
A Temporal Description Logic Based Access Control Model for Expressing
History Constrained Policies in Semantic Web

Fathieh Faghih, Morteza Amini, and Rasool Jalili
Sharif Network Security Center (NSC)

Department of Computer Engineering, Sharif University of Technology
Tehran, Iran

Tel: 98-21-66164020, Fax: 98-21-66054096
e-mail: {faghih@ce., m amini@ce., jalili@}sharif.edu

Abstract

An access control model for Semantic Web should
be compatible with the corresponding semantic model.
The access control procedure(s) should also take the
semantic relationships between the entities (specified
as ontologies) into account. Considering the benefits
of logic-based models and the description logic foun-
dation of Semantic Web, in this paper, we propose an
access control model based on a temporal variant of
description logics (T L-ALCF). This logical schema
enables us to express history constrained policies to
enrich the policy-base with dynamic properties based
on previous accesses. The specification of each com-
ponent of the model as well as the approach to define
history constrained policies along with some clarifying
examples are presented. The access control procedure
of the model is proposed over the inference services of
T L-ALCF .

1. Introduction

With the growth of Semantic Web, security and ac-
cess control for this environment have been extensively
investigated. A security model for a semantic-aware
environment should consider the defined semantic rela-
tionships between entities besides the security policies
to infer the authorized accesses. On the other hand,
one of the requirements in modern applications is the
temporal aspect of authorization. In some applications,
such as e-banking environments, policy definition with
the constraint(s) based on previous users’ accesses
might be crucial. To consider both aspects in an access
control model, this paper proposes a security model
based on a temporal extension of description logics
(DL) for Semantic Web.

SBAC (Semantic Based Access Control) is intro-
duced as an access control model for Semantic Web,

This research is partially supported by Iran Telecommunication
Research Center (IRTC).

which takes semantic relationships into account [1]. In
[2], we extended the SBAC model to express policies
based on previous users’ accesses. The limitation of
this extension is that it is restricted to the policies at
the level of individuals. Therefore, it confines secu-
rity authorities to state policies at the concept level.
Moreover, the extension utilizes a formal language
without proof theory that is only used for stating
policy constraints. This model is improved through
a logical framework in this paper to state policies
with a logic-based language. Using logic to state
security policies has different advantages, such as non-
ambiguity, abstraction from implementation, expres-
siveness, and verifiability [3], [4], [5]. Considering
the Semantic Web properties, employing logic into the
security model seems very promising. It is due to the
applicability of logic in inferring the implicit policies
from the explicit ones based on the semantic rela-
tionships in domains of subjects (access requesters),
objects (resources), and actions. In Semantic Web,
relationships are defined in ontologies . Considering
DL superiority for definition, integration, and main-
tenance of ontologies, DL has always been applied
as one of the supporting tools for Semantic Web
[6]. Accordingly, DL is chosen as the basis for our
proposed model in this paper.

Using description logic as a modeling language for
different purposes has resulted in different extensions,
including modal, epistemic, and temporal [7]. Tempo-
ral extension of DL has been extensively considered,
mostly in Artificial Intelligence field [8]. Therefore,
different temporal extensions to DL have been in-
troduced [8], [9]. Artale and Franconi [9] proposed
T L-ALCF as a decidable interval based temporal
description logic. They also introduced an approach for
using T L-ALCF in representing and reasoning about
actions and plans, which is used on a robotic domain
in [10]. A similar approach in definition of actions and
plans (of actions and other plans) is employed in this
paper to state history constrained policies.

2009 IEEE International Symposium on Policy for Distributed Systems and Networks

978-0-7695-3742-9/09 $25.00 © 2009 IEEE

DOI 10.1109/POLICY.2009.15

142

IEEE International Symposium on Policies for Distributed Systems and Networks

978-0-7695-3742-9/09 $25.00 © 2009 IEEE

DOI 10.1109/POLICY.2009.15

142

This paper proposes an access control model, called
TDLBAC, based on T L-ALCF . The model allows
the security authorities to define history constrained
policies at the concept level. TDLBAC components
include two building blocks of DL; TBox and ABox.
The model terminologies, including the semantic rela-
tionships of entities, as well as the specified security
policies are included in the TBox. The knowledge re-
lated to the individuals and the history of accesses, are
stored in the ABox. The proposed algorithm for access
control in TDLBAC utilizes the inference services of
DL to decide the received access requests based on the
defined policies along with the history of accesses.

