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Eigenvalues and Eigenvectors

� Eigenvalue problem (one of the most important problems in the 
linear algebra): If A is an n×n matrix, do there exist nonzero 
vectors x in Rn such that Ax is a scalar multiple of x？

� Eigenvalue

A: an n×n matrix

λ: a scalar (could be zero)

x: a nonzero vector in Rn

A λ=x x

Eigenvalue

Eigenvector

Geometric Interpretation

(The term eigenvalue is from the German word Eigenwert, meaning 
“proper value”)
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Eigenvalues and Eigenvectors

� Example 1:  Verifying eigenvalues and eigenvectors.
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Eigenvalue

Eigenvector

Eigenvector

2

0

1

 
=  
 

x

� In fact, for each eigenvalue, it has 

infinitely many eigenvectors. 

For λ = 2, [3 0]T or [5 0]T are both 

corresponding eigenvectors. 

Moreover, ([3 0] + [5 0])T is still an 

eigenvector. 

� The proof is in Theorem. 7.1.
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Eigenspace

Theorem 7.1:  (The eigenspace corresponding to λ of matrix A)

� If A is an n×n matrix with an eigenvalue λ, then the set of all 
eigenvectors of λ together with the zero vector is a subspace 
of Rn. This subspace is called the eigenspace of λ.

Proof:

x1 and x2 are eigenvectors corresponding to λ

1 1 2 2(i.e.,  ,   )A Aλ λ= =x x x x

1 2 1 2 1 2 1 2

1 2

(1) ( ) ( )

( )

 

     i.e.,   is also an eigenvector corresponding to 

A A A

λ

λ λ λ+ = + = + = +

+

x x x x x x x x

x x

1 1 1 1

1

(2) ( ) ( ) ( ) ( )

(   )

 

     i.e.,  is also an eigenvector corresponding to

A c c A c c

c

λ λ

λ

= = =x x x x

x

Since this set is closed under vector addition and scalar multiplication, this set 
is a subspace of Rn according to Theorem 4.5.
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Eigenspace

Eamplex 3: Examples of eigenspaces on the xy-plane

� For the matrix A as follows, the corresponding eigenvalues are λ1 

= –1 and λ2 = 1:

Solution








−
=

10

01
A

For the eigenvalue λ1 = –1, corresponding vectors are any vectors on the x-axis

1 0
 1

0 0 1 0 0 0

x x x x
A

− −         
= = = −         

         

For the eigenvalue λ2 = 1, corresponding vectors are any vectors on the y-axis

Thus, the eigenspace corresponding to λ = –1 
is the x-axis, which is a subspace of R2.

Thus, the eigenspace corresponding to λ = 1 
is the y-axis, which is a subspace of R2.

0 1 0 0 0 0
 1

0 1
A

y y y y

−         
= = =         
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� Geometrically speaking, multiplying a vector (x, y) in R2 by the matrix A in 
the example, corresponds to a reflection to the y-axis.

0 0

0 0

0
1 1

0

x x x
A A A A A

y y y

x x

y y

          
= = + = +          

          

−     
= − + =     

     

v

Eigenspace
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Theorem 7.2:  (Finding eigenvalues and eigenvectors of a matrix A∈Mn×n )

� Let A be an n×n matrix.

(1) An eigenvalue of A is a scalar λ such that .

Finding eigenvalues and eigenvectors 

det( ) 0I Aλ − =

(2) The eigenvectors of A corresponding to λ are the nonzero

solutions of .( )I Aλ − = Θx
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� Characteristic polynomial of A∈Mn×n:
1

1 1 0det( ) ( ) n n

n
I A I A c c cλ λ λ λ λ−

−− = − = + + + +�

� Characteristic equation of A:

det( ) 0I Aλ − =

has nonzero solutions for x iff( )I Aλ − = Θx det( ) 0I Aλ − =

� Note: some definitions of the eigenvalue problem:

� homogeneous system

    ( )A A I I Aλ λ λ= ⇒ = ⇒ − = Θx x x x x

Finding eigenvalues and eigenvectors 
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Finding eigenvalues and eigenvectors 

� Example 4: Finding eigenvalues and eigenvectors
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Solution: Characteristic equation:

2

2 12
det( )

1 5

3 2 ( 1)( 2) 0

I A
λ

λ
λ

λ λ λ λ

−
− =

− +

= + + = + + =

Eigenvalue: 2 ,1 21 −=−= λλ

 2 ,1 −−=⇒ λ
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2(2) 2 λ = −
1

2

2

G.-J. E.

1

2

4 12 0
( )

1 3 0

4 12 1 3

1 3 0 0

3 3
,   0

1

x
I A

x

x s
s s

x s

λ
−     

⇒ − = =    
−    

− −   
⇒ →   

−   

     
⇒ = = ≠     

    

x

1(1) 1 λ = − 1

1

2

G.-J. E.

