
xi+1/2, as follows [76]

@tW þ A@xW ¼ 0
Wðx; tnÞ ¼Wn

i x < xiþ1=2

Wðx; tnÞ ¼Wn
iþ1 x > xiþ1=2

8><>: ð37Þ

When a wet/dry front is detected in the intercell xi+1/2, i.e. hi > 0 and
hi+1 = 0, the linear Riemann problem (37) is replaced by a nonlinear
one [25]:

@tW þ @xFðWÞ ¼ 0
Wðx; tnÞ ¼Wn

i x < xiþ1=2

Wðx; tnÞ ¼Wn
iþ1 x > xiþ1=2

8><>: ð38Þ

The choice of these nonlinear problems relies on the bed level, b(x),
at the both sides of the wet/dry front [25]. As it can be observed in
Fig. 3, W+ and W� are considered to be the exact solutions at the right
and the left sides of the intercell xi+1/2 where a wet/dry transition is
happening. A summary of the exact solutions corresponding to these
nonlinear problems at different situations are as follows [25].

(a) The bottom is flat; i.e. bi = bi+1 [25]� �8

Wþ ¼W� ¼

0
0

ui < �2ci

ðui þ 2ciÞ2=9g

ðui þ 2ciÞ3=27g

" #
�2ci 6 ui < ci

Wi ui P ci

>>>>>><>>>>>>:
ð39Þ
where ci ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gKhi cos2 hi

p
is the characteristic wave speed.

(b) The flow is moving down a slope; i.e. bi > bi+1 [25]� �

Wþ ¼W� ¼

0
0

if ui < �2ci ð40Þ
� � " # " #

W� ¼

h0

q0

¼ ðuiþ2ciÞ2=9g

ðuiþ2ciÞ3=27g
and Wþ ¼ h0

qi

if �2ci6ui < ci

ð41Þ
where h0 is the greatest root of the polynomial (42). In this
case, the flow is critical at the left edge of the intercell and
subcritical at the right edge [25].
PLðh0Þ ¼h03þðbiþ1�bi�Q2
0=ð2gh2

0Þ�h0Þh02þq2
0=ð2gÞ ð42Þ
" #
W� ¼Wi and Wþ ¼ h0

qi

if ui P ci ð43Þ
where h0 is the least positive root of the following polyno-
mial. In this case, the flow is supercritical in both sides of
the intercell [25].
 �

PLðh0Þ ¼ h03 þ biþ1 � bi � q2

i =ð2gh2
i Þ � hi h02

þ q2
i =ð2gÞ ð44Þ
(c) The granular flow is moving up a slope; i.e. bi < bi+1 [25]" #

W� ¼

~h

0

where ~h¼
o ui6�2ci

ðui=2þciÞ=g �2ci <ui60
h0 ui >0

8><>: and Wþ ¼
0
0

� �
ð45Þ
where h0 is the greatest root of the following polynomial [25]:
PLðh0Þ ¼ h03 � hih
02 � h2

i h0 þ h3
i � 2q2

i h0=ðghiÞ ð46Þ
In this case, the granular flow is not able to move forward,
because either the slope acts as an obstacle for the flow if [25]�
ui 6 0
biþ1 P hi þ bi

ð47Þ
or the wet cell has no enough mechanical energy if [25]�

ui P 0
biþ1 � bi > hi þ q2

i =ð2gh2
i Þ � 3q2=3

i =ð2g1=3Þ
ð48Þ
" #

W� ¼Wi and Wþ ¼ h0

qi

ð49Þ
where h0 is the least positive root of the following polynomial
[25]: 
 �

PLðh0Þ ¼ h03 þ bi � biþ1 � q2

i =ð2gh2
i Þ � hi h02 þ q2

i =ð2gÞ

ð50Þ
In this case, the flow is supercritical in the wet cell. It has
enough mechanical energy to advance toward the slope
and go up. This situation happens when [25]�
ui > 0
biþ1 � bi < hi þ q2

i =ð2gh2
i Þ � 3q2=3

i =ð2g1=3Þ
ð51Þ
In the last case, the granular flow has energy enough to go up
the slope. The nonlinear Riemann problem in this condition is
not easy to solve. Therefore, the scheme is applied without any
modifications [25].

It should be noted that in all the mentioned cases corresponding
to wet/dry transitions, the bed level at the left and the right edges
of the intercell, where a wet/dry transition happens, are supposed
to be the same as the bed level at the left and the right mesh points,
respectively (Fig. 3) [25]. In fact, it is supposed that there is a step
in the related intercell. In Fig. 3, a wet/dry front is considered in
intercell xi+1/2, i.e. ith cell is a wet cell (hi – 0) and (i + 1)th cell is
a dry one (hi+1 – 0). Since bi < bi+1, the case (c) of the wet/dry treat-
ment should be considered. Hence, the exact solutions of the non-
linear Riemann problems, W±, can be calculated by Eqs. (45)–(51).

In the present model, there is another source term related to the
bed curvature, S2, which also affects the wet/dry transitions. We
propose to presume no curvature at the both sides of the related
intercell for calculating the numerical fluxes, df	iþ1=2. As it is shown
in Fig. 3, a flat bed can be presumed in the both sides of the inter-
cell containing a wet/dry transition. The present numerical results
demonstrate that with this modification, the proposed numerical
scheme becomes a complete well-balanced scheme. It satisfies all



Fig. 3. (a) An example of a wet/dry front and (b) the local change of the bed topography because of the considered numerical wet/dry treatment; Wi ¼ ½hi qi�– 0 and
Wiþ1 ¼ ½hiþ1 qiþ1� ¼ 0 are the state values at the ith and i + 1th mesh points, respectively. W� ¼ ½h� q�� and Wþ ¼ ½hþ qþ� are the exact solutions of the considered non-linear
Riemann problem at the left and the right sides of wet/dry intercell xi+1/2, which are applied to calculate the numerical fluxes in the wet/dry cell i.
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the stationary solutions regarding water at rest with or without
wet/dry transitions. It is also able to deal with all different cases
of wet/dry transitions.

3.2.5. Stationary solutions
Considering no movement for the granular mass means u(x) = 0.

In this condition, the system of model Eq. (17) results in

@x gK
h2

2

 !
cos3 h ¼ �3

4
gKh2 cos h@xðcos2 hÞ � gh cos hdxb

� g
h2

4
cos h@xðcos2 hÞ þ I

cos h
ð52Þ

where I < rc ¼ gh cos2 h tan d0. Which leads to the following
inequality.

jK cos2 h@xhþ 3K þ 1
4

h@xðcos2 hÞ þ dxbj 6 tan d0 ð53Þ

which is a first order differential equation and can be easily solved
for each arbitrary boundary condition. This relation demonstrates
dependence of stationary flow surface profile on the values of K
and the bed curvature. It confirms that the flow surface slope should
be smaller than tan d0 [34]. When K = 1, the surface profile is inde-
pendent of the bed curvature:

j@xðbþ h cos2 hÞj 6 tan d0 ð54Þ

When the fluid is water, i.e. d = / = 0, the stationary solution
verifies,

uðxÞ ¼ 0
bðxÞ þ h0ðxÞ ¼ cst

�
ð55Þ

where h0(x) = H(x) cos h(x) = h(x) cos2h(x). For a granular material,
since the inequality (53) is satisfied, there will be no movement
in the granular material and the flow surface will be preserved.
Otherwise, the granular profile will transfer to a new stable state
depending on the values of the bed curvature, the internal and
the basal friction angles so that its angle becomes less than the
angle of repose all over the non-erodible bottom.

For better understanding of the performance of the present
model using the proposed scheme, its flowchart has been illus-
trated in Fig. 4. As it can be seen in this flowchart, the distinctive
modifications made to the general Q-scheme of Roe [38] in the
present model are:

– Using the intermediate flux terms, df nþ1=2;	
i�1=2 ¼ df	i�1=2ðW

nþ1=2
i ;

Wnþ1=2
i�1 Þ, to update the state values up to second order in both

time and space.
– Upwinding the source term S2 related to the bed curvature in

the same way of flux terms.
– Applying the nonlinear wet/dry algorithm of Castro et al. [25]
modified for dealing with the bed curvature.

– Altering the critical flow simulation by the proposed method of
Van Leer et al. [78].

– Employing a two-step semi-implicit discretization for the
source term T including the Coulomb friction effects and consid-
ering the simultaneous flowing/static regions of the granular
flow by a critical basal resistance term, based on the proposed
method of Fernández-Nieto et al. [34].