The rest of this paper is as follows: Section 2 dis-
cusses the related work. Section 3 is an overall descrip-
tion of the proposed model, along with an overview on
necessary concepts of T L-ALCF . It also describes the
model components with clarifying examples on policy
definition. In Section 4, the algorithm for registering
users’ accesses, and the procedure for access control
based on policies and history of users’ accesses are
introduced. A brief discussion of the algorithm time
complexity is presented in Section 5. Finally, Section
6 concludes the paper.

2. Related Work

Since late 90’s, logical ideas and tools have at-
tracted many researchers to specify different kinds of
security policies such as role-based policies [4], [5],
information flow control policies [11], and dynamic
and rule-based policies [12]. The temporal aspects
of temporal logics motivated Bertino [12] to express
dynamic policies. Furthermore, Bertino et al. [13]
proposed TRBAC model, which considers temporal
constraints in triggering roles. This model includes
formal syntax and semantics. However, it is not based
on a known logic, and inference is not possible in it.
Therefore, the model can not be included among logic-
based access control models.

Several efforts have been put into designing access
control models for semantic-aware environments such
as Semantic Web [1], [14]. Javanmardi et al. introduced
SBAC that considers ontologies in three domains of
access control [1]. The important novelty of the model
is reducing semantic relationships to subsumption. This
method reduces the temporal and spatial complexities,
and simplifies the authorization propagation.

Chinese Wall Security Policy [15] can be mentioned
as the first security policy based on the events in
the past. Moreover, the security automata in [16], and
Deeds system in [17] focus on collecting a selective
history of sensitive access requests. This information
is used in the procedure of access control. History-
based access control for a semantic aware environment
is taken into account by Noorollahi et al. in [2]. They

Table 1. Syntax rules for temporal part of T L-ALCF

T L C, D −→ E| (non-temporal concept)
C uD| (conjunction)
C@X| (qualifier)
C[Y]@X| (substitutive qualifier)
♦(X)Tc.C (existential qualifier)

Tc −→ (X(R)Y)| (temporal constraint)
(X(R)#)|
(#(R)Y)

Tc −→ Tc|TcTc
R, S −→ R, S| (disjunction)

s|mi|f|... (Allen’s relations)
X, Y −→ x|y|z|... (temporal variables)
X −→ X|XX

extended the SBAC model, by adding two constraints;
first, by limiting the authorization policies to special
time intervals, and second, by adding constraints based
on previous users’ accesses to policy rules. This model
is restricted to the policies in the level of individuals.
Moreover, its formal language lacks proof theory, and
is only used for stating policy constraints. This paper
aims to improve this model with a logical foundation
to take the advantages of a logic-based model in stating
and inferring historical constrained access policies in
conceptual (ontology) level.

3. TDLBAC

3.1. Preliminaries

In this section, the employed logic in this paper,
named T L-ALCF [9] is introduced briefly. T L-
ALCF is a composition of temporal logic T L and
non-temporal description logic ALCF . It is used for
representing and reasoning about actions and plans.
The syntax rules for the temporal part of T L-ALCF
are presented in Table 1. For the temporal part of the
logic, the interval relations introduced by Allen [18]
are used. The # variable refers to the current evaluation
interval, or the time of occurrence in the case of
actions. To evaluate a concept in another interval,
for example X, the @X expression is applied. The
semantics of T L-ALCF includes the interpretation
I .= 〈T ∗< , ∆I , .I〉, consisting of an interval set of
the temporal structure (T), domain of I (∆I), and
interpretation function of I (.I). The function .I gives
meaning to concepts, features, and parametric features,
as follows:
• AI ⊆ T ∗× ∆I

• fI = (T ∗× ∆I)
partial−−−−→ ∆I

• ∗gI = ∆I
partial−−−−→ ∆I

∗g is called atomic parametric feature in the syntax of
T L-ALCF . Its difference from atomic feature in T L-
ALCF is being independent from time. More detailed
information about syntax and semantics of T L-ALCF
can be found in [9].

143143

3.2. Overall TDLBAC Model Description

TDLBAC (Temporal Description Logic Based Ac-
cess Control) is our proposed access control model for
expressing policies in Semantic Web. The policies in
TDLBAC are defined at the concept level. Moreover,
security authorities can define constraints based on
previous users’ accesses for their policies. The logic
chosen for this purpose is T L-ALCF [9]. The pro-
posed approach in [9], [10] to express actions and
plans is leveraged in this paper to state policies with
constraint(s) based on previous users’ accesses.