1

2

3 12 0
( )

1 4 0

3 12 1 4

1 4 0 0

4 4
,   0

1

x
I A

x

x t
t t

x t

λ
−     

⇒ − = =    
−    

− −   
⇒ →   

−   

     
⇒ = = ≠     

    

x

Finding eigenvalues and eigenvectors 
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Example 5: 

� Find the eigenvalues and corresponding eigenvectors for the 
matrix A. What is the dimension of the eigenspace of each 
eigenvalue?
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Solution: Characteristic equation:

3

2 1 0

0 2 0 ( 2) 0

0 0 2

I A

λ

λ λ λ

λ

− −

− = − = − =

−

Eigenvalue: 2=λ

Finding eigenvalues and eigenvectors 
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The eigenspace of λ = 2:

1

2

3

0 1 0 0

( ) 0 0 0 0

0 0 0 0

x

I A x

x

λ

−     
     

− = =     
          

x

0,  ,

1

0

0

0

0

1

0

3

2

1

≠













+













=














=














tsts

t

s

x

x

x

1 0

0 0 ,   2

0 1

:the eigenspace of corresponding tos t s t R A λ

    
    

+ ∈ =    
        

Thus, the dimension of its eigenspace is 2.

Finding eigenvalues and eigenvectors 
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Finding eigenvalues and eigenvectors 

�Notes:

(1)  If an eigenvalue λ1 occurs as a multiple root (k times) for 

the characteristic polynominal, then λ1 has multiplicity k.

(2)  The multiplicity of an eigenvalue is greater than or equal 

to the dimension of its eigenspace.

� In Example. 5, k is 3 and the dimension of its eigenspace is 2.
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Finding eigenvalues and eigenvectors 

Example 6:

�Find the eigenvalues of the matrix A and find a basis for each of the 
corresponding eigenspaces
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A

Solution: Characteristic equation:

2

1 0 0 0

0 1 5 10

1 0 2 0

1 0 0 3

( 1) ( 2)( 3) 0

I A

λ

λ
λ

λ

λ

λ λ λ

−

− −
− =

− −

− −

= − − − =

� According to the note on the 
previous slide, the dimension of 
the eigenspace of λ1 = 1 is at most 
to be 2. 

� For λ2 = 2 and λ3 = 3, the 
demensions of their eigenspaces
are at most to be 1.

Eigenvalues: 3 ,2 ,1 321 === λλλ
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1(1) 1 λ =

1

2

1

3

4

0 0 0 0 0

0 0 5 10 0
( )

1 0 1 0 0

1 0 0 2 0

x

x
I A

x

x

λ

    
    

−     ⇒ − = =
    − −
    

− −    

x

1

G.-J.E.
2

3

4

2 0 2

1 0
,   , 0

2 0 2

0 1

x t

x s
s t s t

x t

x t

− −       
       
       ⇒ = = + ≠
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0

0

1

0
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⇒ is a basis for the eigenspace corresponding to λ1 = 1. 

The dimension of the eigenspace of λ1 = 1 is 2.

Finding eigenvalues and eigenvectors 
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2(2) 2λ =

1

2

2

3

4

1 0 0 0 0

0 1 5 10 0
( )

1 0 0 0 0

1 0 0 1 0

x

x
I A

x
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0











































⇒ is a basis for the eigenspace corresponding to λ2 = 2 

The dimension of the eigenspace of λ2 = 2 is 1.

Finding eigenvalues and eigenvectors 
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3(3) 3λ =

1
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3

3
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( )
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x

x
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x

x
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−
⇒ is a basis for the eigenspace corresponding to λ3 = 3.

The dimension of the eigenspace of λ3 = 3 is 1.

Finding eigenvalues and eigenvectors 
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Eigenvalues for triangular matrices

Theorem 7.3:

� If A is an n×n triangular matrix, then its eigenvalues are the entries 
on its main diagonal.
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Eigenvalues for triangular matrices

Example 7: 

� Finding eigenvalues for triangular and diagonal matrices

Solution:

2 0 0

(a) 1 1 0

5 3 3

A

 
 

= − 
 − 

1 0 0 0 0

0 2 0 0 0

(b) 0 0 0 0 0

0 0 0 4 0

0 0 0 0 3

A

− 
 
 
 =
 

− 
  

2 0 0

(a) 1 1 0 ( 2)( 1)( 3) 0

5 3 3

I A

λ

λ λ λ λ λ

λ

−

− = − = − − + =

− − +

1 2 32,  1,  3λ λ λ⇒ = = = −

1 2 3 4 5(b) 1,  2,  0,  4,  3 λ λ λ λ λ= − = = = − =

� According to Theorem 3.2, the 
determinant of a triangular 
matrix is the product of the 
entries on the main diagonal .
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Eigenvalues and eigenvectors of L.T.

�  

:  ( ) . 

  

A number is called an eigenvalue of a linear transformation 

 if there is a nonzero vector such that 

The vector is called an eigenvector of corresponding to , 

and the set of all 

T V V T

T

λ

λ

λ

→ =x x x

x

 

 .

eigenvectors of (together with the zero 

vector) is called the eigenspace of

λ

λ
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Eigenvalues and eigenvectors of L.T.

� The definition of linear transformation functions was introduced in 
Chapter 6.

� The typical example of a linear transformation function is that 
each component of the resulting vector is the linear combination 
of the components in the input vector x.

� An example for a linear transformation T: R3→R3

1 2 3 1 2 1 2 3( , , ) ( 3 ,3 , 2 )T x x x x x x x x= + + −
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Eigenvalues and eigenvectors of L.T.