4. Numerical tests

In this section, a series of experimental results and numerical
tests are simulated using the present model to verify the improved
properties of the proposed scheme. The ability of the model in pre-
serving the stationary solutions, dealing with different situations of
wet/dry transitions, critical flows and adverse slopes is been exam-
ined in the following numerical simulations. The estimated values
of granular flow thicknesses, velocities, maximum run up and final
deposition profile is also compared with their experimental mea-
surements. It should be mentioned that in all the following simu-
lated cases, the runtime is less than 2 min with a 2.2 GHz Intel
Core 2 CPU.

4.1. Stationary solutions

To confirm the ability of the proposed scheme in preserving the
steady state corresponding to water at rest, i.e. u = 0 and b + h cos2 -
h = cst, a simple numerical test is performed as follows. An arc-
shaped slope (1 m radius) is considered in order to have variable
values of both the bed slope and the bed curvature. Consequently,
all the source terms are involved in simulation. The bottom topog-
raphy and the initial conditions are defined as (Fig. 5a)

bðxÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�ðx�1Þ2

q
�1; hðxÞ¼

0 bðxÞP 0:235
0:235�bðxÞ bðxÞ<0:235

�
; uðxÞ¼0

ð56Þ

The model parameters are chosen as Dx = 0.01 and r = dt/dx = 0.1. At
first, we suppose no internal and basal friction angles (/ = d = 0). It
means that we have a layer of water at rest. It helps to make sure
that the scheme is a complete well-balanced scheme. The numerical
results are illustrated in Fig. 5. As it can be observed in Fig. 5b, con-
sidering no wet/dry treatment leads to numerical instability due to
appearance of negative heights at the place of wet/dry transition.
On the other hand, with applying the proposed wet/dry treatment
of Castro et al. [25], no negative height emerges to make the numer-
ical results unstable. Nevertheless, the steady state solution is not
still satisfied completely. As it mentioned in Section 3.2, in the pres-
ent model, there is a new source term regarding the bed curvature



Fig. 4. The proposed scheme flowchart, T is the considered computational time.
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which should be also treated properly when a wet/dry transition
happens. The artificial numerical wave caused by this term in the
wet/dry front is exemplified in Fig. 5c. In accordance with Fig. 3,
when a wet/dry transition occurs, for example at intercell xi+1/2, it
is proposed to consider no bed curvature for calculating the numer-
ical fluxes df�iþ1=2 at the left and the right sides of the intercell, in the
present model. With this modification the proposed numerical
scheme becomes totally well-balanced.

For a granular mass with the same initial condition, since the
inequality (53) is satisfied there will be no movement in the gran-
ular material and the scheme preserves the flow surface profile as
it is shown in Fig. 5a. The constant value of 30� is been considered
as the basal friction angle, d. With the same conditions as Eq. (56)
and the same model parameters, the new stable states of granular
mass with different values of K are shown in Fig. 6. For K < 1.5 in
combination with the considered bottom curvature, the inequality
(53) will be satisfied which preserves the flow surface without any
changes. As it can be observed in Fig. 6, the final stationary profiles
of the granular mass are beneath its initial stationary profile.

4.2. The effects of the bed curvature and upwinding the source terms

Vázquez-Cendón [79] confirms the importance of upwinding
the source terms containing the bed friction, T, and the bed level
change, S1. In this section, some of the experiments of Hutter
et al. [47,48] are simulated with the present model to verify the
importance of upwinding the source term S2 including the effects
of the bed curvature. These experiments included the release of a
granular mass down a 40–60� straight slope, passing through a
curved transition (246 mm radius) and depositing on a horizontal
surface. Hutter et al. [47] considered two types of granular mate-
rial: plastic particles with bulk density of 450 kg/m3 representing
snow avalanches and glass beads with density of 1730 kg/m3 rep-
resenting sand. The present model successfully estimated the flow
thicknesses and velocities for both type of material. The computa-
tional errors of less than 4% for both flow height distribution (Eq.
(57)) and flow velocities confirm the ability of the present model
in estimating the properties of different types of granular flows.

The numerical results are compared with corresponding exper-
imental data in Figs. 7 and 8 for experiment no. 113. In this exper-
iment, the plastic particles are released on the 60� slope. The
internal and basal friction angles are 29� and 23�, respectively
and the model parameters are Dx = 1.0 and r = 0.01.