TDLBAC is composed of two DL components:
• TBox includes statements about a domain and

relationships between the entities in the domain.
• ABox contains assertions related to individuals.
TDLBAC has two components related to history-

based access control; History-Base (HB) and History-
based Policy-Base (HPB). They are defined as follows:
• HB contains the history of previous users’ ac-

cesses. HB is stored as a part of the ABox.
• HPB is a set of policies with history-based con-

straint(s). They are specified by security authori-
ties, and stored in the TBox.

The model components (i.e. TBox and ABox) are
discussed more formally in the following sections.

3.3. Model Terminologies

An access control model for Semantic Web should
be compatible with the semantic model of this envi-
ronment in the sense that decisions should be made
based on the defined relationships and the resulting
inferences. In TDLBAC, the axioms related to the
domain are kept in the TBox. The axioms include the
definitions of different concepts, as well as their logical
relations. Besides semantic relationships, specifications
of policy rules based on logic are also kept in the
TBox. TBox includes five hierarchies of concepts.
Accordingly, we have five concepts on top of each
hierarchy, as follows:
• Subject: This is the concept on the top of the

hierarchy of concepts that their individuals can
have a role of active subject.

• Object: This is the concept on the top of the
hierarchy of concepts that their individuals can
be accessed by subjects.

• Action: This is the concept on the top of the hi-
erarchy of concepts that their individuals specify
access types.

• Policy-Rule: This is the concept on the top of the
hierarchy of concepts specifying policy rules.

• Access: This is the concept on the top of the hi-
erarchy of concepts that their individuals specify
users’ previous accesses in the system.

Figure 1. Main concepts and their relations

Note that in the rest of this paper, by subjects, we
refer to the whole hierarchy, while Subject denotes the
concept on top of this hierarchy. The logic used to
define the concepts in the subjects, objects, and actions
hierarchies is ALCF . ALCF , the non-temporal part of
T L-ALCF , is an expressive, but still decidable DL.

In an access control system, the policy rules, as
well as the requests and accesses are interpreted as
triples, i.e. 〈subject, object, action〉. The first element
(subject) is the entity requesting an access. The second
one (object) is the entity on which the operation is
performed, and the third element (action) indicates the
type of the access. However, in a description logic
system, we have only binary relations, expressed as
roles or features (functional roles). In order to describe
an access control model with DL, we represent each
triplet with three binary relations. For example, an ac-
cess denoted by 〈s, o, a〉, is represented by three pairs,
〈x, s〉,〈x, o〉, and 〈x, a〉. To this end, in TDLBAC, we
define three types of relations between the concepts of
policy rules, and the concepts of subjects, objects, and
actions, named as PS, PO, and PA, respectively. There
are three similar relations between the concepts in the
hierarchy of accesses, and the hierarchy of subjects,
objects, and actions, named as AS, AO, and AA respec-
tively. These concepts and their relations are shown
in Figure 1 schematically. Relations are defined as
parametric features in the syntax of T L-ALCF . Note
that instances of policy rules have functional time-
independent relations with instances of three concepts
in subjects, objects, and actions hierarchies. Similar
relations hold for access instances. To specify the type
of the three parameters of an access or a permitted
access in a policy rule, the selection operator in the
syntax of ALCF is leveraged. The semantics of the
selection operator in ALCF is as follows:

(p : C)I = {a ∈ dom pI |pI(a) ∈ CI}

To clarify, we first give the formal definition of the
Access concept:

Access ≡(∗AS : Subject) u (∗AO : Object)
u (∗AA : Action) (1)

144144

Intuitively, the Access concept can be interpreted as
instances that have three parametric features: an AS
with an individual of type Subject, an AO with an
individual of type Object, and an AA with an individual
of type Action. Therefore, a three parametric access can
be defined under the Access concept in the hierarchy,
similar to (1). In an analogous way, the Policy-Rule
concept is defined as follows:

Policy-Rule ≡(∗PS : Subject) u (∗PO : Object)
u (∗PA : Action)

Policy rules are defined under the Policy-Rule concept.

3.4. Ground Assertions

In a description logic system, ground assertions
are stored in the ABox. These facts in TDLBAC are
classified into three groups:

1) Assertions that state correspondence of individu-
als to the concepts defined in five aforementioned
hierarchies in the TBox.

2) Assertions related to users’ accesses in HB. They
are used to check the history-based constraints
in the access control algorithm as described in
Section 4. They are added to the ABox after
granting each request.