Example 8: Find eigenvalues and eigenvectors for standard matrices

�

Solution

1 3 0

3 1 0

0 0 2

Find the eigenvalues and corresponding eigenvectors for

                     A

 
 

=  
 − 

















+

−−

−−

=−

200

013

031

λ

λ

λ

λ AI 2( 2) ( 4) 0λ λ= + − =

1 2 4, 2eigenvalues  λ λ⇒ = = −

1

2

4, (1, 1, 0).

2,  (1, , 0) (0, 0, 1).

For  the corresponding eigenvector is   

For the corresponding eigenvectors are  1   and   

λ

λ

=

= − −

� A is the standard matrix for 

T(x1, x2, x3) = (x1 + 3x2, 3x1 + x2, –2x3)
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�Notes: The relationship among eigenvalues, eigenvectors, and 
diagonalization

' 3

3 3Let :  be the linear transformation whose corresponding 

standard matrix is  in Example 8, and  be a basis of   made 

up of three linearly independent eigenvectors of 

let 

 found in Example 8

T

B R

A

R R

A

→

1 2 3' { , , } {(1, 1, 0),(1, 1, 0),(0, 0, 1)}

,

i.e.,       B = = −v v v

Eigenvectors of A

Eigenvalues of A















−

−=

200

020

004

'A

1 ' 2 ' 3 '

' '

[ ( )] [ ( )] [ ( )]

the main diagonal entries are corresponding eigenvalu

Then , the matrix of  relative to the basis , defined as 

                           [   ] 

is diagonal,  sand .e

B B B

A T B

T T Tv v v

' {(1,  1,  0), (1,  1,  0), (0,  0,  1)}B = −

1for 4

           

λ =��� 2for 2

                            

λ =−���������

Eigenvalues and eigenvectors of L.T.
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Diagonalization

�Diagonalization problem: For a square matrix A, does there exist 
an invertible matrix P such that P–1AP is diagonal?

�Diagonalizable matrix: 

� Definition 1: A square matrix A is called diagonalizable if there exists an 
invertible matrix P such that P–1

AP is a diagonal matrix (i.e., P diagonalizes A)

� Definition 2: A square matrix A is called diagonalizable if A is similar to a 
diagonal matrix.

� In Sec. 6.4, two square matrices A and B are similar if there 
exists an invertible matrix P such that B = P–1AP.

�Notes: In this section, it is shown that the eigenvalue problem is 
related closely to the diagonalization problem.
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Diagonalization

Theorem. 7.4:  Similar matrices have the same eigenvalues

� If A and B are similar n×n matrices, then they have the same 
eigenvalues.

Proof:

Consider the characteristic equation of B:

Since A and B have the same characteristic equation, they are with the same 
eigenvalues.

1 1 1 1

1 1 1

( )I B I P AP P IP P AP P I A P

P I A P P P I A P P I A

I A

λ λ λ λ

λ λ λ

λ

− − − −

− − −

− = − = − = −

= − = − = −

= −

For any diagonal matrix in the 

form of D = λI, P–1DP = D

APPBBA 1 −=⇒similar are and 
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Diagonalization

� Example 1: Eigenvalue problems and diagonalization programs

Solution:  

Characteristic equation:















−

=

200

013

031

A

1 2 3The eigenvalues : 4,  2,  2λ λ λ= = − = −

2

1 3 0

3 1 0 ( 4)( 2) 0

0 0 2

I A

λ

λ λ λ λ

λ

− −

− = − − = − + =

+

(1) 4  the eigenvectorλ = ⇒ 1

1

1

0

 
 

=  
  

p
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� Note:  If

� The above example can verify Theorem 7.4 since the eigenvalues for both A and P–1AP

are the same to be 4, –2, and –2

� The reason why the matrix P is constructed with the eigenvectors of A is demonstrated 
in Theorem 7.5 (see the next slide).

(2) 2  the eigenvector λ = − ⇒ 2 3

1 0

1 ,   0

0 1

   
   

= − =   
      

p p

1

1 2 3

1 1 0 4 0 0

[ ] 1 1 0 ,  and 0 2 0

0 0 1 0 0 2

P P AP−

   
   

= = − = −   
   −   

p p p

2 1 3

1

[ ]

1 1 0 2 0 0

1 1 0          0 4 0

0 0 1 0 0 2

P

P AP
−

=

−   
   

= − ⇒ =   
   −   

p p p

Diagonalization
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Diagonalization

Theorem 7.5:  Condition for diagonalization

�An n×n matrix A is diagonalizable if and only if it has n linearly 
independent eigenvectors.
� If there are n linearly independent eigenvectors, it does not imply that there are n distinct 

eigenvalues. In an extreme case, it is possible to have only one eigenvalue with the multiplicity n, 

and there are n linearly independent eigenvectors for this eigenvalue.

� However, if there are n distinct eigenvalues, then there are n linearly independent eivenvectors

(see Thm. 7.6), and thus A must be diagonalizable.

Proof:   (⇒)
1

1 2 1 2

 

 [ ]  ( , , , ),

Since  is diagonalizable, there exists an invertible s.t.   is diagonal. 

Let    and  thenn n

A P D P AP

P D diag λ λ λ

−=

= =p p p� �

1

2

1 2

1 1 2 2

0 0

0 0
[    ]

0 0

[    ]

n

n

n n

PD

λ

λ

λ

λ λ λ

 
 
 =
 
 
 

=

p p p

p p p

�

�
�

� � � �

�

�
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� (⇐)

1

1 2 1 1 2 2

 (since  )

[    ] [    ]n n n

AP PD D P AP

A A A λ λ λ

−= =

=p p p p p p� �

, 1, 2, ,

(  

of  , )

     

The above equations imply the column vectors  of are eigenvectors 

 and the diagonal entries  in  are eigenvalues of 

i i i

i

i

A i n

P

A D A

λ

λ

⇒ = =p p

p

…

1 2, , , , 

Because  is diagonalizable  is invertible

Columns in , i.e., are linearly independentn

A P

P

⇒

⇒ p p p�

Thus,  has  linearly independent eigenvectors.A n

1 2

1 2

   l , ,

, , ,

        Since has inearly independent eigenvectors  

        with corresponding eigenvalues  then

n

n

A n

λ λ λ

p p p�

�

,   1,  2, ,  i i iA i nλ⇒ = =p p …

1 2[ ]Let    nP = p p p�

Diagonalization
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1 2 1 2

1 1 2 2

1

2

1 2

[    ] [    ]

[    ]

0 0

0 0
[    ]

0 0

n n

n n

n

n

AP A A A A

PD

λ λ λ

λ

λ

λ

= =

=

 
 
 = =
 
 
 

p p p p p p

p p p

p p p

� �

�

�

�
�

� � � �

�

1 2

1

, , ,  

 

 

Since are linearly independent

is invertible 

 

is diagonalizable 

(according to the definition of the diagonalizable matrix)

n

P

AP PD P AP D

A

−

⇒

⇒ = ⇒ =

⇒

p p p�

.

Note that 's are linearly independent eigenvectors and the diagonal 

entries  in the resulting diagonalized  are eigenvalues of 

i

i D Aλ

p

Diagonalization
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Diagonalization

Example 4: A matrix that is not diagonalizable

�

Solution: Characteristic equation:

Since A does not have two linearly independent eigenvectors, A is not diagonalizable.

1 2
                          

0 1

Show that the following matrix is not diagonalizable

A
 

=  
 

2
1 2

( 1) 0
0 1

I A
λ

λ λ
λ

− −
− = = − =

−

1 11, ( )The eigenvalue  and then solve  for eigenvectorsI Aλ λ= − = Θx

1 1

0 2 1

0 0 0
eigenvector I A I Aλ

−   
− = − = ⇒ =   

   
p
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Diagonalization

� Steps for diagonalizing an n×n square matrix:

Step 2: Let 1 2[   ]
n

P = p  p p�

Step 1: Find n linearly independent eigenvectors

for A with corresponding eigenvalues 

1 2, ,
n

p p p�

Step 3:



















==−

n

DAPP

λ

λ

λ

�

����

�

�

00

00

00

2

1

1

 , 1, 2, ,where     
i i i

A i nλ= =p p …

1 2, , ,
n

λ λ λ…
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Diagonalization

� Example 5: Diagonalizing a matrix

.        

113

131

111

1 diagonal is that suchmatrix  a Find

         

APPP

A

−

















−−

−−

=

Solution:  Characteristic equation:

1 1 1

1 3 1 ( 2)( 2)( 3) 0

3 1 1

I A

λ

λ λ λ λ λ

λ

−

− = − − − = − + − =

− +

1 2 32, 2, 3The eigenvalues:   λ λ λ= = − =

33



 21 =λ G.-J. E.

1

1 1 1 1 0 1

1 1 1 0 1 0

3 1 3 0 0 0

I Aλ

   
   ⇒ − = − − − →   
   −   

1

2 1

3

1

0     eigenvector 0

1

x t

x

x t

− −     
     

= ⇒ =     
          

p

 22 −=λ

1
4

G.-J. E. 1
2 4

3 1 1 1 0

1 5 1 0 1

3 1 1 0 0 0

I Aλ

− −  
  ⇒ − = − − − →   
  − −   

1
1 4

1
2 24

3

1

    eigenvector 1

4

x t

x t

x t

    
    

= − ⇒ = −    
        

p

Diagonalization
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 33 =λ
G.-J. E.

3

2 1 1 1 0 1

1 0 1 0 1 1

3 1 4 0 0 0

I Aλ

   
   ⇒ − = − − → −   
   −   

1

2 3

3

1

    eigenvector 1

1

x t

x t

x t

− −     
     

= ⇒ =     
          

p

1 2 3

1

1 1 1

[ ] 0 1 1  and it follows that

1 4 1

2 0 0

0 2 0

0 0 3

P

P AP
−

− − 
 

= = − 
  

 
 

= − 
  

p p p

Diagonalization

35



�Note: a quick way to calculate Ak based on the diagonalization
technique

1 1

2 2

0 0 0 0

0 0 0 0
(1)   

0 0 0 0

k

k

k

k
n n

D D

λ λ

λ λ

λ λ

  
  
  = ⇒ =
  
  
    

� �

� �

� � � � � � � �

� �

1 1 1 1 1

repeat  times

1

1 2

(2)   

0 0

0 0
     ,  where 

0 0

k k

k

k

k

k k k

k

n

D P AP D P AP P AP P AP P A P

A PD P D

λ

λ

λ

− − − − −

−

= ⇒ = =

 
 
 = =
 
 
  

�	
� 	
� 	
�

�

�

� � � �

�

Diagonalization
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Diagonalization

Theorem 7.6:  Sufficient conditions for diagonalization

� If an n×n matrix A has n distinct eigenvalues, then the 
corresponding eigenvectors are linearly independent and thus A is 
diagonalizable according to Theorem 7.5.

