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Eigenvalues and Eigenvectors

< Eigenvalue problem (one of the most important problems in the
linear algebra): If A is an mxn matrix, do there exist nonzero
vectors X in R" such that Ax is a scalar multiple of x ¢

(The term eigenvalue is from the German word Eigenwert, meaning
“proper value”)

> Elgenvalue Geometric Interpretation
A: an X matrix }
A: a scalar (could be zero) .
. A
X: a honzero vector in R” . ;
Eigenvalue
| X
A)f = /1?(
Ax = Jx -

Eigenvector



Eigenvalues and Eigenvectors

< Example |: Verifying eigenvalues and eigenvectors.

SRMERHESH

Eigenvalue

2 0 1 2 ! 1 % In fact, for each eigenvalue, it has
AX1 = — =2 — 2X1 infinitely many eigenvectors.
0O —-11/0 0 0 For A=2,[3 0]" or [5 0]" are both

corresponding eigenvectors.
Moreover, ([3 0] + [5 0])7 is still an
eigenvector.

% The proof is in Theorem. 7.1.

Eigenvector
Eigenvalue
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Eigenvector



FEigenspace

Theorem 7.1: (The eigenspace corresponding to A of matrix A)

< If Ais an nmxn matrix with an eigenvalue 4, then the set of all
eigenvectors of A together with the zero vector is a subspace
of R". This subspace is called the eigenspace of A.

Proof:
x, and x, are eigenvectors corresponding to A

(i.e., Ax, =Ax,, Ax, =AX,)
(1) A(x, +x,) = AX, + Ax, = Ax, + Ax, = A(X, +X,)

(i.e., X, +X, is also an eigenvector corresponding to 1)
(2) A(cx,) = c(AX,) = c(Ax,) = A(cX,)
(i.e., cx,is also an eigenvector corresponding to A)

Since this set is closed under vector addition and scalar multiplication, this set
is a subspace of R” according to Theorem 4.5.



FEigenspace

Eamplex 3: Examples of eigenspaces on the xy-plane

< For the matrix A as follows, the corresponding eigenvalues are A,
=—land 4,= I: 1 0
A
0 1

Solution

For the eigenvalue A, =—1, corresponding vectors are any vectors on the x-axis
. _ Thus, the eigenspace corresponding to 4 =-1
A x _ RE _ x _ X is the x-axis, which is a subspace of R”.
0 0O 1110 0 0

For the eigenvalue A, =1, corresponding vectors are any vectors on the y-axis

0 -1 0l]10 0 0 Thus, the eigenspace corresponding to A4 = |
A = = is the y-axis, which is a subspace of R°.
y] LO Tly] Ly y



Eigenspace

< Geometrically speaking, multiplying a vector (x, y) in R* by the matrix A in
the example, corresponds to a reflection to the y-axis.
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Finding eigenvalues and eigenvectors

Theorem 7.2: (Finding eigenvalues and eigenvectors of a matrix Ae M, )

< Let A be an nXn matrix.
(1) An eigenvalue of A is a scalar A such that det(A/ —A)=0.

(2) The eigenvectors of A corresponding to A are the nonzero
solutions of (A —A)x=0.



Finding eigenvalues and eigenvectors

< Note: some definitions of the eigenvalue problem:
» homogeneous system

AX=AX = Ax=AIx = (AI-A)x=0
(Al — A)x = O has nonzero solutions for x iff det(Al —A)=0

> Characteristic equation of A:
det(Al —A)=0

» Characteristic polynomial of Ae M :

nxn’

det(Al —A)=|(A —A)|=A"+c, A"+ +cd+c,



Finding eigenvalues and eigenvectors

< Example 4: Finding eigenvalues and eigenvectors

2 =12
A=

Solution: Characteristic equation:

det(AI — A) A2 12
c —_ =
-1 A+5
=17 4314+2=(A+1D)(A1+2)=0
=>A=-1,-2

Eigenvalue: A =—-1,4,=-2



Finding eigenvalues and eigenvectors

3 12 x 7 [0
) A =1 —A)x= -
e A M
3 12} - [1 —4}
_ BTN
-1 4 0 0

= = =t| |, t#0
| X, t 1

D e | BNt
@) A==2 =A== =
[ —4 12} L {1 —3}
N
-1 3 0 0

— = =s| |, s#0
| X, s 1

10



Finding eigenvalues and eigenvectors

Example 5:

< Find the eigenvalues and corresponding eigenvectors for the
matrix A. What is the dimension of the eigenspace of each
eigenvalue?

A=

S O N
o O O

1
2
0

Solution: Characteristic equation:

A-2 -1 0
[AI-Al=| 0 A-2 0 |=(1-2)=0
0 0 A-2

Eigenvalue: A=2

11



Finding eigenvalues and eigenvectors

The eigenspace of 1= 2:

0 -1 0} x 0
(AI-A)x={0 0 O]|x,|=|0
0 0 Ofx| [0
X, s 1 0
x, |=|0]|=s|0|+£0]|, 5,0
X, t 0 1
T
35| 0|+1]| 0 |ls,z€ R ;:the eigenspace of A corresponding to A =2
0 1

Thus, the dimension of its eigenspace is 2.