3) Assertions that state the type of subject individu-
als in each request. These are added to the ABox
before starting the access control procedure as
discussed in Section 4.

3.5. Clarifying Example

Now, we are ready to state a clarifying example of
a history-based policy rule in TDLBAC. Consider an
education system, where a security policy rule gives
the read permission of the university website pages
to all the students, in the case that an administrator
had a grant update in the config-file in the past. The
corresponding policy rule is expressed in this model
as follows:

read-rule ≡♦x(x b #)(∗PS : student)
u (∗PO : University-Website-Page)
u (∗PA : read) u grant-access@x

The defined policy rule is in the hierarchy of policy
rules under the Policy-Rule concept, if and only if:

student v Subject∧
University-Website-Page v Object ∧ read v Action

In our example, the definition of the concept grant-
access can be stated as follows:

grant-access ≡ (∗AS : administrator)
u (∗AO : config-file) u (∗AA : grant-update)

grant-access is subsumed by Access, if and only if:

administrator v Subject ∧ config-file v Object∧
grant-update v Action

Regarding the semantics of T L-ALCF , a concept is
interpreted over pairs of temporal intervals and indi-
viduals. The interpretation of the concept read-rule in-
cludes pairs of interval # and individuals, for example,
〈a, #〉. # is the current time interval (the time of the
evaluation of read-rule). grant-access@x in the def-
inition of read-rule indicates that if read-rule(a, #)
holds, then grant-access(a, x) is true, where x is an
interval before # (i.e. b(x, #) holds with respect to the
Allen’s interval relations). Note that in order to define
a policy rule based on previous users’ access(es), a
temporal variable (x) is defined and its relation with
is declared within the policy definition.

In many systems with history-based policies, se-
curity authorities prefer to give permission to the
individuals who themselves have had special accesses.
Suppose, for example, a banking system in which
a policy is to give secured typed loans to business
account holders who have repaid an unsecured loan
before. The constraint that refers to giving permission
to the same individual who has had an access is called
subject similarity condition (i.e. similarity between the
subject of the request and the subject of the logged
access). To state subject similarity condition, we use
the agreement operator (↓) between features, defined
in the syntax of T L-ALCF . To clarify, let us state
the policy rule in banking example:

loan-policy-rule ≡ ♦x(x b #)
u (∗PS : Business-Account-Holder)
u (∗PO : secured-loan)
u (∗PA : get)
u repay-unsecured-loan@x

u (∗PS ↓ ∗AS) (2)

To explain the policy definition in (2), we take the
semantics of ↓ operator into account [9]:

(p ↓ q)It = {a ∈ dom pIt ∩ dom qIt |pIt (a) = qIt (a)}

The agreement operator between features selects the
individuals from the domains of the features that are
mapping to the same individuals. We leverage such an
approach in the definition of the policy to state subject
similarity condition.

4. Access Control Procedure

Here, we present a formal approach to deal with
an access request in a system using TDLBAC. Every
access request is interpreted as a triple 〈sr, or, ar〉
where the first element is the subject, requesting the

145145

access. The second element is the object, which is
requested to be accessed, and the last element is
the type of the requested access. In TDLBAC, three
conditions must be satisfied for a policy from HPB to
be applicable to a request:

1) The history based constraint of the policy should
be satisfied against HB.

2) Subject similarity condition (if existed in the
policy definition) should be checked as well.

3) The type of the three parameters in the re-
quest should be compatible with the type of
the corresponding ones in the definition of the
policy. Formally, if r is a typical request in
form 〈scr, ocr, acr〉, and p is a typical policy
rule in form 〈sp, op, ap〉, this condition can be
formulated as:

scr v sp ∧ ocr v op ∧ acr v ap

In other words, the parameters of the request
should be subsumed by the policy parameters.
Note that scr, ocr, acr are the corresponding
concepts of the request parameters.

We propose an algorithm to decide on an access
request by checking the existence of a policy rule in
HPB, applicable to the request with respect to these
three conditions. The algorithm utilizes the inference
services of T L-ALCF .

Example: Consider an example based on controlling
an election-system in a typical country. The election-
system is a type, named ES, in the hierarchy of objects
in the TBox. It has instances in each city to be accessed
by people through the web. Suppose that the system
is used in a presidential election in the second round,
and the policy is to limit the voters to the residents
who have participated in the first round. resident is
a defined class in the hierarchy of subjects. Some
examples of action types in the system are register,
vote, result-checking . The policy for voting can be
defined as follows in HPB:

vote-policy-2nd-round ≡ ♦x(x b #)(∗PS : resident)
u (∗PO : ES) u (∗PA : vote)
u vote-1st-round@xu
(∗PS ↓ ∗AS) (3)

The vote-1st-round concept is defined in the TBox
as follows:

vote-1st-round ≡(∗AS : resident)
u (∗AO : ES) u (∗AA : vote)

In the rest, at first, we discuss how to store the
history of accesses, named HB, in the ABox. Then
we describe the algorithm that determines whether a
policy is applicable to a request, or not.

4.1. Access History Base (HB)

The procedure for storing the history in HB is
described using the election-system example. For each
request for voting in the first round, if it is granted by
the access control system, the corresponding assertions
for storing the access are inserted into the ABox.
Suppose a resident, named John King , requests to
vote in the first round of presidential election in an
election-system instance named election-sub20 . The
request is analyzed by the access control system using
the defined policies in HPB, and the request is granted.
The next step is registering the access with its three
parameters in HB. The noticeable point in storing the
access is that we have unique name assumption, or
UNA in short, for subjects in TDLBAC. In a logic
with UNA, different names refer to different entities of
the world. UNA is needed for verification of subject
similarity condition. The assumption can be easily
satisfied by inserting the facts related to subjects using
a unique certificate, for instance, national identification
number in the election example. Granting the request,
the system generates a name by a mechanism to be
assigned to the access, for example, v-1st-101 , and
the following facts are inserted into the ABox:

1) vote-1st-round(v-1st-101)
2) ∗AS(v-1st-101, 12345)
3) ∗AO(v-1st-101, election-sub20)
4) ∗AA(v-1st-101, v1)
Note that v1 is a typical instance of vote action,

released as an element of the request, and 12345 is
the national identification number of John King .

Generally, if ac1 is the assigned access name, acc
is the access type, and sr , or , and ar are subject,
object, and action individual parameters of the granted
request, the inserted facts to the ABox are as follows:

1) acc(ac1)
2) ∗AS(ac1, sr)
3) ∗AO(ac1, or)
4) ∗AA(ac1, ar)
Using the approach, each access is identified in the

ABox with its three parameters.

4.2. Algorithm of Access Control

Let us follow the election-system example to sim-
plify the description of our access control procedure.
Suppose that John King wants to participate in the
second round of the presidential election. The object
and action individuals are known in server side, since
different accesses and objects to be accessed, are
already defined in the ABox. However, all individuals
who are the potential users of the system, may not
be known by the access control system. The approach
that can be used is employing credential-based iden-
tification of subject individuals. Each user introduces

146146

himself/herself to the system using the credentials that
he/she attaches to his/her request. The system can
map the requester to the concepts in the hierarchy
of subjects based on the received credentials. For
example, John King may be mapped to the resident
concept, by one of his credentials, and to the graduate
concept by another one. Note that the unique certificate
to satisfy the UNA, should be one of the credentials.
The corresponding assertions are inserted to the ABox
to be used in access control procedure. For example,
assuming 12345 as the national identification number
of John King , the assertions resident(12345) , and
graduate(12345) are inserted to the ABox, before the
access control procedure starts.

For a policy to be applicable to the request, its his-
tory constraint is evaluated first. This is accomplished
by instance retrieval task, which refers to finding all
instances of a particular concept [19]. For a policy to
be checked for the request, the instance retrieval task
is used to find the instances of the history constraint
of the policy. For example, for the policy defined in
(2), the task is to find the instances of the concept
vote-1st-round from HB, which is a part of the
ABox. If no instance is retrieved, the policy is not
applicable, and the process should be repeated for the
next policy. Otherwise, the instances which are found
for the history constraint concept, should be checked
for the two other conditions; subject similarity and
type compatibility. Note that the retrieved instances are
the potential instances of the defined policy that might
grant the request.