Proof:
Let λ1, λ2, …, λn be distinct eigenvalues and corresponding eigenvectors be 
x1, x2, …, xn. In addition, consider that the first m eigenvectors are linearly 
independent, but the first m+1 eigenvectors are linearly dependent, i.e.,

1 1 1 2 2 ,                           (1)
m m m

c c c+ = + + +x x x x�

where ci’s are not all zero. Multiplying both sides of Eq. (1) by A yields

1 1 1 2 2

1 1 1 1 1 2 2 2              (2)

m m m

m m m m m

A Ac Ac Ac

c c cλ λ λ λ

+

+ +

= + + +

= + + +

x x x x

x x x x

�

�
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On the other hand, multiplying both sides of Eq. (1) by λm+1 yields

1 1 1 1 1 2 1 2 1                    (3)m m m m m m mc c cλ λ λ λ+ + + + += + + +x x x x�

Now, subtracting Eq. (2) from Eq. (3) produces

1 1 1 1 2 1 2 2 1( ( ( 0m m m m m mc c cλ λ λ λ λ λ+ + +− + − + + − =)x )x )x�

Since the first m eigenvectors are linearly independent, we can infer that all coefficients of this 
equation should be zero, i.e.,

1 1 1 2 1 2 1( ) ( ) ( ) 0m m m m mc c cλ λ λ λ λ λ+ + +− = − = = − =�

Because all the eigenvalues are distinct, it follows all ci’s equal to 0, which contradicts our 
assumption that xm+1 can be expressed as a linear combination of the first m eigenvectors. So, 
the set of n eigenvectors is linearly independent given n distinct eigenvalues, and according to 
Thm. 7.5, we can conclude that A is diagonalizable.

Diagonalization
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� Example 7: Determining whether a matrix is diagonalizable

Solution: Because A is a triangular matrix, its eigenvalues are

1 2 31,  0,  3.λ λ λ= = = −

According to Theorem 7.6, because these three values are distinct, A is 
diagonalizable.

Diagonalization

















−

−

=

300

100

121

A
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Diagonalization

Example 8: Finding a diagonalized matrix for a linear transformation

�
3 3

1 2 3 1 2 3 1 2 3 1 2 3

3

 

3 3

'

'

Let : be the linear transformation given by

      ( ) ( )

Find a basis  for  such that the matrix for  relative 

to  is diagonal.

T R R

T x ,x ,x x x x , x x x , x x x

B R T

B

→

= − − + + − + −

Solution:
The standard matrix for T is gven by

1 1 1

1 3 1

3 1 1

A

− − 
 

=  
 − − 

From Example 5 you know that λ1 = 2, λ2 = –2, λ3 = 3 and thus A is diagonalizable. 
So, these three linearly independent eigenvectors found in Example 5 can be used 
to form the basis  B′ . That is
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1 2 3' { , , } {( 1,  0,  1), (1,  1,  4), ( 1,  1,  1)}B = = − − −v v v

[ ]1 ' 2 ' 3 '' [ ( )]   [ ( )]   [ ( )]

2 0 0

0 2 0

0 0 3

B B BA T T T=

 
 

= − 
  

v v v

The matrix for T relative to this basis is

� Note that it is not necessary to calculate A′ through the above equation, we 

already know that A′ is a diagonal matrix and its main diagonal entries are 

corresponding eigenvalues of A.

Diagonalization
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Symmetric Matrices and Orthogonal 
Diagonalization

� Symmetric matrix:

A square matrix A is symmetric if it is equal to its 
transpose: T

AA = 

� Example 1: Symmetric matrices and nonsymetric matrices















−

−

=

502

031

210

A







=

13

34
B














−=

501

041

123

C

(symmetric)

(symmetric)

(nonsymmetric)
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Theorem 7.7:  Eigenvalues of symmetric matrices

� If A is an n×n symmetric matrix, then the following properties are 
true. 

(1) A is diagonalizable (symmetric matrices are guaranteed to  

have n linearly independent eigenvectors and thus be 

diagonalizable).

(2) All eigenvalues of A are real numbers.

(3) If λ is an eigenvalue of A with the multiplicity to be k, then λ

has k linearly independent eigenvectors.  That is, the 

eigenspace of λ has dimension k.

� The above theorem is called the Real Spectral Theorem, and the set of 

eigenvalues of A is called the spectrum of A.
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� Example 2:

Prove that a 2 × 2 symmetric matrix is diagonalizable.







=

bc

ca
A

proof: Characteristic equation:

0)( 22
=−++−=

−−

−−
=− cabba

bc

ca
AI λλ

λ

λ
λ

2 2 2 2 2

2 2 2

2 2

( ) 4(1)( ) 2 4 4

2 4

( ) 4

a b ab c a ab b ab c

a ab b c

a b c

+ − − = + + − +

= − + +

= − + 0≥

As a function in λ, this quadratic polynomial function has a nonnegative 
discriminant as follows:
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04)(  (1) 22 =+− cba

0  ,  ==⇒ cba

0
  itself is a diagonal matrix.

0

a c a
A

c b a

   
= =   
   

04)(  )2( 22 >+− cba

The characteristic polynomial of A has two distinct real roots, which implies that 

A has two distinct real eigenvalues. According to Thm. 7.6, A is diagonalizable.
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Orthogonal matrix

�Orthogonal matrix:  A square matrix P is called orthogonal if it is 
invertible and

1 (or )T T T
P P PP P P I

− = = =
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Orthogonal matrix

� Theorem 7.8: Properties of orthogonal matrices

�An n×n matrix P is orthogonal if and only if its column vectors 
form an orthonormal set.

Proof: Suppose the column vectors of P form an orthonormal set, i.e.,

It implies that P–1 = PT and thus P is orthogonal.

1 1 1 2 11 1 1 2 1

2 1 2 2 2 12 1 2 2 2 1

1 21 2

T T T
nn

T T T

T

n

T T T
n n n nn n n n

P P I

⋅ ⋅ ⋅   
   

⋅ ⋅ ⋅   = = =
   
   

⋅ ⋅ ⋅    

p p p p p pp p p p p p

p p p p p pp p p p p p

p p p p p pp p p p p p

��

��

� � � �� � � �

��

[ ]1 2   ,  where 0 for  and 1.n i j i iP i j= ⋅ = ≠ ⋅ =p   p p p p p p�
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Orthogonal matrix

� Ex 5: Show that P is an orthogonal matrix.

















=

−−

−

53

5

53

4

53

2

5

1

5

2

3
2

3
2

3
1

0P

Solution: If P is a orthogonal matrix, then 1   T TP P PP I− = ⇒ =

1 2 21 2 2
3 5 3 53 3 3

2 1 2 1 4
35 5 5 3 5

5 52 4 2
33 5 3 5 3 5 3 5

1 0 0

0 0 1 0

0 0 10

T
PP I

− −

− −

− −

     
     

= = =     
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1 2 1 3 2 3 1 1 2 2 3 3p 0 1.we can roduce  and ⋅ = ⋅ = ⋅ = ⋅ = ⋅ = ⋅ =p p p p p p p p p p p p

1 2 3{ , , } So,   is an orthonormal set. (Theorem 7.8 can be verified by this example.)p p p

1 2 2
3 3 3

2 1
1 2 35 5

52 4
3 53 5 3 5

 , , 0 ,Moreover, let   and −

− −

     
     

= = =     
     
        

p p p

Orthogonal matrix
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Orthogonal matrix

Theorem 7.9: Properties of symmetric matrices

� Let A be an n×n symmetric matrix. If λ1 and λ2 are distinct 
eigenvalues of A, then their corresponding eigenvectors x1 and x2  

are orthogonal. (Theorem 7.6 only states that eigenvectors 
corresponding to distinct eigenvalues are linearly independent)

Proof: 1 1 2 1 1 2 1 2 1 2 1 2( ) ( )T T T
A A Aλ λ= = = =x , x x , x x ,x x x x x

1 2 1 2 1 2 2 1 2 2 2 1 2( ) ( ) ( )
because  is symmetricA

T T T
A A λ λ λ= = = = =x x x x x x x , x x ,x

1 2 1 2

1 2 1 2 1 2

) 0,

, 0.

The above equation implies (  and because 

 it follows that  So,  and  are orthogonal.

λ λ

λ λ

− =

≠ =

x , x

x ,x x x

� For distinct eigenvalues of a symmetric matrix, their corresponding 

eigenvectors are orthogonal and thus linearly independent to each other.

� Note that there may be multiple x1 and x2 corresponding to λ1 and λ2 .
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Orthogonal matrix

�Orthogonal diagonalization: A matrix A is orthogonally 
diagonalizable if there exists an orthogonal matrix P such that    
P–1AP = D is diagonal.

Theorem 7.10: Fundamental theorem of symmetric matrices

� Let A be an n×n matrix. Then A is orthogonally diagonalizable and 
has real eigenvalues if and only if A is symmetric.
Proof:

( )⇒

1 1

1 ( ) ( )

 is orthogonally diagonalizable

 is diagonal, and  is an orthogonal matrix s.t. T

T T T T T T T T T

A

D P AP P P P

A PDP PDP A PDP P D P PDP A

− −

−

⇒ = =

⇒ = = ⇒ = = = =

( )⇐
See the next two slides
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Orthogonal matrix

� Orthogonal diagonalization of a symmetric matrix:
Let A be an n×n symmetric matrix.

(1) Find all eigenvalues of A and determine the multiplicity of each. 
� According to Theorem 7.9, eigenvectors corresponding to distinct eigenvalues are 

orthogonal.

(2) For each eigenvalue of multiplicity 1, choose the unit eigenvector. 