12



Finding eigenvalues and eigenvectors
< Notes:

(1) If an eigenvalue A, occurs as a multiple root (& times) for

the characteristic polynominal, then 4, has multiplicity 4.

(2) The multiplicity of an eigenvalue is greater than or equal
to the dimension of its eigenspace.

> In Example. 5, k is 3 and the dimension of its eigenspace is 2.

13



Finding eigenvalues and eigenvectors

Example 6:

<Find the eigenvalues of the matrix A and find a basis for each of the

corresponding eigenspaces 0

A=

1
0 1
1 O
10
Solution: Characteristic equation:

A-1 0 0 0
0O A-1 -5 10

-1 0O A-2 O
—-1 0 0 A-3

=(A-1)*(A-2)(1-3)=0
Eigenvalues: 4 =14, =2,4, =3

AL - A| =

14

S o D O

0
—-10
0
3

< According to the note on the

previous slide, the dimension of
the eigenspace of 4, = 1 is at most
to be 2.

¢ For 4, =2 and A, = 3,the

demensions of their eigenspaces
are at most to be |I.



Finding eigenvalues and eigenvectors

0 0 0 O] x 0
0 0 -5 10| x 0
1 =1 = [ —A)Xx= 2=
() 4 Ar=ax= ool |7l
-1 0 0 2]x]| [0
(x| [-2¢] [0] [-2]
GJE| X, Ry 1 0
= = =s| |+t , S, t#0
X, 2t 0 2
x| Lt 0] | 1]
ToT T— 2
| 0
= ol’| 2 ris a basis for the eigenspace corresponding to 4, = 1.
\—0— - 1 -

The dimension of the eigenspace of 4, =1 is 2.
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Finding eigenvalues and eigenvectors
(1 0 0 O x] [0O]
0 1 -5 10| x

0
2 =2 = I-A)Xx= =
@ 4 GI=AX=| g 0 0 x| |0
-1 0 0 —1]|x,| |0
x| [0] O]
GJE| X, St 5
= = =t| |, t#0
X, t 1
(x| 0] [O]
0
— > . is a basis for the eigenspace corresponding to 4, =2
|
_0_

The dimension of the eigenspace of 4, =2 is 1.
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Finding eigenvalues and eigenvectors

(2 0 0 O]lx]| [0
0 2 -5 10| «x 0
3 :3 = I_A = 2 =
&4 BI=AX= g 1 o[ |0
_O_

10 0 0]x]

‘x| [O0] [O]
GA-E.| x, —5t -5
= = =t , t#0
X, 0 0
x| Lt 1]
C o
-5 : : : :
= 0 > is a basis for the eigenspace corresponding to 4; = 3.
b

The dimension of the eigenspace of 4; =3 is 1.

17



Eigenvalues for triangular matrices
Theorem 7.3:

< If Ais an nXntriangular matrix, then its eigenvalues are the entries
on its main diagonal.

18



Eigenvalues for triangular matrices

Example 7:

< Finding eigenvalues for triangular and diagonal matrices

-1 0 0 0 O]
2 0 0 0 20 0 O
(a)A=|-1 1 O (b)A={0 0 0 0 O
5 3 3 0O 00 4 0

0 0 0 0 3]

Solution: 1-2 0 0
(@) |[AI-A=| 1 21-1 0 |=(A-2)(A-D(A+3)=0
- =3 A+3 < According to Theorem 3.2, the
= 1=24=1,A=-3 determinant of a triangular

(b) A =—1, 4, =2, 4, =0, 4, =—4, A =3

19

matrix is the product of the
entries on the main diagonal .



Eigenvalues and eigenvectors of L.T.

< A number Ais called an eigenvalue of a linear transformation
T :V —V if there is a nonzero vector X such that 7(x) = Ax.
The vector xis called an eigenvector of T corresponding to A,
and the set of all eigenvectors of 4 (together with the zero

vector) is called the eigenspace of A.

20



Eigenvalues and eigenvectors of L.T.

< The definition of linear transformation functions was introduced in
Chapter 6.

< The typical example of a linear transformation function is that
each component of the resulting vector is the linear combination
of the components in the input vector x.

» An example for a linear transformation 7: R°—R*

T(x,x,,x)=(x +3x,,3x, + x,,—2x;)

21



Eigenvalues and eigenvectors of L.T.

Example 8: Find eigenvalues and eigenvectors for standard matrices

< Find the eigenvalues and corresponding eigenvectors for

A

Solution

Al —Al=

1 3 0|
=13 1 0
00 2
(A-1 -3 0 |
-3 A-1 0
0 0 /1+2_

= eigenvalues 4, =4, 4, =-2

* A is the standard matrix for

=(A+2)’(A-4)=0

For A, =4, the corresponding eigenvector is (1, 1, 0).

For A, =2, the corresponding eigenvectors are (1, —I, 0) and (0, 0, 1).

22



Eigenvalues and eigenvectors of L.T.

< Notes: The relationship among eigenvalues, eigenvectors, and

diagonalization

Let 7: R> — R’ be the linear transformation whose corresponding

standard matrix is A in Example 8, and let B' be a basis of R’ made

up of three linearly independent eigenvectors of A found in Example 8,

i.e, B'={v,v,,v.}={({, 1, 0),d, =1, 0),(0, 0, D}

Then A', the matrix of T relative to the basis B', defined as

[TVl [T(v,)]p [T(V3)]p

]

is diagonal, and the main diagonal entries are correspondlng elgenvalues

for 21 =4 for ﬂQ =2

B'={(l, 1, 0),(1, =1, 0),(0, 0, 1)} A

Eigenvectors of A
23

@@

Eigenvalues of A



Diagonalization

< Diagonalization problem: For a square matrix A, does there exist
an invertible matrix Psuch that P! APis diagonal?

< Diagonalizable matrix:

» Definition |:A square matrix A is called diagonalizable if there exists an
invertible matrix Psuch that 7' APis a diagonal matrix (i.e., Pdiagonalizes A)

» Definition 2: A square matrix A is called diagonalizable if A is similar to a
diagonal matrix.

< In Sec. 6.4, two square matrices A and B are similar if there
exists an invertible matrix Psuch that B= P1AP.

< Notes: In this section, it is shown that the eigenvalue problem is
related closely to the diagonalization problem.

24



Diagonalization

Theorem. 7.4: Similar matrices have the same eigenvalues

< If Aand B are similar 7xn matrices, then they have the same

eigenvalues.

Proof:
A and B are similar = B=P'AP

Consider the characteristic equation of 5:

For any diagonal matrix in the
form of D= Al, P'DP= D

Al - B|=|AI - P AP| =[P AIP— P"'AP|=|P"' (A1 - A)P

=|AI - A

=|P!||A1 - Al|P|=|P"||P||AI - A|=|P~'P|| A1 - A

Since A and B have the same characteristic equation, they are with the same

eigenvalues.

25




Diagonalization

< Example |: Eigenvalue problems and diagonalization programs

1 3 0
A=|3 1 O
00 -2
Solution:
Characteristic equation:
A-1 -3 0
[AI-Al=| -3 A-1 0 |=(A-H(A+2)*=0

0 0 A+2
The eigenvalues: 4, =4, 4, =2, 4, =-2

1
() A=4= theeigenvector P, =|1
0
26



Diagonalization

1 0
(2) A =-2= the eigenvector p,=|-1|, p;=|0
0 1]
1 O] (4 0 O]
P=[p, p, pP:l= —1 0|, and P'AP=|0 -2 0
0 0 1) 0 0 -2
» Note: |fP:[p2 P, p3]
(1 1 0] (-2 0 0]
=-1 1 0 = P'AP=|0 4 0
0 0 1 0 0 2

< The above example can verify Theorem 7.4 since the eigenvalues for both A and P'AP
are the same to be 4,-2,and -2

< The reason why the matrix Pis constructed with the eigenvectors of A is demonstrated
in Theorem 7.5 (see the next slide).

27



Diagonalization

Theorem 7.5: Condition for diagonalization

< An nXn matrix A is diagonalizable if and only if it has z linearly
independent eigenvectors.

> If there are n linearly independent eigenvectors, it does not imply that there are n distinct
eigenvalues. In an extreme case, it is possible to have only one eigenvalue with the multiplicity n,
and there are 7 linearly independent eigenvectors for this eigenvalue.

> However, if there are n distinct eigenvalues, then there are n linearly independent eivenvectors
(see Thm. 7.6), and thus A must be diagonalizable.

Proof: (=)
Since A is diagonalizable, there exists an invertible Ps.t. D= P'AP is diagonal.

Let P=[p, p, -- p,land D =diag(A,,A,, -, 4)), then

_11 O --- 0]

0 A4 - 0
PD=[p, p, - p,J . . . .

0 0 - A

28



Diagonalization

> (<)

29

AP = PD (since D= P 'AP)
[Ap, Ap, --- Ap,]I=[4p, 4Lp, - 4,p,]

= Ap, =Ap,, i=1 2,....n
(The above equations imply the column vectors p, of P are eigenvectors

of A, and the diagonal entries A in D are eigenvalues of A)

Because A is diagonalizable = P is invertible

= Columns in P, i.e,, p,,P,. :*,P,are linearly independent

Thus, A has n linearly independent eigenvectors.

Since A has n linearly independent eigenvectors p,,p,, P,

with corresponding eigenvalues A, 4,,--- 4, then

= Ap, =Ap,, i=1 2,...,n

LetP=[p, p, - P,]



Diagonalization

AP=Alp, p, - p,1=[Ap, Ap, --- Ap,]

",11 O --- 0]

0 A4 - 0
=pp, el . . |=PD

0 0 - A

Since p,,p,,-*,p, are linearly independent
= Pis invertible

= AP=PD= P'AP=D

—> Ais diagonalizable

(according to the definition of the diagonalizable matrix)

Note that p,'s are linearly independent eigenvectors and the diagonal

entries A in the resulting diagonalized D are eigenvalues of A.

30



Diagonalization

Example 4: A matrix that is not diagonalizable

< Show that the following matrix is not diagonalizable
1 2
0 1

Solution: Characteristic equation:
A-1 2

AT - A|=
A-1

‘=(/1—1)2=0

The eigenvalue 4, =1, and then solve (4, — A)x = ® for eigenvectors

Al-A=1-A Y t :
—A=1-A= = eigenvector p, =
0 0 8 P 0

Since A does not have two linearly independent eigenvectors, A is not diagonalizable.

31



Diagonalization

% Steps for diagonalizing an nXxn square matrix:

Step |:Find nlinearly independent eigenvectors p,,P,, P

n

for A with corresponding eigenvalues 4, 4,,..., 4,

Step 2:Let P=[p,p, - P,]

Step 3: A 0 - 0]
plap=D=|" ’1:2 0
0 0 A, |

where Ap, =Ap,, i=1, 2,..., n

32



Diagonalization

< Example 5: Diagonalizing a matrix

1
A=| 1
-3

-1
3
1

—1]
1
—1

Find a matrix P such that P"' AP is diagonal.

Solution: Characteristic equation:

AL - A| =

A-1

3

|
A-3
-1

-1
A+1

=(A-2)(A+2)(1-3)=0

The eigenvalues: 4, =2, 4, =-2, 4, =3

33



Diagonalization

34

A=2 =Al-A=

1
-1

1
-1
-1

G.-J.E

G.-J.E

—> eigenvector p, =




Diagonalization

35

A=3 =2A41-A=

P=[p,

P'AP =

p3]: 0

G.-Jl.E

and 1t follows that



Diagonalization

< Note: a quick way to calculate AX based on the diagonalization
technique

‘A 0 - 0 A0 - 0

0 e 0 koo,
HD=| . 2’2 . .| = D= o A& 0

_() 0 --- /1n_ _0 0o --- 1:_

(2)D=P'AP = D"= P'AP P'AP---P'AP=P'A*P
N\ ~ J . ~ J/ ——— —

repeat k times

_/'11k 0 ... 0|
0 R
A" =PD*P™", where D" =| 22 , ,
0 0 A

36



Diagonalization

Theorem 7.6: Sufficient conditions for diagonalization

< If an nXn matrix A has n distinct eigenvalues, then the
corresponding eigenvectors are linearly independent and thus A is
diagonalizable according to Theorem 7.5.

Proof:
Let 4,, 4,, ..., 4, be distinct eigenvalues and corresponding eigenvectors be
X, Xy, ..., X, In addition, consider that the first m eigenvectors are linearly

independent, but the first m+1 eigenvectors are linearly dependent, i.e.,

X, =CX tC6X, +-+cC X , (1)

where c¢/s are not all zero. Multiplying both sides of Eq. (1) by A yields
Ax ., = AcX, +Ac,X, +--+Ac X

A X  =cAX +c, X, ++c, A X (2)

m+1

37



Diagonalization

On the other hand, multiplying both sides of Eq. (1) by 4, yields
A X

m+1"m+1

=cA X +c,A X, +--+c A . X 3)

m’ " m+1"m

Now, subtracting Eq. (2) from Eq. (3) produces
Cl (ﬂ’m+1 o ﬂ'l)xl + CZ (ﬂ’m+1 - XQ)XZ +eeet Cm (ﬂ’m+l - ﬂ’m )Xm = O

Since the first m eigenvectors are linearly independent, we can infer that all coefficients of this
equation should be zero, i.e.,

Cl(ﬂ’m+l _ﬂ]) :CZ(ﬂ’m+l _12) - “.:Cm(ﬂ'm+l _ﬂ’m) :O

Because all the eigenvalues are distinct, it follows all ¢/s equal to 0, which contradicts our
assumption that X, ., can be expressed as a linear combination of the first m eigenvectors. So,
the set of n1 eigenvectors is linearly independent given n distinct eigenvalues, and according to
Thm. 7.5, we can conclude that A is diagonalizable.

38



Diagonalization

< Example 7: Determining whether a matrix is diagonalizable

1 -2 1
A=|0 0 1
0 0 -3
Solution: Because A is a triangular matrix, its eigenvalues are

A =1, 4 =0, 4 =-3.

According to Theorem 7.6, because these three values are distinct, A is
diagonalizable.

39



Diagonalization

Example 8: Finding a diagonalized matrix for a linear transformation
% Let T: R — R’ be the linear transformation given by
T(x;,x,,x;)=(x, —x, —x;3, x, +3x, + x;, — 3%, + X, — X;)

Find a basis B' for R’ such that the matrix for T relative

to B' is diagonal.

Solution:

The standard matrix for 7'is gven by

1
A=| 1
-3

From Example 5 you know that 4, =2, 4, =-2, 4; = 3 and thus A is diagonalizable.
So, these three linearly independent eigenvectors found in Example 5 can be used

to form the basis B”. That is
40

-1
3
1

-1
1
—1




Diagonalization

B'={v,v,,v.;}={(-1, 0, 1),d, =1, 4),(-1, 1, 1)}

The matrix for 7 relative to this basis is

A'=[[T(v)1y [TV [T(V))],]
(2 0 0
=0 =2 0
0 0 3

% Note that it is not necessary to calculate A" through the above equation, we
already know that A" is a diagonal matrix and its main diagonal entries are
corresponding eigenvalues of A.

41



Symmetric Matrices and Orthogonal
Diagonalization

< Symmetric matrix:
A square matrix A is symmetric if it is equal to its

transpose: A= AT
0 1 -2]
A=1 3 O (symmetric)
-2 0 5 |
|4 3 |
ER (symmetric)
3 2 1
C=1-40 (nonsymmetric)
1 0 5

42



Theorem 7.7: Eigenvalues of symmetric matrices

< If Ais an nxn symmetric matrix, then the following properties are
true.

(1) A is diagonalizable (symmetric matrices are guaranteed to
have n linearly independent eigenvectors and thus be
diagonalizable).

(2) All eigenvalues of A are real numbers.

(3) If Ais an eigenvalue of A with the multiplicity to be k, then A
has k linearly independent eigenvectors. That is, the
eigenspace of A has dimension k.

< The above theorem is called the Real Spectral Theorem, and the set of
eigenvalues of A is called the spectrum of A.

43



< Example 2:

Prove that a 2 X 2 symmetric matrix is diagonalizable.

a ¢
A=
c b
proof: Characteristic equation:

A—-a -—c

2 2
. /1—19_/1 (a+b)A+ab—c” =0

W—A\:‘

As a function in A, this quadratic polynomial function has a nonnegative
discriminant as follows:

(a+b)’ —4()(ab—c*)=a" +2ab+b" —4ab+4c”
=a’ —2ab+b* +4¢*
=(a—-b)* +4c* >0

44



45

(1) (a=b)*+4c> =0

= a=b, c=0

a c a 0| . : :
A= = itself is a diagonal matrix.
c b 0 a

(2) (a=b)*+4c* >0

The characteristic polynomial of A has two distinct real roots, which implies that

A has two distinct real eigenvalues.According to Thm. 7.6, A is diagonalizable.



Orthogonal matrix

< Orthogonal matrix: A square matrix Pis called orthogonal if it is
invertible and

P'=P'(orPP" =P'P=1])

46



Orthogonal matrix

< Theorem 7.8: Properties of orthogonal matrices

< An nxXn matrix Pis orthogonal if and only if its column vectors
form an orthonormal set.
Proof: Suppose the column vectors of Pform an orthonormal set, i.e.,

P=[p, p, - p,], wherep,-p,=0fori# jandp,-p, =1.

p/p, p'P, - p'p,| [PP. PP, - PP,
prp— P;Pl pzT.pz pzip1 _ pz:pl pz:pz p2:p1 —1
p.'P, PP, - P, P, |P.PP PP, " PP,

It implies that P! = P"and thus Pis orthogonal.

47



Orthogonal matrix

< Ex 5:Show that P is an orthogonal matrix.

1 2 2
3 3 3
_| =2 1
P= N 0)
2 4 5
| 3J5 35 345

Solution: If Pis a orthogonal matrix,then P' =P’ = PP’ =]

| 1 2 2
3 3 3
r _| =2 L
PP’ = G 0
2 4 5
| 35 35 35

48
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Orthogonal matrix

1 2 [ 2 ]
3 3 3

Moreover, letp, = _T? , Py = % ,andp,=| 0 |,
5

2 4 -

K K | 35 _

we can produce p,-p, =p,-P; =P, -P; =0and p,-p, =p, P, =p; p; =1.

So, {P,» P,, P;}is an orthonormal set. (Theorem 7.8 can be verified by this example.)
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Orthogonal matrix

Theorem 7.9: Properties of symmetric matrices

< Let A be an mxnsymmetric matrix. If 4, and A, are distinct
eigenvalues of A, then their corresponding eigenvectors X, and x,
are orthogonal. (Theorem 7.6 only states that eigenvectors
corresponding to distinct eigenvalues are linearly independent)

Proof: A (x,X,)=(Ax,,x,) =(Ax,X,)=(Ax,)"x, = (x; AT)x,
because A is symmetric - - -
= (x; A)x, =X, (AX,) =X, (ﬂ2X2)=<X1,/12X2>=ﬂ2<X1,X2>
The above equation implies (4 —4,)(x,,X,) =0, and because

A # A, it follows that (x,,x,)=0. So, X, and x, are orthogonal.

¢ For distinct eigenvalues of a symmetric matrix, their corresponding
eigenvectors are orthogonal and thus linearly independent to each other.
% Note that there may be multiple x, and x, corresponding to A, and 4, .

50



Orthogonal matrix

< Orthogonal diagonalization: A matrix A is orthogonally

diagonalizable if there exists an orthogonal matrix P such that
P'AP= Dis diagonal.

Theorem 7.10: Fundamental theorem of symmetric matrices

< Let A be an nxn matrix. Then A is orthogonally diagonalizable and
has real eigenvalues if and only if A is symmetric.

Proof:
(=)
A is orthogonally diagonalizable
= D = P"'AP is diagonal, and P is an orthogonal matrix s.t. P! = P"
— A=PDP' =PDP" = A" =(PDP") =(P")'D"P" =PDP" = A
(<)

See the next two slides
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Orthogonal matrix

< Orthogonal diagonalization of a symmetric matrix:
Let Abe an nxXn symmetric matrix.

(1) Find all eigenvalues of A and determine the multiplicity of each.

> According to Theorem 7.9, eigenvectors corresponding to distinct eigenvalues are
orthogonal.

(2) For each eigenvalue of multiplicity |, choose the unit eigenvector.

(3) For each eigenvalue of the multiplicity to be k> 2, find a set of &
linearly independent eigenvectors. If this set {v, v,, ..., vV} is not
orthonormal, apply the Gram-Schmidt orthonormalization process.
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Orthogonal matrix

It is known that G.-S. process is a kind of linear transformation, i.e., the
produced vectors can be expressed as ¢,v, +¢,vV, +:--+¢,V, ,
i. Since Av,=Av ,Av,=Av,,...,Av, = Av,
= AV, +c,V, ++c,v,)=Ale, v, +c,V, + 4 V)
— The produced vectors through the G.-S. process are still eigenvectors for A
ii. Sincev,,v,,---,v, are orthogonal to eigenvectors corresponding to other
different eigenvalues (according to Theorem 7.9), ¢,v, +c,v, +---+c, v, is also

orthogonal to eigenvectors corresponding to other different eigenvalues.

(4) The composite of steps (2) and (3) produces an orthonormal set of
n eigenvectors. Use these orthonormal and thus linearly
independent eigenvectors as column vectors to form the matrix P.

According to Thm. 7.8, the matrix Pis orthogonal

Following the diagonalization process, D= P! APis diagonal

Therefore, the matrix A is orthogonally diagonalizable

53



Orthogonal matrix

< Ex 7: Determining whether a matrix is orthogonally diagonalizable
Symmetric Orthogonally

1 1 1] matrix diagonalizable
A=[101

11 1.

5 2 1
A=[2 1 8

-1 8 0

3 20
5=12 0 1}

0 0

54



Orthogonal matrix

< Example 9: Orthogonal diagonalization
Find an orthogonal matrix P that diagonalizes A.

2 2 =2
A= 2 -1 4
Solution: __2 4 _1_

() A -A=(A-3)*(A1+6)=0

A =-6, A, =3 (has a multiplicity of 2)

2) A=-6,v,=(, -2,2) = w=rli=d, 2,3

v

3) 4=3v,=2,1,0),v,=(-2,4,5) Verify Theorem 7.9 that

Vl‘V2 = Vl’V3 = O

55



Orthogonal matrix

o
S

- If v, and v; are not orthogonal, the Gram-Schmidt Process should be performed. Here we simply
normalize v, and v; to find the corresponding unit vectors

_ Y2 0 1 _ V5 oy 5
uz_HV H_(\E, \/gao)a 3_HVH_(3\/§, 35 ° 3\/3)
2 3

[ > 2]

ERR 1 -6 00
=2 1 4 - _

2 5

R

u u, u;

% Note that there are some calculation error in the solution of Example 9
in the text book

56



Applications of Eigenvalues and Eigenvectors

< The rotation for quadratic equation:
ax’+bxy+cy+dx+ey+f=0
< Example 5: Identify the graphs of the following quadratic equations

(a) 4x° +9y* -36=0 (b) 13x> —10xy +13y>=72=0

solution

y 1 3+

?—.