In the second step of the algorithm, three assertions
are added to the ABox temporarily. If sr , or , and ar

are the three individual parameters of the request, and
ac1 is the instance retrieved for the history constraint
concept, the process continues by adding the following
assertions to the ABox temporarily:

1) ∗PS(ac1, sr)
2) ∗PO(ac1, or)
3) ∗PA(ac1, ar)
The next step is checking the truth value of

p(ac1, #) , where p is the concept related to the policy,
and # is the current interval. Checking that 〈ac1, #〉 is
the instance of concept p is accomplished by instance
checking inference service. Instance checking service
verifies whether a given individual is an instance of
(belongs to) a specified concept [7]. The three tem-
porarily added assertions are removed from the ABox
after the instance-checking procedure. It is obvious
that if the procedure can validate p(ac1, #) , subject
similarity, as well as type compatibility conditions are
also held.
Subject Similarity Condition: If the policy includes
(∗PS ↓ ∗AS) (i.e. subject similarity condition), and
HB contains ∗AS(ac1, sa) , the instance-checking
service returns true, if sr ≡ sa . Note that, the instance

of ∗AS already exists, added to HB (or the ABox)
after the access, and the instance of ∗PS is inserted
as one of the three temporarily added assertions with
the requester as its parameter.
Type Compatibility Condition: The assertions related
to the types of the requester (i.e. subject parameter)
have been inserted to the ABox, based on his/her
credentials. The types of objects, and actions are
already included in the ABox. These assertions in
addition to the three assertions added temporarily are
used collectively to check the types of the three request
parameters against the types specified in the policy
definition. For example, in policy definition in (2),
we have (PS : resident) , (∗PO : ES) , and
(∗PA : vote) clauses. The instance-checking returns
true, if the types of the three individual parameters of
the request are subsumed by the types specified in the
policy definition. For example, John King is allowed
to vote based on policy in (2), if he is mapped to
the resident concept, or any concept subsumed by it,
regarding (∗PS : resident) .

There are two conditions for termination of the
access control procedure:

1) A policy passes through all the condition check-
ing steps. The request is granted, and the cor-
responding assertions required for storing the
access are inserted into HB.

2) No policy passes through the algorithm steps,
and the request is rejected.

4.3. Access Control Optimization

The procedure requires O(k.n) times of instance
checking execution, where k is the size of HPB,
and n is the size of HB. Since n is usually larger
than k considerably, we propose an optimization step,
called pre-filtering. The step reduces the policies for
evaluation in the main procedure significantly.

Pre-filtering detects unusable policies based on type
compatibility condition. Suppose a typical request de-
noted by 〈sr, or, ar〉. To employ type compatibility
checking in order to filter the inapplicable policies, the
individual parameters of the request should be mapped
to the corresponding concepts in the hierarchy of sub-
jects, objects, and actions. The most well-known ap-
proach to this end, is the most-specific-concept (msc).
The msc of an individual b is a concept description that
has b as an instance and is the least concept description
(w.r.t. subsumption) with this property. Note that the
msc of an individual is a set of concepts in the
ontology. In this procedure, an individual is mapped
to a concept description with map(a), where a is an
individual and map(a) =

d

ci∈msc(a)

ci. The msc set of

the object and action parameters of the request can be
computed using the related assertions already defined

147147

in the ABox. The msc set of the subject individual
is achieved using the assertions inserted to the ABox
based on the attached credentials.

Suppose that sr, or, and ar are mapped to the
concepts scr, ocr, and acr in the hierarchy of sub-
jects, objects, and actions respectively. After mapping
the individuals to the concepts, a concept named
Request-Permission is formulated for the request as
follows:

Request-Permission ≡(∗PS : scr) u (∗PO : ocr)
u (∗PA : acr)

For performing the pre-filtering step for each pol-
icy, the satisfiability of the concept resulted from its
conjunction with the Request-Permission concept
is checked. Concept satisfiability is one of the main
inference services in DL. It specifies whether a concept
definition can have individual(s) or not. The service
is used here to check the policy applicability with
respect to a specified request. Unsatisfiability of the
conjunction shows the fact that one of the three types
of the parameters in the request, returned by the map
operator, can not have individuals of the corresponding
type in the policy. To make it more clear, let us see a
simple example based on the election-system example.

Suppose Mary Green wants to participate in the
election using an instance of ES. She attaches her
credentials to her request, and the system defines
her as an individual of nonresident and female
concepts. Then, the corresponding assertions are in-
serted to the ABox. The map operator maps her
to nonresident u female, for example. Therefore,
the Request-Permission concept for her request is
formed as follows:

Request-Permission ≡(∗PS : nonresident u female)
u (∗PO : ES) u (∗PA : vote)

To evaluate vote-policy-2nd-round specified in (2)
for the request released by Mary Green, the satisfia-
bility of the following conjunction is checked:

vote-policy-2nd-round uRequest-Permission ≡
♦x(x b #)(∗PS : resident) u (∗PO : ES)
u (∗PA : vote) u vote-1st-round@x

u (∗PS : nonresident u female)
u (∗PO : ES) u (∗PA : vote)

Assuming that resident u nonresident ≡⊥ can
be inferred from the TBox, the two clauses, (∗PS :
resident) and (∗PS : nonresidentufemale), makes
the conjunction unsatisfiable.