Fig. 7 shows the predicted depth flow profiles at different times
from the beginning to deposition of the granular flow. The results
demonstrate good agreement between the numerical and the
experimental data with the computational error less than 5% for
flow thickness distribution (Fig. 7a). As it mentioned in Section 2,
the equations are transferred to a local coordinate system along
the bed to consider the bed curvature effects on the sliding mass
deformations. To illustrate the importance of the centripetal accel-
eration of the grains movement due to the bed curvature, the
numerical results of the present model are compared with and
without considering the bed curvature effects in Fig. 7a and b.
The results indicate the strong effects of the interactions between
the flow and the curved part on the granular flow properties. For a
better visual comparison, the flow profiles and their corresponding
velocities passing through the curved transition are illustrated in
Fig. 7c and d, respectively. The curved part of the flume is located
in the spacial interval of x 2 [80105]. As it can be observed in Fig. 7c
and d, the centrifugal forces acting on the flow through this part act
like a local obstacle, slowing the flow, rising up the flow thickness
and decreasing its energy. Both profiles (with and without consid-
ering the bed curvature) have the same velocity of about 42.8 m/s
close to the curved part (Fig. 7d). With neglecting the bed curva-
ture effects, avalanche passes through the curved part with an
increased velocity of about 45 m/s to the horizontal part which
leads to an up to 35% overestimated velocity on the horizontal part.
Consequently, the granular mass deposits farther than the correct
position on the flat surface (Fig. 7b). On the other hand, with con-
sidering the bed curvature effects, the granular mass flow is decel-
erated until it reaches to the velocity of about 29.8 m/s at the end
of the curved part (Fig. 7d). The effects of this deceleration can be
observed in Fig. 7c as increasing in the flow thickness compared
with the flow thickness without curvature effects. This fact verifies
that the curved part is acting like a local obstruction.

To compare the effects of centered discretization of the source
terms with upwind discretization, the landslide deposit predicted
based on upwinded source terms S1 and S2, centered source terms
S1 and S2 and upwinded S1 and centered S2 are illustrated in Fig. 8.
As it can be observed in this figure, with centered discretization of
each source term, S1 or S2, or both the length of the avalanche
deposition will be overestimated while its depth is simultaneously
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underestimated (Table 2). These results can be a sign of artificial
numerical dispersion which can be avoided by upwinding the
source terms. Accordingly, like the other kinds of source terms,
upwinding the source term S2 related to the bed curvature
decreases the artificial numerical dispersion and makes the stable
region of the scheme bigger.

The numerical results of Hungr [43], who applied an integrated
model based on a lagrangian numerical solution with the SH
assumptions for the same problem, is also compared with the pres-
ent model in Fig. 8. As it can be observed in this figure and Table 2,
the present model estimates the maximum height, length and
depth profile of the final deposition closer to the experimental data
than the numerical results of Hungr [43]. The computational error
of deposition profile in the last column of Table 2 is computed as
Err ¼
Xm

i¼1

jðhexpi
� hnumi

Þ=hexpi
j

 !
=ðmþ 1Þ ð57Þ

where hexpi
are the measured values and hnumi

are the computed val-
ues of deposition depths, and m is the number of computational
grids.

As it can be observed in Fig. 7a, the solutions are free of numer-
ical oscillations before the sliding mass starts to shape the final
deposition. On the other hand, when the granular flow is slowing
down to stop, the numerical results reveal some fluctuations on
the avalanche surface (Figs. 6 and 8). These oscillations may be
caused by the effects of critical stress which is trying to stop the
granular flow when its angle is less than the angle of repose.
Accordingly, the granular profile starts to change to a stable geom-
etry which takes more time than the final deposition.

Finally, temporal positions of the flow leading edge are com-
pared with the experimental measurements in Fig. 9. The com-
puted values of the flow front position are in a good agreement
with the experimental data with computational error less than
4%. As it mentioned before, when the effects of the bed curvature
are neglected the flow velocity is overestimated by more than 35%.

It should be noticed that in all simulated experiments of Hutter
et al. [47], the avalanche tail moves very slowly in comparison with
the experimental measurements. It is probably due to considering
a constant friction angle at the bottom, d, while it dynamically
reduces as the avalanche accelerates [1,38]. At high flow rates,
the granular temperature may increase near the bottom boundary
which leads to granular mass fluidization and consequent
reduction of d. On the other word, the front of a fully developed
avalanche may acts like a granular solid, while its tail acts
more like a fluid [50]. Moreover, Hungr [43] explained another
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Table 2
Relative errors (%) for computed values of deposit profile, length and maximum
height; comparison between the numerical results of the present model with
different discretization of the source terms, S1 and S2 and the numerical results of
Hungr [43] with the experiment no. 113 of Hutter et al. [47].

Numerical considerations Maximum
height

Deposition
length

Depth
profile

Upwinded S1 and S2 1.80 7.72 4.15
Centered S1 and S2 18.41 24.85 9.08
Upwinded S1 and

centered S2

18.34 26.28 9.29

Hungr [33] 15.59 15.83 7.96
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shortcoming of SH model, i.e. considering negligible depth gradi-
ents due to shallow flow assumption of parallel flow lines, which
is a further effective factor in slowing down the trailing flow
[43]. The curved flow lines caused by a significant depth gradient
create a pressure component nonparallel to the bed. This pressure
component originates additional shear stresses close to the bottom
which are not considered in classic SH model. He proposed a mod-
ified definition for the resisting shear stress at the flow bottom
with reducing the basal friction angle by a certain fraction of this
additional stress [43]. Underestimated velocities of ensuing flow
affect the maximum travel distance (1.25% underestimated) and
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especially the final deposition length (7.72% overestimated) of the
slide. Proper estimation of trailing flow behavior is important to
predict the topographic changes of the bottom after landslide. Nev-
ertheless, the primary purpose of natural granular flow modeling is
to estimate their maximum possible travel distance and the predic-
tion of flow tail is of less practical importance. This fact makes the
present model an applicable means for analyzing the real hazards.

4.3. Adverse slope

Predicting the behavior of granular flow against protective
structures such as barriers is an important aspect of risk assess-
ment [57,62,66]. It is also applicable for testing the wet/dry treat-
ment method when the flow is going up against a slope. The ability
of the proposed numerical framework in estimating the maximum
runup against an obstacle is verified by simulating one of the
experiments performed by Mancarella and Hungr [57]. In these
experiments, a reservoir of dry sand with the bulk density of
1630 kg/m3 is released down a 29� slope, passing through a curved
transition with the radius of 0.1 m and running into an adverse 33�
slope [57]. The internal and basal friction angles are measured as
30.9� and 21.7�, respectively [57].

The final profile of the granular flow and the flow front veloci-
ties are shown in Fig. 10, with and without considering numerical
treatment for wet/dry transitions. The numerical results are in a
good agreement with corresponding experimental data with com-
putational error less than 4% for the flow thicknesses. As it can be
observed in Fig. 10b, the granular flow reaches to the maximum
distance of 1.86 m on the reversed slope at time 1.35 s which is
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4.4. Critical flow

A simple dam break problem is simulated with the present
model to show the effects of applying the critical flow fix (CFF)
method. A 0.2 m high, 0.4 m long reservoir of sand is suddenly
released down a dry bed [43]. The granular material has the bulk
density of 1630 kg/m3 with the inertial friction angle of / = 31.9�
and the basal friction angle of d = 21.7� [43].

Comparison between the numerical and the experimental data
can be observed in Fig. 11. The granular flow is critical around the
gate, x ¼ 0:4 m in Fig. 11a, where the Froude number is one
(Fig. 11b). In this area without using the CFF method, the scheme
is not able to show the flow profile correctly due to vanishing
one of the eigenvalues of the Jacobean matrix A. With increasing
the near zero eigenvalue by applying the CFF correction, the
numerical results become correct and smooth enough. Fig. 11c
and d shows the final profile of granular material and its equivalent
Froude numbers, respectively. When the flow becomes subcritical,
Fr < 1, all over the computational domain (Fig. 11d), the scheme
works properly even without CFF correction. Anyway, the effects
of incorrect fluxes at critical regions make the numerical results
far away from the experimental results (Fig. 11c).
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4.5. Order of accuracy

The following numerical test is performed by the present model
to illustrate the decreasing trend of the scheme error against differ-
ent time steps, Dt, and mesh sizes, Dx. As it can be observed in the
right side of Fig. 12b, a wedge-shaped granular mass with the same
length and height of 0.1 m is released down a 40� slope passing
through a curved transition (0.6 m radius) to a horizontal plane.
The inclined, curved and straight parts of the considered topogra-
phy are 1.175 m, 0.314 m and 0.8 m long, respectively. The internal
and the basal friction angles are supposed to be 30� and 23�, cho-
sen as common values of friction angles for dry sand, respectively
[47,74]. The values of flow thickness corresponding to the final
granular mass profile (avalanche deposit) are applied to calculate
the numerical errors. The sum of absolute difference (L1-norm)
[55] of the flow thicknesses is calculated for different values of
time steps, Dt, or mesh sizes, Dx, as [55]