(3) For each eigenvalue of the multiplicity to be k ≥ 2, find a set of k
linearly independent eigenvectors. If this set {v1, v2, …, vk} is not 
orthonormal, apply the Gram-Schmidt orthonormalization process. 
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(4) The composite of steps (2) and (3) produces an orthonormal set of 
n eigenvectors. Use these orthonormal and thus linearly 
independent eigenvectors as column vectors to form the matrix P.

i. According to Thm. 7.8, the matrix P is orthogonal 

ii. Following the diagonalization process, D = P–1AP is diagonal 

Therefore, the matrix A is orthogonally diagonalizable 

Orthogonal matrix

1 1 2 2

1 1 2 2

1 1 2 2

, , , ,

( ) (

It is known that G.-S. process is a kind of linear transformation, i.e., the 

produced vectors can be expressed as  , 

i.    Since 

     

k k

k k

k k

c c c

A A A

A c c c c

λ λ λ

λ

+ + +

= = =

⇒ + + + =

v v v

v v v v v v

v v v

�

…

� 1 1 2 2

1 2

)

, , ,

     The produced vectors through the G.-S. process are still eigenvectors for 

ii.   Since  are orthogonal to eigenvectors corresponding to other

     different eigenvalues 

k k

k

c c

λ

+ + +

⇒

v v v

v v v

�

�

1 1 2 2(according to Theorem 7.9),  is also

     orthogonal to eigenvectors corresponding to other different eigenvalues.

k kc c c+ + +v v v�
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Orthogonal matrix

� Ex 7: Determining whether a matrix is orthogonally diagonalizable














=

111

101

111

1A















−

=

081

812

125

2A







=

102

023
3A







−

=
20

00
4A

Orthogonally 
diagonalizable

Symmetric
matrix
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Orthogonal matrix

� Example 9: Orthogonal diagonalization

   .

2 2 2

2 1 4

2 4 1

Find an orthogonal matrix that diagonalizes

                        

P A

A

− 
 

= − 
 − − Solution:

0)6()3(  )1( 2 =+−=− λλλ AI

1 26, 3 ( )  has a multiplicity of 2λ λ= − =

1 1 2 2
1 1 1 3 3 3

1

(2)  6,  (1,  2,  2)    ( ,  ,  )λ −= − = − ⇒ = =
v

v u
v

2 2 3(3)  3,  (2,  1,  0),  ( 2,  4,  5)λ = = = −v v

orthogonal

Verify Theorem 7.9 that 
v1·v2 = v1·v3 = 0
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Orthogonal matrix
� If v2 and v3 are not orthogonal, the Gram-Schmidt Process should be performed. Here we simply 

normalize v2 and v3 to find the corresponding unit vectors

32 52 1 2 4
2 35 5 3 5 3 5 3 5

2 3

( ,  ,  0),    ( ,  ,  )−= = = =
vv

u u
v v

















= −

−

53

5
3
2

53

4

5

1
3
2

53

2

5

2
3
1

0

P












−
=⇒ −

300

030

006

   1
APP

1 2 3u     u     u

� Note that there are some calculation error in the solution of Example 9 
in the text book
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Applications of Eigenvalues and Eigenvectors

� The rotation for quadratic equation: 

ax2+bxy+cy2+dx+ey+f = 0

� Example 5: Identify the graphs of the following quadratic equations

solution

2 24 9 36 0(a) x y+ − =

2 2

2 2
( ) 1.

3 2
a  In standard form, we can obtain 

x y
+ =

2 210 13 72 0(b) 13x xy y− + − =

� Since there is no xy-term, it is easy to 

derive the standard form and it is 

apparent that this equation represents 

an ellipse.
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2 2
10 13 72 0(b) 13x xy y− + − =

� Since there is a xy-term, it is difficult to identify the graph of this equation. In fact, it 

is also an ellipse, which is oblique on the xy-plane.

� There is a easy way to identify the graph of quadratic 

equation. The basic idea is to rotate the x- and y-axes 

to x′- and y′-axes such that there is no more x′y′-term 

in the new quadratic equation.

� In the above example, if we rotate the x- and y-axes 

by 45 degree counterclockwise, the new quadratic 

equation                               can be derived, which 

represents an ellipse apparently.

2 2

2 2

( ') ( ')
 1

3 2

x y
+ =

� In Section 4.8, the rotation of conics is achieved by changing basis, but here the diagonalization

technique based on eigenvalues and eignvectors is applied to solving the rotation problem.

Applications of Eigenvalues and Eigenvectors
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�Quadratic form: 

ax2 + bxy + cy2

is the quadratic form associated with the quadratic equation

ax2 + bxy + cy2 + dx + ey + f = 0.

�Matrix of the quadratic form:

If we define X = , then X 
T
AX  = ax2 + bxy + cy2 . In fact, the 

quadratic equation can be expressed in terms of X as follows:

X 
T
AX  + [d   e] X + f = ax2 + bxy + cy2+ + dx + ey + f = 0

/ 2

/ 2

a b
A

b c

 
=  
 

x

y

 
 
 

� Note that A is a symmetric matrix.

Applications of Eigenvalues and Eigenvectors
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Principal Axes Theorem

� For a conic whose equation is ax2 + bxy + cy2 + dx + ey + f = 0, 

the rotation to eliminate the xy-term is achieved by X = PX′, 
where P is an orthogonal matrix that diagonalizes A (matrix of the 
quadratic form).  That is,

where λ1 and λ2 are eigenvalues of A.The equation for the rotated 
conic is given by

11

2

0

0

'
'

'

T
P AP P AP D

x
X

y

λ

λ

−  
= = =  

 

 
=  
 

[ ]2 2

1 2( ') ( ') 0.x y d e PX fλ λ ′+ + + =

Applications of Eigenvalues and Eigenvectors
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Proof:

According to Theorem 7.10, since A is symmetric, we can conclude that there 
exists an orthogonal matrix P such that P–1AP = PTAP = D is diagonal.