However, the pre-filtering procedure is not sufficient
for checking type consistency between a policy and a
request. Consider the case in which the type returned
by the map operator subsumes the corresponding type

in policy. In this case, the concept satisfiability task
for the related conjunction returns true, but type com-
patibility condition is not satisfied. Note that the type
in the policy is more specific than the type in the
request. Moreover, the type in the request is computed
by the map operator, and is the most specific concept
according to the knowledge-base.

To clarify the case, let us describe it using a simple
example in the election-system. Suppose a person who
requests for voting in the election, and he/she attaches
no credential to specify his/her nationality. Therefore,
the system maps the subject to a more general concept,
for example the people concept. The conjunction com-
puted for the request is satisfiable, since it is possible
for an individual to be of types, people and resident at
the same type. Therefore, if the concept of the request
parameter is above the concept of the policy parameter
in the hierarchy, the task returns true, in spite of the
policy inapplicability. We refer to these policies as
unfiltered policy rules. They will be filtered out in the
access control procedure.

The proposed optimization method acts as a filter
for policies to separate the ones which are consistent
with respect to the types of the request parameters,
although the result set may be larger than the real one.
The step can reduce the set of policies for checking in
the access control procedure considerably.

5. Time Complexity Discussion

In this section, we assume the size of HPB as k, and
the size of HB as n. The two most time-consuming
steps of the algorithm in the main procedure are:
• Instance Retrieval
• Instance Checking

The optimization method adds the two following tasks:
• Most Specific Concept
• Concept Satisfiability

First, we discuss about time complexity of inference
services in the employed logic. All inference services
for DL can be reduced to consistency checking task for
ABox [7]. ABox consistency is proved to be PSPACE-
complete in ALCF [20]. Therefore, all the inference
services in ALCF are PSPACE-complete as well. The
msc operator in the proposed access control algorithm
is performed on the concepts of subjects, objects, and
actions hierarchies. As mentioned in Section 3, the
concepts in these three hierarchies are defined based on
ALCF . Therefore, most specific concept is PSPACE-
complete in our algorithm. Concept satisfiability is
proved to be NEXPTIME-HARD in T L-ALCF with
a simple or acyclic TBox [21]. However, the temporal
part of the concept resulted from the conjunction can
be eliminated for the Concept satisfiability task. There-
fore, this task can also be considered to be PSPACE-
complete. The time complexity of instance retrieval

148148

and instance checking tasks in T L-ALCF are not
investigated yet. However, it seems that in our pro-
posed algorithm, these two tasks are not considerably
effected by the temporal part of T L-ALCF . It can be
intuitively concluded that the time complexity of these
two tasks in our algorithm does not exceed their time
complexity in ALCF , or PSPACE-complete.

The instance retrieval task, in the worst case, should
be performed for all policies in HPB (i.e. k times).
Moreover, for each retrieved instance, we should run
the instance checking task as well. As a result, in
the worst case, the number of instance checking task
execution has the order of O(k.n). Obviously, after
optimization, the number of instance retrieval tasks
reduces from k to k′, where k′ is the number of policies
that pass through the pre-filtering step. Hence, the
number of instance checking task execution reduces
to O(k′.n). Therefore, although the pre-filtering step
adds three msc operator execution, as well as k concept
satisfiability checking, it reduces the overall execution
time of the algorithm considerably.

The noticeable point is that we have investigated just
an upper bound for the access control algorithm based
on the general inference services for DLs. Of course,
in practice the algorithm can be implemented more
efficiently. The proof of the algorithm decidability
was more important to us. In future, algorithms with
better time complexity may be proposed for some
fragments of T L-ALCF that are enough for our
proposed approach, and good reasoners for working on
the knowledge-bases of this logic may be developed.

6. Conclusion

In this paper, we proposed an access control model
based on a temporal extension of description logics.
The employed logic allows security authorities to
define policy rules at the concept level. Moreover,
they can define constrains based on users’ accesses
in the past for the policy rules. This can be helpful
in different applications such as e-banking environ-
ments. The model components, the algorithm of access
control, as well as the suggested optimization method
were described, and a brief discussion on the time
complexity of the algorithm was presented.

