Adlayer Structure on Pt(111): A First-Principles Study of the Water Discharge Mechanism

Varun Rai, Masoud Aryanpour, Heinz Pitsch
Stanford University, CA, USA, 94305

A combination of Density Functional Theory (DFT) calculations and Dynamic Monte Carlo (DMC) simulations was employed to study the process of O-containing adsorbates formed from the electrochemical discharge of water on Pt(111) in acidic environment. Potential-dependent activation energy and rate-coefficients, as input for DMC simulations, were obtained for the electrochemical reactions $\text{H}_2\text{O}_{\text{ads}} \leftrightarrow \text{OH}_{\text{ads}} + \text{H}^+ + \text{e}^-$ and $\text{OH}_{\text{ads}} \leftrightarrow \text{O}_{\text{ads}} + \text{H}^+ + \text{e}^-$ using DFT calculations. From DMC simulations, we find that OH is the dominant adsorbate between 0.5 and 0.8 V, but above 0.8 V OH and O co-exist (Figure 1). Ordered structures are found for OH at 0.8 V, and for O at 0.9 V [1].

Figure 1: Snapshots of the adsorbate layer at different electrode potentials obtained from a combination of DFT and DMC simulations. Atoms: Pt (Gold), H (White), O in H$_2$O(parallel) (Red), O in H$_2$O(vertical) (Blue), O in OH (Cyan), and atomic O at the fcc site (Yellow). High coverage by O and OH at higher potentials (snapshots c and d) significantly reduces the performance of PEM fuel cells by rendering catalyst sites inaccessible to oxygen (O$_2$).

References: