
Non-monotonocity in OrBAC through Default and
Exception Policy Rules

Seyyed Ahmad Javadi, Morteza Amini, Rasool Jalili

Data and Network Security Lab (DNSL)
Department of Computer Engineering

Sharif University of Technology
Tehran, IRAN

{ajavadi@ce., amini@, jalili@}sharif.ir

Abstract—Context-awareness is an essential requirement of
modern access control models. Organization-Based Access
Control (OrBAC) model is a powerful context-aware access
control model defined by first-order logic. However, due to the
monotonicity nature of the first-order logic, OrBAC suffers from
the incapability of making decision based on incomplete context
information as well as the definition of default and exception
policy rules. This paper proposes augmenting non-monotonicity
features to OrBAC using MKNF+ logic, which is a combination of
Description Logic (DL) and Answer Set Programming (ASP).
Along with the use of DL to define ontology for main entities and
context information in OrBAC; MKNF+ rules are used to define
access control, default, and exception policy rules. The proposed
model inherits the advantages of ontological representation of
OrBAC entities and context information (such as interoperability
among systems) as well as the ASP advantages in non-monotonic
reasoning through closed-world principle and negation as failure.
The expressive power of the model is also demonstrated through
a case study.

Keywords: Role-Based Access Control, Non-monotonic Logic,
Default Policy Rule, Exception Policy Rule

I. INTRODUCTION
Access control policy determines what, where, when, and

how subjects can access databases, web services, electronic
devices, and any other resources. Context-awareness is an
essential requirement of recent access control models.
Organization-Based Access Control (OrBAC) [1] is one of
such models, which attempts to overcome the limitations of
previous access control models through the consideration of
organization and context concepts.

The use of logics in access control models has advantages
including clean foundations, flexibility, expressiveness,
declarativeness, and inference capability [2]. Two overall
classes of logics are:

• Monotonic logics, where inference of a sentence A
from a set T of sentences, implies its inference from
any arbitrary superset of T. In other words, current
conclusions are not invalidated by adding new
information and premises. Classical logics such as
propositional and first-order logic are monotonic.

• Non-monotonic logics, where some of the current
conclusions may be retracted by adding new
information and premises.

Based on the definition, in a non-monotonic access control
system, adding new information or access control rules may
invalidate some of the previous conclusions (permissions/
prohibitions). The following four requirements are introduced
as the motivation of introducing non-monotonic access control
systems [2], [3]:

1. Context information may be imperfect as it is
impossible to gather all context information
completely and accurately all the time. For example, a
user location might be unknown due to the
communication failure, the sensor failure, or any other
types of failures. Incomplete context information
cannot be modeled by monotonic logics such as
propositional and first order logic. Answer Set
Programming (ASP) [4] is an appropriate decidable
logic for handling incomplete context information.
ASP supports negation as failure (in addition to
classical negation), using which, the default context
information can be defined.

2. In some conditions, permissions (prohibitions) should
be granted (revoked) exceptionally. In addition, ability
to define exceptions to access control rules increases
the expressiveness of the policy specification
language. If exception is supported by policy
specification language, general access control rules
can be defined initially and the specific authorizations
can be defined subsequently using exceptions [2].

3. When an access control model supports defining both
permission and prohibition on the same target, some
strategies are required to resolve the possible conflicts
in access decision process.

4. A default policy is required when neither permission
nor prohibition about a request is inferred.

Several approaches have been proposed for modeling
context information so far [5]. Among these approaches, using
ontology has some more advantages such as interoperability
among systems (easier knowledge sharing), and deducing the
high level conceptual context from the low level context [6].
Additionally, context reasoning based on ontology is
supported by optimized automatic tools [5]. However, DL,
which is normally used to specify ontologies, has some
shortcomings as represented in TABLE I. Accordingly, while
DL is appropriate for context modeling, it is not strong enough
for access control policy specification. The shortcomings of

2012 9th International ISC Conference on Information Security and Cryptology

978-1-4673-2386-4/12/$31.00 ©2012 IEEE 87

DL can be compensated by ASP [7]. A hybrid logic,
combining DL and ASP together, would be a good solution to
use the features found in the both.

In this paper, MKNF+ [7], as a combination of ASP and
DL, is used to handle non-monotonicity in OrBAC. Main
entities of OrBAC and context information are modeled as an
ontology using DL, part of MKNF+, while various contextual
conditions (e.g. default context) and access control rules are
specified using rule specification capability of MKNF+. In
addition, exception and default policy rules are added to
OrBAC using negation as failure.

In summary, our proposed model uses the DL’s strengths
in semantic technology alongside the ASP’s strengths in non-
monotonic reasoning. In addition, the principle which is
considered in this paper is that exception policy rules can be
considered as exception to regular access control rules and
regular access control rules can be considered as exception to
default policy rules. In both cases, the exceptions can be
defined in MKNF+ using negation as failure. Thus, all the non-
monotonic features that we like to have in OrBAC can be
augmented to it using negation as failure feature of MKNF+.

The rest of this paper is organized as follows. Section II
briefly overviews some preliminaries including imperfect
context information, OrBAC, and MKNF+. Section III surveys
related work. The ontologies of main entities of OrBAC and
context information are represented in Section IV. In
Section V, our proposed approach to meet the non-monotonic
access control requirements are described. A case study for
clarifying the applicability of the approach is mentioned in
Section VI. Finally, Section VII concludes the paper and
draws some future directions.

II. PRELIMINARIES
Various types of imperfect context information, OrBAC,

and MKNF+ are discussed in the following as preliminaries.

A. Imperfect Context information
The following four categories of imperfect context

information have been characterized by Henricksen et al.[8]:
1. Unknown: when no information about a contextual

property is available or cannot be incorporated into the
access control system. This type of imperfection is
also known as incomplete information [3].

2. Ambiguous: when several different values are reported
about the property; e.g. two or more distinct locations
are reported by separate positioning devices for a
given person.

3. Imprecise: when the reported values of the property
are approximately correct; e.g. the imprecise
geographical position of a person.

4. Erroneous: when reported values of the property do
not match the actual values. Erroneous context
information can be arisen as a result of human error.

In this paper, we consider incomplete information and use
negation as failure to deal with such kind of imperfect context
(see Section IV.B). Handling the other three categories is
leaved for our future research.

TABLE I. The shortcomings and strengths of DL and ASP [7]

Logic
Name Shortcomings Strengths

DL • No support for logical rules
• Unfeasibility to express non-

tree-like relationships
• Impossibility to express

integrity constraints
• Lack of support for non-

monotonic reasoning (i.e.
closed-world reasoning)

• Support for reasoning
with unbounded or
infinite domain

• Powerful description of
structured knowledge

ASP • Lack of support for reasoning
with unbounded or infinite
domain

• Support for negation as
failure and closed-world
reasoning

B. Introduction to OrBAC
OrBAC is a context-aware access control model with the

aim of overcoming the previous access control models’
limitations. Main entities of OrBAC and their definitions are
represented in TABLE II. There are eight basic sets of entities
in OrBAC: ORG (set of organizations), SU (set of subjects),
RO (set of roles), OB (set of objects), V (set of views), AC
(set of actions), AV (set of activities), and C (set of context).
The main predicates and their descriptions in OrBAC are
represented in TABLE III. Predicates Prohibition and Is-
prohibited are defined similar to Permission and Is-permitted
respectively. Axiom (1) describes how abstract permissions
among roles, views, and activities can be transformed into
concrete permissions among subjects, objects, and actions.
The axiom for prohibition is defined similarly.

su SU ob OB ac AC ro RO av AV v V c C
Permission(Org, ro,av, v,c) Employ(Org,su, ro)
Use(Org,ob, v) Consider(Org,ac,av)
Define(Org,su,ac,ob,c) Is-permitted(su,ac,ob)

∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈ ∀ ∈
∧ ∧

∧ ∧
→

 (1)

Different types of context information have been modeled
by Cuppens et al. [9] in OrBAC using first-order logic. As an
example, suppose the following rule used by hospital H1 to
define the context location(so):

1

1

su SU, ac AC, ob OB,(Is _ located(H ,su,so)
Define(H ,su,ac,ob, location(so)).

∀ ∈ ∀ ∈ ∀ ∈
→

Where, the function location maps each spatial object in set
SO to a physical spatial context (e.g. Office_32). This rule
means that the context location(so) is true among subject su,
action ac, and object ob; if su is located in the area of spatial
object so.

TABLE II. Main entities of OrBAC [1]

Entity Definition

Organization An organized group of active entities (i.e. subjects)
playing some role for specific goals.

Subject An active entity (i.e. user) or an organization.

Role The entity used to structure the link among subjects and
organizations.

Object An inactive (passive) entity such as a data file, an email.
View A group of objects on which the same security rules apply.
Action Computer actions such as “read” and “write”.
Activity A group of actions that partake of the same principles.

Context
Used to specify the concrete circumstances where
organizations grant permissions to roles for performing
activities on views.

88

TABLE III. Main predicates and their description in OrBAC [1]

Predicate
Name Domain (Dom.), Description(Des.) and Example (e.g.)

Employ

Dom: ORG SU RO× ×
Des: Employ(org, su, ro) means that org employs subject su
in the role ro.
e.g.: Employ(H1, Bob, Physician)

Use

Dom: ORG OB V× ×
Des: Use(org, ob, v) means that org uses object ob in the
view v.
e.g.: Use(H1, F1.doc, Medical_Record)

Consider

Dom: ORG AC AV× ×
Des: Consider(org, ac, av) means that org considers that
action ac falls within the activity av.
e.g.: Consider(H1, Read, Consult)

Define

Dom: ORG SU AC OB C× × × ×
Des: Define(org, su, ac, ob, c) means that within org,
context c is true among subject su, object ob and action ac.
The required conditions for a specific context are described
by logical rules.

e.g.:
su SU, ac AC, ob ob(Name _ Patient(ob,p)

Patient(su,p)) Define(H ,su,ac,ob,Attending _ Physician)1

∀ ∈ ∀ ∈ ∀ ∈ ∧
→

Permission

Dom: O RG RO AV V C× × × ×
Des: Permission(org, ro, av, v, c) means that org grants role
ro permission to perform activity av on view v within
context c.
e.g.: Permission(H1, Physician, Consult, Medical_Record,
Attending_Physician)

Is-
permitted

Dom: SU AC OB× ×
Des: Is-permitted(su, ac, ob) means that subject su, is
concretely permitted to perform action ac on object ob.
e.g.: Is-permitted(Bob, Read, F1.doc)

Sub-role

Dom: ORG RO RO× ×
Des: Sub-role(org, ro1, ro2) means that in org, role ro1 is sub
role of role ro2.
e.g.: Sub-role (H1, Administrator, Physician)

C. Introduction to MKNF+

MKNF+ [7] is a formalism for the combination of DL and
ASP. Each MKNF+ knowledge base is a pair K= (O, P),
where O is a DL knowledge base and P is a program.
Predicates defined in O are called DL-predicates and other
predicates are called non-DL-predicates. DL-predicates are
unary or binary predicates but non-DL-predicates are not
bounded. Moreover, two types of modal atoms namely K-atom
and not-atom are defined in this formalism. K-atom is denoted
by K A (read “A is known to hold”) and not-atom is denoted
by not A (read “A can be false”) [7]. The structure of an
MKNF+ rule is as follows:

1 n 1 mB ,..., B H H... .→ ∨ ∨
Where, Bi can be a non-modal predicate, a K-atom, or a not-
atom, whereas, Hi would be either a non-modal predicate or a
K-atom. To preserve decidability of MKNF+, the DL-safety
restriction must be applied; each variable in a rule should
appear in the body of the rule in some non-DL-K-atom. The
main idea of this restriction is to restrict the applicability of
rules only to individuals that are explicitly mentioned by name
in the knowledge base. In the rest of this paper, names of DL-
atoms are indicated by initial cap words and names of non-
DL-atoms are demonstrated by lowercase words. In addition,
names of variables begin with lowercase letters while names
of constants begin with uppercase letters.

III. RELATED WORK
For the first time, default logic as a powerful (but not

decidable) non-monotonic logic has been used in access
control policy specification by Woo and Lam [10]. To address
the complexity issues of default logic, using the fragment of
default logic corresponding to stratified, extended logic
program was proposed by them. Although the proposed access
control model is a powerful model, context information
modeling is not considered in it. Ordered logic programs
which supports negation by failure has been proposed as
policy specification language by Bertino et al. [11]. This
model supports exception but it does not pay attention to the
context information.

Lk as a knowledge base formal language has been proposed
to specify authorization domains with incomplete information
by Bai [12]. Three types of propositions namely initial,
objective, and subjective are defined for this purpose. The
semantics of Lk is defined based on the world view semantic of
epistemic logic programs. TABLE IV shows the propositions
and their translation to epistemic logic program, whereφ is a
conjunctive or disjunctive fact expression, andψ , β , and γ are
conjunctive fact expressions. Note that β¬K can be used in
this logic; but, it is not supported in MKNF+

.
 OrBAC is defined by first-order logic, which is monotonic

and dose not satisfy non-monotonic requirements. Boustia et
al. [13] proposed a new extension that handles non-
monotonicity in OrBAC using their proposed logic named
JClassic−

δε . JClassic−
δε is a DL based system augmented with

two operators δ (for default) and ε (for exception).
JClassic−

δε inherits some shortcomings from DL including
lack of support for logical rules, arity restriction, inability to
axiomatize integrity constraints, and lack of support for
closed-world reasoning and negation as failure.

Several frameworks have been proposed for combining
DLs and rules. Description logic ALC and positive Datalog
programs are combined in AL-log [14]. Rosatiet al. extended
AL-log and proposed DL-log [15]. In comparison with AL-
log, disjunctive Datalog with negation and binary predicates
are supported in DL-log. To preserve decidability, the weak
DL-safety condition has been employed. According to this
restriction, each variable in a DL-atom of the head must occur
in a non-DL-atom of the body. Motik et al. [7] showed that
each DL-log knowledge base can be encoded to a MKNF+
knowledge base. However, MKNF+ is more flexible than DL-
log.

TABLE IV. Three propositions in Lk and their translation to epistemic logic
program [12]

Proposition Name (PN), Proposition Form (PF) Translation
PN: initial
PF: φinitially φ→

PN: objective
PF: φ ψ γif withabsence ,ψ γ φ→not

PN: subjective
PF: φ ψ γ βif withabsence knowing or
φ ψ γ βif withabsence not knowing

, ,ψ γ β φ→not K
or

, ,ψ γ β φ¬ →not K

89

In DL-log, DL-predicates and non-DL-predicates are
interpreted under open-world and closed-word assumption
respectively, which makes DL-log knowledge base inflexible.
In contrast to DL-log, in MKNF+, an open-world or closed-
world interpretation of a predicate can be chosen freely
through its usage in either a non-modal or a modal atom [7].

In this paper, we propose an extension to OrBAC in which
MKNF+ used to representing context information and defining
access policy rules. In MKNF+, predicates can be defined with
arbitrary arities. Furthermore, MKNF+ supports non-
monotonic inference rule such as negation as failure which
can be used to handle incomplete context information and
default policy rules specification. To the best of our
knowledge, MKNF+ is the most powerful decidable formalism
proposed for combination of DL and rules, and thus, it is used
in this paper.

IV. ORBAC AND CONTEXT INFORMATION ONTOLOGY
Since, ontology is chosen as data model in our proposed

access control model, the details of modeling of main entities
of OrBAC as well as context information (especially the
incomplete one) are discussed in the following.

A. Ontological Representation of Main Entities of OrBAC
and Context Information
Context information may be provided by different service

providers with different data models. However, a common
understanding between client and service provider is needed
for interoperability among systems. Semantic technology and
especially OWL language are widely used to data modeling
independent of the underlying models. As Figure 1 shows, in
our proposed model main entities of OrBAC and context
information are modeled in an ontology. However, it is not
applicable to cover all entities’ and context information in
different domains in a predefined ontology. Context model is
divided into upper level ontology and specific ontology in
CONON ontology [16] for resolving the issue. We use the
same idea, so our proposed ontology consists of two layers:

1. Upper Level Ontology is a high-level ontology which
represents the main general entities and their
attributes. Such entities can be used in different
domains.

2. Domain Specific Ontology is a detailed ontology
which describes domain specific concepts and their
relationship, in addition to the main concepts.

Figure 1. Proposed model security knowledge base structure

Figure 2 depicts the upper level ontology’s entities
consisting of main concepts in OrBAC, i.e., organization,
context, role, activity, view, subject, action, and object and
their properties. Additionally, the two important context
information including time and location are considered in the
upper level ontology.

In the rest of this paper, non-DL-predicates
cie(ContextInformationEntity) and ape(AccessPolicyEntity)
are used to apply DL-safety restriction. All the access policy
entities and context information entities (sub-classes or
individuals) are defined as members of predicates “ape” and
“cie” respectively. For example, if hospital H1 defines a new
role called Surgeon, Role(Surgeon) and ape(Surgeon) are
added to the security knowledge base. As another example, if
H1 defines a new location called Surgery_Room2,
Location(Surgery_Room2) and cie(Surgery_Room2) are
added to the security knowledge base. By doing so, the DL-
safety restriction is satisfied in the MKNF+ rules, which are
used in our proposed access control model.

B. Dealing with Incomplete Context Information
Some aspects of environment may be unknown to the

access control system. MKNF+ rules support negation as
failure, to cope with deduction in presence of incomplete
information. Generally, the following two states are possible
for each predicate [4]:

1. Information about the predicate is complete and the
closed-world assumption is applicable. The following
rule can be used to define closed-world assumption for
the predicate p(x):

p(x) p(x).→¬not
For example, hospital H1 can assume that information
about the attending physician is complete, so it can
use Rule (2) to apply the closed-world assumption to
the predicate define for context Attending_Physician.

2. Information about the predicate is incomplete. The
rule “the predicate can be assumed true if some
prerequisite conditions be true and there exists no
clear negative information about the predicate” can be
used as a general rule to deal with incompleteness.
Rule (3) expresses this general rule for predicate p(x).
As an example, IsLocatedIn(Subject, Location) is a
useful predicate which may be unknown for some
subjects. For default context information, H1 can
define the following rule: “at the working hours, a
hospital nurse is in hospital if he is not on vacation
and there is no contrary information”. Rule (4) defines
the predicate workingHours. Rule (5) is the default
context rule for the previous general rule.

1

1

define(H ,su,ac,ob,Attending _ Physicion)
define(H ,su,ac,ob, Attending _ Physicion)→ ¬

not
 (2)

Pr erequisite _ Conditions, p(x) p(x)¬ →not (3)
After(08 :00), Before(19 :00), OnDay(Saturday),

OnDay(Sunday) workingHours()
¬

¬ →
K K K
K K

 (4)

1

1

ape(su), IsEmployedIn(su, Nurse), workingHours(),
IsInVacation(su,True), IsLocatedIn(su,H)

IsLocatedIn(su,H)
¬

→

K K K
not not

K
 (5)

90

Figure 2. Partial definition of upper level ontology

V. NON-MONOTONICITY IN ORBAC
In order to augment non-monotonicity features to OrBAC,

using MKNF+ logic, we first stratify the security policy to
three layers. Then it is described that how policy rules in each
layer are specified considering their non-monotonic nature.

A. Security Policy
Generally, security policy rules can be categorized as:
1. Regular Access policy rules, which are defined using

the predicates permission and prohibition.
2. Exception policy rules, which are defined using the

predicate exception. Different types of exceptions as
well as our approach for exception policy rule
definition are discussed in the next section.

3. Default policy rules, which are defined using the
predicate default. More discussion on default policy
rules is represented in Section V.C.

Following the above categorization, the security policy can
be stratified to three layers, as depicted in Figure 3. Exception
policy rules have more priority than regular access policy rules
and they have higher priority than default policy rules. In fact,
each regular access control rule can be considered as an
exception to default rules because adding them may decrease
the applicable domain (subject/ object/ action) of the default
rules. Correspondingly, each exception policy rule can be
considered as an exception to regular access policy rules.
Since existing exception and default rules makes the system
non-monotonic, such unification of interpretation of different
rules clarifies the specification of them using the only non-
monotonic feature of MKNF+, i.e., negation as failure. More
details on this issue would be found in the next section.

As our proposed model supports both permission and
prohibition in both access policy rules and exception policy
rules, a conflict resolution strategy is also required. The
following conflict resolution strategies are mentioned in the
literature:

• Denial-takes-precedence
• Permission-takes-precedence

• Least specific-takes-precedence
• Most specific-takes-precedence
• More prioritized-takes-precedence
Each of the above conflict resolution strategies can be

employed in our proposed model. Due to lack of space, we do
not further discuss this requirement. It is important to note
that, our proposed model allows conflict among regular access
policy rules but it does not allow conflict among exception
policy rules. In other words, we cannot define a new exception
rule over the existing exception rules.

B. Inheritance and Exception Policy Rules
Authorization inheritance is an important concept which

should be considered in specification and inference of access
control policies. In our proposed model, Rules (6) and (7) in
the following are provided to enforce inheritance over role
hierarchy. Enforcing inheritance over view and activity
hierarchies are as the same. Using the aforementioned rules,
each child role inherits the permissions of its parent nodes and
each parent role inherits the prohibitions of its child roles. For
example, if the role Administrator is considered as a sub-role
of role Physician, all permissions granted to Physician are
inherited by Administrator. The predicate IsSubRoleOf(ro1,
ro2) means that the role ro1 is the child node of role ro2.

In presence of role (activity, or view) hierarchy, two
general types of exceptions worth to be discussed:

1. Local exceptions: kind of exceptions that when
defined locally on a role (activity, or view), they are
not inherited over the role (activity, or view)
hierarchy. The definition of local exception needs that
user having sub-roles are not permitted to login as
parent roles. Such a limitation contradicts the
existence of role hierarchy.

2. General exceptions: kind of exceptions which are
inherited over the role (activity, or view) hierarchy.

Due to the limitations of local exceptions, we take general
exceptions into account in this paper.

91

ACR2
domain

(prohibition)

Default rules domain

EPR1
domain

(permission)

Conflict Resolution Strategy (CRS) is needed

Default Policy Rules (DPR)

Exception Policy Rules (EPR)

Access Control Rules (ACR)

ACR1
domain

(permission)
As exception on

As exception on

Figure 3. Different types of security policy rules

Each access control rule adds a set of permissions or
prohibitions to the security knowledge base. So, an exception
can be defined in either of two ways:

1. Rule-specific exception; which is defined on a role,
view, or activity of a specific access control rule. For
example, permission(org,ro1,av1,v1,c) grants
permission to role ro1 to do activity av1 on view v1
within context c. According to the role hierarchy
shown in Figure 4, the roles ro2, ro3, ..., ro10 inherit
this permission. Now if we need to prohibit ro2 from
doing activity av1 on view v1, we should define it as an
exception on permission(org,ro1,av1,v1,c). In this
situation, if ro2 inherits this permission due to the
existence of another rule, a conflict happens. Note that
exceptional permissions (prohibitions) should
overwrite other prohibitions (permissions). Giving
higher priority to exceptional permissions/prohibitions
would be a logical strategy for resolving such
conflicts.

2. Rule-independent exception; which is defined
independently from the defined access control rules.
So, an exceptional permission (prohibition) overwrites
all other conflicting prohibitions (permissions).

In this paper, we take rule-independent exceptions into
account. In our proposed model, global and rule-independent
exceptions are defined using negation as failure. Predicate
exception(Organization, Role, Activity, View, Context, Type) is
provided as exception policy rule definition. exception(org, ro,
av, v, c, Per) defines an exception to role ro to do activity av
on view v within context c in organization org, and likewise,
the exception(org, ro, av, v, c, Pro) defines an exception to
prohibits ro to do av on v within context c. Rule (8) translates
abstract level exceptions to the concrete level ones. The
predicate is_excepted is defined to show the concrete level
exceptions. Rules (9) and (10) refine OrBAC axioms
translating the abstract level permissions and prohibitions to
the concrete level ones. In comparison to the OrBAC axiom,
the condition not is_excepted is added to the axiom body. In
fact, this condition means that a subject su has not permitted
(prohibited) exceptionally to do action ac on object ob, unless
it is explicitly defined. In addition, Rules (11) and (12) are
defined for inheritance of exceptional permissions and
prohibitions over role hierarchy. Inheritance rules for view and
activity hierarchy are defined similarly. Finally, Rules (13)

and (14) infer concrete level permissions and prohibitions
from the concrete level exceptions.

1 2

1 2 1

ape(ro), permission(org, ro ,av, v,c),
IsSubRoleOf (ro , ro) permission(org, ro ,av, v,c)→

K K
K K

 (6)

2 1

1 2 2

ape(ro), p r ohibition(org, ro ,av, v,c),
IsSubRoleOf (ro , ro) p r ohibition(org, ro ,av, v,c)→

K K
K K

 (7)

exception(org, ro,av, v,c, t), IsEmployedIn(su, ro) ,
IsUsedIn(ob, v) , IsConsideredAs(ac,av) ,
define(org,su,ac,ob,c) is _ excepted(su,ac,ob, t)→

K K
K
K K

 (8)

permission(org, ro,av, v,c) ,
IsEmployedIn(su, ro) , IsUsedIn(ob, v) ,
IsConsideredAs(ac,av) , define(org,su,ac,ob,c),

is _ excepted(su,ac,ob,Pr o) permitted(su,ac,s _ obi)→

K
K K
K K
not K

 (9)

prohibition(org, ro,av, v,c) ,
IsEmployedIn(su, ro) , IsUsedIn(ob, v) ,
IsConsideredAs(ac,av) , define(org,su,ob,ac,c),

is _ excepted(su,ac,ob, prohibited(sP e u,r) is _)ac,ob→

K
K K
K K
not K

 (10)

1 2

1 2 1

ape(ro), exception(org, ro ,av, v,Per) ,
IsSubRole(ro , ro) exception(org, ro ,av, v,Per)→

K K
K K

 (11)

2 1

1 2 2

ape(ro), exception(org, ro ,av, v,Pr o) ,
IsSubRole(ro , ro) exception(org, ro ,av, v,Pr o)→

K K
K K

 (12)

is _ excepted(su,ac,ob,P er) is _ permitted(su,ac,ob)→K K (13)
is _ excepted(su,ac,ob,Pr o) is _ prohibitted(su,ac,ob)→K K (14)

C. Default Policy Rules
In some conditions, it is impossible to infer either Is-

permitted or Is-prohibited for a request from the authorization
knowledge base. However, the access control system finally
should decide to accept or reject the request. Default policy is
a solution proposed to resolve this problem.

In almost all the previous access control models Open and
Close policy used as the default policy. However, default
policy can be determined based on context. For example, a
hospital may prefer to define Open policy for spatial objects at
days and Close policy for them at nights. The hospital may
also choose to apply Open and Close policies based on the
user’s roles. An organization may also desire to define Open
policy for non-sensitive data and the Close policy for sensitive
data.

The predicate default(Organization, Role, Activity, View,
Context, Type) is used to define default rules. default(org, ro,
av, v, c, t) means that the organization org forces default
policy t, which can be Open or Close, to role ro to perform
activity av on view v within context c. Covering all entities in
a domain is an important requirement of default policy. To
meet this requirement, we define the Universal context, which
is true for all roles, activities, and views. Each organization
should choose Open or Close policy for all roles, activities,
and views in the Universal context. Additionally, all contexts
are sub-context of Universal context. Rules (15) and (16)
enforce these propositions. Default rules can be inherited over
the role, activity, and view hierarchies. Each sub-role inherits
Open policy from its parent nodes (Rule (17)) and each parent
nodes inherits Close policy from its sub-roles (Rule (18)).

92

Perm
issions inheritance Pr

oh
ib

iti
on

 in
he

ri
ta

nc
e

Figure 4. A sample role hierarchy

Since default policy rules support definition of both Open
and Close policy, a conflict may occur among the Open and
Close policies. The predicate IsSubContextOf is used to
prioritize default rules. In fact, we use the following conflict
resolution rule: “if default rules DR1 and DR2 have the same
value for Role, Activity, and View entities and the DR1
context is sub-context of the DR2 context, DR1 have more
priority than DR2”.When the Open and Close policies are
inferred from two default rules with incomparable contexts,
the Close policy takes higher priority than the Open policy.
The predicate has_more_specific_default(Organization, Role,
Activity, View, Context, Type) is used to determine the
default rules that would be overridden by some existing more
specific default rules (in comparison to themselves). Rule (19)
is defined to enforce transitivity relations for predicate
IsSubContextOf. Rule (20) drives predicate
has_more_specific_default from the context hierarchy. Rule
(21) translates abstract level default to the concrete level one.
Default rule with lower priority prevented to be translated to
the concrete level one by using predicate not
has_more_specific_default in the rule body. Finally Rules (22)
and (23) consider concrete level Open and Close default
policies to decide to reject or accept a request. Condition not
concrete_default(su,ob,ac,Close) in the body of Rule (22)
gives more priority to the Close policy.

define(org,su,ac,ob, Universal)→K (15)
ape(co), Context(co) IsSubContextOf (co, Universal)→K K K (16)

2 1

2 1 2

org, ro ,av, v,c,Open),
IsSubRoleOf (ro , ro)
ape(ro), default(

defau org, ro ,al v, v,c,Open)t(→
K

KK
K (17)

2 1

1 2 2

org, ro ,av, v,c,Close, id),
IsSubRoleOf (ro , ro)
ape(ro), default(

defau org, ro ,av, v,c,Closelt()→
K
K

K
K

 (18)

1 2 3 1 2

2 3 1 3

ape(c), ape(c), co(c), IsSubContextOf (c ,c),
IsSubContextOf (c ,c) IsSubContextOf (c ,c)→

K K K K
K K

 (19)

1 1

2 2 1 2

2 2

org, ro,av, v,c , t),
org, ro,av, v,c , t), IsSubC

default(
default(

has _ more _ specefic _ defaul
ontextOf (c ,c)

org, ro,av, v,c t(,)t→

K
K K

K
 (20)

IsEmployedIn(su, ro),
IsUsedIn(ob, v) , IsConsideredAs(ac,av) ,
define

default(org, ro,av, v,c, t),

has _ more _ specefic _ default(org, ro,av, v,c, t)
(org,s

concrete _ default(su,ob,ac, t

u,ob,ac,

)

c),

→

K

not
K

K
K K
K (21)

is _ permitted(su,ob,ac), is _ prohibited(su,ob,ac),
concrete _ default(su ob,ac,Open),

concrete _ default(su,ob,ac,Close)
is _ permitted(su,ob,ac)→

not not
K
not

K

 (22)

is _ permitted(su,ob,ac), is _ prohibited(su,ob,ac),
concrete _ default(su,ob,ac,Close)

is _ prohibited(su,ob,ac)→

not not
K

K
(23

VI. CASE STUDY
To demonstrate the applicability of the proposed model, a

case study is discussed in this section. Figure 5 shows a partial
definition of specific ontology for a healthcare domain. In
addition to general classes defined in the proposed upper level
ontology, a number of concrete sub-classes are defined to
model specific context in a given environment (e.g., abstract
class Location is classified into two sub-classes
LogicalLocation and PhysicalLocation). Also some
individuals for different entities of OrBAC are added to the
upper level ontology. For example, individual Guest is a role
such thath all subject are employed in it.

Suppose that hospital H1 uses the aforementioned
ontology. Table V shows some contexts defined by H1.
Context Universal (Rule (24)), Attending_Physician (Rule
(25)), Non_Attending_Physician (Rule (26)), and Emergency
(Rule (27)) have been already discussed. Rule (28) defines
Internal_IP context and Rule (29) applies closed-world
assumption to it to define the context External_IP. According
to Rule (28), the context Internal_IP is true for subject su if he
uses a host located in H1’s internal network.

Table VI represents the security policy for H1. H1 chooses
Close policy as its default policy for Universal context using
Rule (30). Also it enforces Open policy for subjects who have
been employed in role Medical_Staff and uses internal IP

Figure 5. Partial definition of a specific ontology for healthcare domain

93

address to access the hospital’s internal services (Rule (31)).
Rule (32) grants permission to subjects employed in role
Physician and are in the patient’s attending physician team to
consult on medical records belonging to the patient. Rule (33)
prohibits physicians whose context Non_Attending_Physician
is true to access the medical records. Rule (34) grants access
to see the public data to role Guest. Rule (35) defines an
exception which allows the physicians not belonging to the
patient’s attending team to access his medical record when he
is in emergency condition. Suppose H1 wants to prohibit all
accesses to some sensitive data such as the medical records
from the external IP addresses (unsecure networks). It can use
Rule (36) to prohibit all accesses to sensitive data from role
Administrator. By prohibiting role Administrator and
considering the inheritance over role hierarchy, all other roles
are prohibited automatically. Finally, H1 can use Rule (37) to
enforce denial-takes-precedence as its conflict resolution
strategy.

Table V. Some contexts definition

define(H1,su,ac,ob, Universal)→K (24)
ape(p), ape(su), ape(ob), HasPhysician(p,su),
OwnsBy(ob,p) define(H ,su,ac,ob,Attending _ Physician)1

Κ
→

K K K
K K

 (25)

1

1

define(H ,su,ac,ob, Attending _ Physician)
Define(H ,su,ac,ob, Non _ Attending _ Physician)→

not
 (26)

ape(p), ape(hd), ape(mr),
Medical Record(mr), OwnsBy(mr, p),
OwnsBy(hd, p), HasEmergencyState(hd,True),

define(H1,su,ac, mr, Emergency)→

K K K
K K
K K

K

 (27)

1

ape(su), cie(l loc), HasLogicalLocation(su, l loc),
HasLocationZone(l loc,H1_ Net)

define(H ,su,ac,ob, Internal _ IP)→

K K K
K

K
 (28)

define(H1,su,ac,ob, Internal _ IP)
define(H1,su,ac,ob,External _ IP)→

not
K

 (29)

Table VI. Security policy rules

Default Policy Rules
1default(H , ro,av, v, Universal,Close) (30)

default(H ,Medical _Staff ,Use,Internal _Service, Internal _ IP,Open)1 (31)
Access Policy Rules

permission(H ,Physician,Consult,Medical_ Record,Attending _ Physician)1 (32)
p rohibition(H ,Physician,Consult,Medical _ Record,1
Non _ Attending _ Physician)

 (33)

permission(H ,Guest,See,Public _ Data,Universal)1 (34)
Exception Policy Rules

1exception(H , Physician,Consult, Medical _ Record, Emergency) (35)

1exception(H , Ad min istrator,av,Sensetive _ Data, External _ IP) (36)
Conflict Resolution Strategy(Denial-Takes- Precedence)

is _ permitted(su,ac,ob), is _ prohibited(su,ac,ob)
is _ prohibited(su,ac,ob)→

K K
K

 (37)

VII. CONCLUSION AND FUTURE WORK
Non-monotonicity is an important feature in context-aware

access control models. Furthermore, semantic technology and
semantic modeling languages like OWL are appropriate and
widely used mechanisms to context modeling. In this paper,

the advantages of semantic technology and answer set
programming have been integrated to propose a powerful
context-aware access control model using MKNF+. In the
model, DL is used to model main entities of OrBAC as well as
the context information. In addition, MKNF+ rules, which are
used to express security policy rules and context information,
enable the model to support non-monotonic reasoning in
presence of incomplete context information. The default
policy and exception policy rules are defined using negation as
failure, as supported in the MKNF+ logic.

We demonstrated how incomplete context information can
be handled using negation as failure based on the closed-world
assumption and also how default context information can be
specified in a context-ware access control model. However,
handling inconsistent and uncertain context information in
such an access control model remains as future work.

REFERENCES
[1] A. Kalam et al., “Organization Based Access Control,” in Proceedings

of IEEE 4th International Workshop on Policies for Distributed Systems
and Networks (POLICY 2003), 2003, pp. 120-132.

[2] P. A. Bonatti and P. Samarati, “Logics for Authorization and Security,”
in Logics for Emerging Applications of Databases, 2003, pp. 277-323.

[3] A. Noorollahi and M. S. Fallah, “A Logical View of Nonmonotonicity in
Access Control Model,” in International Conference on Security and
Cryptography (SECRYPT 2011), 2011, pp. 472-481.

[4] M. Gelfond and V. Lifschitz, “Classical Negation in Logic Programs and
Disjunctive Databases,” New Generation Computing, vol. 9, pp. 365-
385, 1991.

[5] C. Bettini et al., “A Survey of Context Modelling and Reasoning
Techniques,” Pervasive and Mobile Computing, vol. 6, no. 2, pp. 161-
180, Apr. 2010.

[6] E. J. Ko, H. J. Lee, and J. W. Lee, “Ontology-Based Context Modeling
and Reasoning for U- HealthCare,” IEICE - Transactions on
Information and Systems, vol. E90–D, no. 8, pp. 1-10, 2007.

[7] B. Motik and R. Rosati, “Reconciling Description Logics and Rules,”
Journal of the ACM (JACM), vol. 57, no. 5, p. 30, 2010.

[8] K. Henricksen and J. Indulska, “Modelling and Using Imperfect Context
Information,” in Proceedings of the Second IEEE Annual Conference on
Pervasive Computing and Communications Workshops, 2004, pp. 33-37.

[9] F. Cuppens and N. Cuppens-boulahia, “Modelling Contextual Security
Policies,” International Journal of Information Security, vol. 7, no. 4,
2008.

[10] T. Y. C. Woo and S. S. Lam, “Authorization in Distributed Systems˜ : A
Formal Approach,” in Proceedings of the 1992 IEEE Symposium on
Security and Privacy, 1992, pp. 33-50.

[11] E. Bertino et al., “A Logical Framework for Reasoning on Data Access
Control Policies,” in CSFW ’99 Proceedings of the 12th IEEE workshop
on Computer Security Foundations, 1999, pp. 175-190.

[12] Y. Bai, “A Modal Logic for Authorization Specification and
Reasoning,” in IEEE International Conference on Intelligent Computing
and Intelligent Systems, 2009, pp. 264-268.

[13] N. Boustia and A. Mokhtari, “A Dynamic Access Control Model,”
Applied Intelligence, vol. 36, no. 1, pp. 190-207, Sep. 2010.

[14] F. M. Donini, M. Lenzerini, D. Nardi, and A. Schaerf, “AL-log˜ :
Integrating Datalog and Description Logics,” Journal of Intelligent
Information Systems, vol. 10, no. 3, pp. 227-252, 1998.

[15] R. Rosati, “DL + log˜ : Tight Integration of Description Logics and
Disjunctive Datalog,” in The Tenth International Conference on
Principles of Knowledge Representation and Reasoning (KR2006),
2006, pp. 68-78.

[16] X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung, “Ontology Based
Context Modeling and Reasoning using OWL,” in Proceedings of the
Second IEEE Annual Conference on Pervasive Computing and
Communications Workshops, 2004, pp. 18-22.

94