% Since there is no xy~term, it is easy to 5 . 9 .
derive the standard form and it is -1
apparent that this equation represents \

an ellipse. = P
34 - t+ == ]
3 2

(a) In standard form, we can obtain 3—+
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Applications of Eigenvalues and Eigenvectors
(b) 13x> —10xy+13y*=72=0

¢ Since there is a xy~term, it is difficult to identify the graph of this equation. In fact, it

is also an ellipse, which is oblique on the xy-plane.

@) (v)?
.\*{ +

2
3" 2-

132 - 10xy + 13y2=72=0

% There is a easy way to identify the graph of quadratic

equation. The basic idea is to rotate the x- and y-axes
to x'- and y’-axes such that there is no more x"y'-term
in the new quadratic equation.

In the above example, if we rotate the x- and y~axes

by 45 degree counterclockwise, the new quadratic

n2 n2
equation X .0 1 can be derived, which
32 22
represents an ellipse apparently.

¢ In Section 4.8, the rotation of conics is achieved by changing basis, but here the diagonalization

technique based on eigenvalues and eignvectors is applied to solving the rotation problem.
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Applications of Eigenvalues and Eigenvectors

< Quadratic form:
ax’+ bxy + cy?
is the quadratic form associated with the quadratic equation
ax’+ bxy+ cy’+ dx+ ey+ =0.

< Matrix of the quadratic form:

A = |: a bl 2:| % Note that A4 is a symmetric matrix.

bl2 ¢
X

y
quadratic equation can be expressed in terms of X as follows:

X'AX +[d el X +f=ax’+bxy +cy**+ dx+ey+ =0

If we define X={ } then X 'AX =ax?+ bxy + cy?. In fact, the
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Applications of Eigenvalues and Eigenvectors

Principal Axes Theorem

< For a conic whose equation is ax>+ bxy+ ¢y + dx + ey + =0,
the rotation to eliminate the xy~term is achieved by X' = PX,
where Pis an orthogonal matrix that diagonalizes A (matrix of the
quadratic form). That is,
2 }

P'AP=P'AP=D=
0 4

where A, and 4, are eigenvalues of A. The equation for the rotated
conic is given by

Ax) +A4L(y) +]d e|PX'+ f=0.
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Applications of Eigenvalues and Eigenvectors

Proof:

According to Theorem 7.10, since A is symmetric, we can conclude that there
exists an orthogonal matrix Psuch that P'AP = PTAP= Dis diagonal.

Replacing X with PX, the quadratic form becomes
X"AX =(PX) A(PX)=(X")" P"APX’
=(X")' DX’ = 4(x) + 4,(y)".
% It is obvious that the new quadratic form in terms of X has no x"y’-term,
and the coefficients for (x')? and (/)? are the two eigenvalues of the matrix

’

\J . /’ x x / / o x x,
“ X=PX :{ }:[V1 V2]|: ,}:xvl+yV2:>S|nce{ }and{ ,} are
Y y Y Y

the orignal and new coodinates, the roles of v, and v, (the eigenvectors
of A) are like the basis vectors (or the axis vectors) in the new coordinate
system.
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Applications of Eigenvalues and Eigenvectors

Example 6: Rotation of a conic

< Perform a rotation of axes to eliminate the xy~term in the
following quadratic equation

13x> =10xy +13y* =72 =0

Solution:

The matrix of the quadratic form associated with this equation is

13 -5
A=
BN

The eigenvalues are A, = 8 and A, = 18, and the corresponding eigenvectors are

ol menell
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Applications of Eigenvalues and Eigenvectors

After normalizing each eigenvector, we can obtain the orthogonal matrix P as

follows.
L __1 % According to the results on p.268 in
P 2 2 _|cos45”  —sin45 Ch4, X=PX" is equivalent to rotate
B 1 1 B sind5°  cos45° the xy-coordinates by 45 degree to
V2 2

\/E form the new x"y-coordinates.

Then by replacing X with PX’, the equation of the rotated conic is

8(x)+18(y")* =72 =0,
which can be written in the standard form
) )
CIRNCI
3 2
% The above equation represents an ellipse on the x"y’-plane.
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Applications of Eigenvalues and Eigenvectors

% In three-dimensional version:

ax’+ by’ + cZ2+ dxy+ exz+ 1yz

is the quadratic form associated with the equation of quadric
surface: ax’+ by + cZ2+ dxy + exz+ fyz+ gx+ hy+ iz+ j= 0.

< Matrix of the quadratic form:

A=

a d/?2
dl/2 b
_e/2 12

If we define X'= [x y z]7, then

el?
12

C

¢ Note that A is a symmetric
matrix.

XTAX=ax’+ by’ + cZ2+ dxy+ exz+ 1yz

and the quadratic surface equation can be expressed as
X'"AX +|g hi]X+j=0
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Unitary and Hermitian Matrices

Conjugate Transpose of a Complex Matrix

< The conjugate transpose of a complex matrix 4 denoted by A4,
is given by:

A =A"
where the entries of A are the complex conjugates of the
corresponding entries of A.