L1 ¼ kh1 � h2k1 ¼
Xm

i¼1

jh1;i � h2;ij ð58Þ

where h1 is the predicted flow thickness and m is the number of
computational mesh points. h2 is equal to the exact values of flow
depth which in case are supposed to be the predicted values for
Dx = 0.003 and Dt = 0.001 to compare the L1-norm based on differ-
ent values of Dx and for Dx = 0.01 and Dt = 0.0004 to compare the
L1-norm based on different values of Dt.

The computed errors against both time step and cell size are
plotted in Fig. 12. As it can be observed in Fig. 12a, the absolute
error (L1-norm) of the present scheme has an approximate second
order descending trend against decreasing both Dx and Dt. In
Fig. 12b, the absolute errors are plotted against different length
steps and time steps in a log–log graph. According to this figure,
the slopes of the error curves are about 1.91 against Dx and 1.7
against Dt. The difference of these slopes with the expected value
of 2 represents the existence of other sources of error. With consid-
ering a constant Dx or Dt and changing the other one, we have dif-
ferent values of r = Dt/Dx which has noticeable effects on
numerical results regarding avalanche properties and its deposit
profile. Therefore, it may change the consequent computational
errors. Besides, in the present model the granular mass has stop
points where its angle is less than the angle of repose. This stop
points also change the granular mass properties. They may happen
everywhere along the flow path depending on various factors such
as avalanche depth and velocity, internal and basal friction angle,
model parameters (Dx, Dt and r) and bottom topography. Finally,
it should be remembered that error curves are plotted in log scale
so a modest difference on the error values can correspond to a very
large difference in magnitude.

5. Conclusions

In this work, we introduced a numerical solution of granular
type flows based on shallow SH type model using a well-balanced
Roe type finite volume scheme. The model is derived in a local
coordinate system along the non-erodible bottom to consider its
curvature effects. The proposed scheme is based on the Q-scheme
of Roe, and upwinding the source terms related to the bottom level
and the bed curvature. Numerical results confirm the strong effects
of the bed curvature on the granular flow characteristics and the
importance of upwinding the source term corresponding to the
bed curvature like the other source term. Centered discretization
of this source term can originate numerical spurious waves and
artificial dispersion. The numerical method constructed in this
way completely satisfies the C-property.

The Coulomb friction term is discretized using a two-step semi-
implicit approach. This approach prepares the proposed scheme to
simulate the static regions caused by frictional resistance of the
non-erodible bed maintaining stability. These static areas may
appear when the flow is supposed to be shallow. In the present
model, the basal friction angle is supposed to be constant which
is unrealistic. To have a better estimate of flow velocities especially
at the flow trail, a time-dependent relation can be considered for
the basal friction angle based on grain temperature and grain-size
segregation.

Different situations of wet/dry transitions are numerically trea-
ted in the present model. In this model both the bed level and the
bed curvature are considered into the equations. Accordingly, it is
proposed to neglect the bed curvature at the left and the right sides
of the related intercell to calculate the numerical fluxes. This idea
is verified by the numerical results. This modified wet/dry algo-
rithm helps the proposed scheme to avoid appearance of negative
flow thickness and overestimated flow velocities. Moreover, the
scheme is able to satisfy stationary solutions including wet/dry
fronts.

Our numerical results demonstrate the efficiency of the pro-
posed numerical framework in reducing non-physical results like
negative flow heights, spurious numerical waves and artificial
numerical dispersion which are the main concerns in numerical
modeling of fluid flows. Comparison with the available experimen-
tal measurements shows that the present model applying this
modified scheme estimates the granular flow thickness, velocity
and maximum run-up with a relative error of less than 5%. These
results confirm the ability of the proposed method for natural
landslide hazards analysis. Although we have limited our investi-
gation to the case of one dimensional mathematical model in this
study, our methodology is applicable to multi-dimensional models.
In particular, the procedure can be extended for multi-layer cases
as well.
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