Replacing X with PX′, the quadratic form becomes

2 2

1 2

( ) ( ) ( )

           ( ) ( ) ( ) .

T T T T

T

X AX PX A PX X P APX

X DX x yλ λ

′ ′ ′ ′= =

′ ′ ′ ′= = +

� It is obvious that the new quadratic form in terms of X ′ has no x′y′-term, 

and the coefficients for (x′)2 and (y′)2 are the two eigenvalues of the matrix 

A.

[ ]1 2 1 2

1 2

  Since  and  are 

the orignal and new coodinates, the roles of  and  (the eigenvectors

of ) are like the basis vectors (or the axis vector

x x x x
X PX x y

y y y y

A

′ ′       
′ ′ ′= ⇒ = = + ⇒       ′ ′       

v v v v

v v

s) in the new coordinate

system.

�

Applications of Eigenvalues and Eigenvectors
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Applications of Eigenvalues and Eigenvectors

Example 6: Rotation of a conic

� Perform a rotation of axes to eliminate the xy-term in the 
following quadratic equation

Solution:

2 213 10 13 72 0x xy y− + − =

13 5

5 13
A

− 
=  

− 

The matrix of the quadratic form associated with this equation is 

The eigenvalues are λ1 = 8 and λ2 = 18, and the corresponding eigenvectors are 

1 2

1 1

1 1
 and 

−   
= =   
   

x x
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After normalizing each eigenvector, we can obtain the orthogonal matrix P as 
follows.

2
8( ) 18( ) 72 0,x y′ ′+ − =

1 1

cos 45 sin 452 2

1 1 sin 45 cos 45

2 2

P

− 
   −
 = =  
   
  

� �

� �

Then by replacing X with PX’, the equation of the rotated conic is 

which can be written in the standard form

2 2

2 2

( ) ( )
 1.

3 2

x y′ ′
+ =

� The above equation represents an ellipse on the x′y′-plane.

� According to the results on p. 268 in 

Ch4, X=PX′ is equivalent to rotate 

the xy-coordinates by 45 degree to 

form the new x′y′-coordinates.

Applications of Eigenvalues and Eigenvectors
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� In three-dimensional version:

ax2 + by2 + cz2 + dxy + exz + fyz

is the quadratic form associated with the equation of quadric 
surface: ax2 + by2 + cz2 + dxy + exz + fyz + gx + hy + iz + j = 0.

�Matrix of the quadratic form:

If we define X = [x y z]T, then 

XTAX= ax2 + by2 + cz2 + dxy + exz + fyz

and the quadratic surface equation can be expressed as

/ 2 / 2

/ 2 / 2

/ 2 / 2

a d e

A d b f

e f c

 
 

=  
  

[ ]    0T
X AX g h i X j+ + =

� Note that A is a symmetric 

matrix.

Applications of Eigenvalues and Eigenvectors
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Unitary and Hermitian Matrices

Conjugate Transpose of a Complex Matrix

� The conjugate transpose of a complex matrix A denoted by A*, 
is given by:

A* = Ā
T

where the entries of Ā are the complex conjugates of the 
corresponding entries of A.

� Example: Determine A* for the matrix

Solution:
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Unitary and Hermitian Matrices

� Theorem 8.8: Properties of the Conjugate Transpose

� If A and B are complex matrices and k is a complex number, then 
the following properties are true.

1. (A*)* = A

2. (A* + B*)* = A + B

3. (kA*)* = ��A

4. (AB)*= B*A*
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Unitary and Hermitian Matrices

�Unitary Matrix:  A complex matrix is unitary when

A-1 = A*

� Example 2: Show that the matrix A is unitary.

Solution:
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Unitary and Hermitian Matrices

� Theorem 8.9: Unitary Matrices

�An n×n complex matrix A is unitary if and only if its row (or 
column) vectors form an orthonormal set in C n.
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Unitary and Hermitian Matrices

�Hermitian Matrices:  A square matrix A is Hermitian when

A = A*

� Example 3: A is Hermitian,
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Unitary and Hermitian Matrices

Theorem 8.10:  The Eigenvalues of a Hermitian Matrix

� If A is a Hermitian matrix, then its eigenvalues are real numbers.

Proof:
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Unitary and Hermitian Matrices

� Example 4: Find the eigenvalues of the matrix A.

Solution:

⇒ λ1= -1,  λ1= -2,  λ1=6
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Unitary and Hermitian Matrices

� Theorem 8.11: Hermitian Matrices and Diagonalization

� If A is an n×n Hermitian matrix, then

1. eigenvectors corresponding to distinct eigenvalues are 
orthogonal.

2. A is unitarily diagonalizable.

proof:
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Unitary and Hermitian Matrices

� Example 5: Find a unitary matrix P such that P*AP is a diagonal 
matrix where

Solution: Eigenvalues of A are calculated in example 3. The normalized eigenvectors of A
are:
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Symmetric and Hermitian Matrices

A is a symmetric matrix 
(real)

A is a Hermitian matrix 
(complex)
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� Eigenvalues of are real.

� Eigenvectors corresponding to 
distinct eigenvalues are 
orthogonal.

� There exists an orthogonal
matrix such that 

PTAP

is diagonal.

� Eigenvalues of are real.

� Eigenvectors corresponding to 
distinct eigenvalues are 
orthogonal.

� There exists an unitary matrix 
such that 

P*AP

is diagonal.