References

[1] S. Javanmardi, M. Amini, R. Jalili, and Y. Ganjisaffar,
“SBAC: Semantic Based Access Control”, in Proceed-
ings of the 11th Nordic Workshop on Secure IT-systems,
Linkping, Sweden, 2006, pp. 157–168.

[2] A.N. Ravari, M. Amini, and R. Jalili, “A Semantic
Aware Access Control Model with Real Time Con-
straints on History of Accesses”, Computer Science
and Information Technology, 2008. IMCSIT 2008. In-
ternational Multiconference on, pp. 827–836, 2008.

[3] Z. Iranmanesh, M. Amini, and R. Jalili, “A Logic for
Multi-domain Authorization Considering Administra-
tors”, in IEEE Workshop on Policies for Distributed
Systems and Networks, 2008. POLICY 2008, 2008, pp.
189–196.

[4] G. Kołaczek, “Application of Deontic Logic in Role–
Based Access Control”, Int. J. Appl. Math. Comput.
Sci, vol. 12, no. 2, pp. 269–275, 2002.

[5] J. Chae, “Towards Modal Logic Formalization of Role-
Based Access Control with Object Classes”, Lecture
Notes in Computer Science, vol. 4574, pp. 97, 2007.

[6] F. Baader, I. Horrocks, and U. Sattler, “Description
logics as ontology languages for the semantic web”,
Festschrift in honor of Jorg Siekmann, Lecture Notes
in Artificial Intelligence. Springer-Verlag, 2003.

[7] F. Baader, The description logic handbook: theory, im-
plementation, and applications, Cambridge University
Press, 2003.

[8] A. Artale and E. Franconi, “A survey of temporal ex-
tensions of description logics”, Annals of Mathematics
and Artificial Intelligence, vol. 30, no. 1, pp. 171–210,
2000.

[9] A. Artale and E. Franconi, “A temporal description
logic for reasoning about actions and plans”, Journal
of Artificial Intelligence Research, vol. 9, no. 2, pp.
463–506, 1998.

[10] A. Artale and E. Franconi, “Representing a robotic
domain using temporal description logics”, AI EDAM,
vol. 13, no. 02, pp. 105–117, 1999.

[11] F. Cuppens and R. Demolombe, “A deontic logic
for reasoning about confidentiality”, Deontic Logic,
Agency and Normative Systems, Workshops in Com-
puting. Springer, 1996.

[12] E. Bertino, “Temporal authorization bases: From spec-
ification to integration”, Journal of Computer Security,
vol. 8, no. 4, pp. 309–353, 2000.

[13] E. Bertino, P.A. Bonatti, and E. Ferrari, “TRBAC:
A temporal role-based access control model”, ACM
Transactions on Information and System Security (TIS-
SEC), vol. 4, no. 3, pp. 191–233, 2001.

[14] L. Qin and V. Atluri, “Concept-level access control for
the semantic web”, in Proceedings of the 2003 ACM
workshop on XML security. ACM New York, NY, USA,
2003, pp. 94–103.

[15] D.F.C. Brewer and M.J. Nash, “The Chinese wall
security policy”, in Proceedings of the 1989 IEEE
Symposium on Security and Privacy. IEEE Computer
Society Press, 1989, pp. 206–214.

[16] P. Dias, C. Ribeiro, and P. Ferreira, “Enforcing history-
based security policies in mobile agent systems”, in
IEEE 4th International Workshop on Policies for Dis-
tributed Systems and Networks, 2003. Proceedings.
POLICY 2003, 2003, pp. 231–234.

[17] G. Edjlali, A. Acharya, and V. Chaudhary, “History-
based access control for mobile code”, in Proceedings
of the 5th ACM Conference on Computer and Commu-
nications Security. ACM New York, NY, USA, 1998,
pp. 38–48.

[18] J.F. Allen, “Temporal reasoning and planning”,
Morgan-Kaufmann Series In Representation And Rea-
soning, pp. 1–67, 1991.

[19] L. Serafini and A. Tamilin, “Distributed instance
retrieval in heterogeneous ontologies”, in Proceedings
of SWAP 2005, CEUR Workshop Vol, 2005, vol. 166.

[20] C. Lutz, “PSpace reasoning with the description logic
ALCF (D)”, Subscription Information, p. 535.

[21] A. Artale and C. Lutz, “A correspondence between
temporal description logics”, JOURNAL OF APPLIED
NONCLASSICAL LOGICS, vol. 14, no. 1/2, pp. 209–
233, 2004.

149149