< Example: Determine A" for the matrix

3+ 7i 0
A =
[ 2i 4—1]
Solution: - |57 0| _[3-7
olution A:[H% 4_(:]:[2 —;i 4+(3]
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Unitary and Hermitian Matrices

< Theorem 8.8: Properties of the Conjugate Transpose

< If A and B are complex matrices and k is a complex number, then
the following properties are true.

. (AH'=A

. (A"+B)Y=A+RB
3. (kA =kA

4. (AB)'= B'A*
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Unitary and Hermitian Matrices

< Unitary Matrix: A complex matrix is unitary when
Al=A

< Example 2: Show that the matrix A is unitary.

1f14+i 1-—i
A_ZL—i 1+J

Solution: o _ 1|1+ l—i}l[l—i 1+i]
AA 1= 1 +)2[{1+: 1—1
40]
0 4

o 1

oS = -hl'—‘ l\-)l'—‘
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Unitary and Hermitian Matrices

< Theorem 8.9: Unitary Matrices

< An 11Xn complex matrix A is unitary if and only if its row (or
column) vectors form an orthonormal set in C”.

68



Unitary and Hermitian Matrices

< Hermitian Matrices: A square matrix A is Hermitian when
A=A

< Example 3: Ais Hermitian,

_ a, b, + bzi]
& {bl — b, d,
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Unitary and Hermitian Matrices

Theorem 8.10: The Eigenvalues of a Hermitian Matrix

< If A is a Hermitian matrix, then its eigenvalues are real numbers.

Proof:
Let A be an eigenvalue of A and let

[y = |
a, + b,i

la, + b,i]

be its corresponding eigenvector. If both sides of the equation Av = Av are multiplied
by the row vector v¥*, then

VAV = v¥(Av) = A(v¥*V) = Aal + b+ a3 + b3+ - + a? + b?).
Furthermore, because
(V:[:AV):E: — V:{:A:k(vzi:):i: — V:E:AV

it follows that v¥Av is a Hermitian 1 x 1 matrix. This implies that v¥Av is a real
number, so A is real.
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Unitary and Hermitian Matrices

< Example 4: Find the eigenvalues of the matrix A.

3 2—i =3i
A=12+1i O I —1i
3 1+ 0
Solution:
A—3 =2+ 3i
Al — A| =|-2—i A =1+i
=3 =1 —q A

=A=3)A=-2) - (=2+D[(=2—-Dr - 3i +3)]
+ 3i[(1 + 3i) + 3Ai]
=N -3A2-224+6)—5A+9+3)+Bi—9—-9A)
= A —3A2 - 16A — 12
= A+ DA —6)A + 2).

= A=-1, A= -2, =6
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Unitary and Hermitian Matrices

< Theorem 8.1 I: Hermitian Matrices and Diagonalization
< If Ais an nxn Hermitian matrix, then

|. eigenvectors corresponding to distinct eigenvalues are
orthogonal.

2. A s unitarily diagonalizable.

PFOOf' To prove part 1, let v, and v, be two eigenvectors corresponding to the distinct (and
real) eigenvalues A, and A,. Because Av, = A,v, and Av, = A,v,, you have the
equations shown below for the matrix product (Av,)*v,.

(Av,)*v, = v *A*y, = v *Av, = v *A,v, = A,V ¥V,
(Av))*v, = (A, V))*v, = v ¥ A v, = A, v, ¥y,
So,
AViFVy = Avitv, = 0
v*v, =0 because A, # A,

and this shows that v, and v, are orthogonal. Part 2 of Theorem 8.11 is often called the
Spectral Theorem, and its proof is left to you.
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Unitary and Hermitian Matrices

< Example 5: Find a unitary matrix Psuch that P APis a diagonal

matrix Where [ 3 ) — _31'_
A=|2+1 0 1 —1
3 1+ 0]

Solution: Eigenvalues of A are calculated in example 3.The normalized eigenvectors of A
are:

vl ==L 1+2i )| =VT+5+1=/7
voll = (1 = 21,6 — 9i, 13)]| = /442 + 117 + 169 = /728

Ivall = I(1 + 3i, =2 — i,5)| = V10 + 5 + 25 = /40

[ 1 1=21i 1430
ST ST J40 1 0o o0
1 + 2i G—9 —2 —]
P: % — £
i o i ‘ P*AP { 0 6 O]
iR 13 5 0 0 -2
| V7 728 V40
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Symmetric and Hermitian Matrices

A is a symmetric matrix A is a Hermitian matrix
(real) (complex)
< Eigenvalues of are real. < Eigenvalues of are real.
< Eigenvectors corresponding to | < Eigenvectors corresponding to
distinct eigenvalues are distinct eigenvalues are
orthogonal. orthogonal.
< There exists an orthogonal < There exists an unitary matrix
matrix such that such that
PIAP PAP

is diagonal. is diagonal.
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