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Abstract— By the immense growth of the Web-Based Social
Networks (WBSNs), the role of trust in connecting people
together through WBSNs is getting more important than ever.
In other words, since the probability of malicious behavior in
WBSN:s is increasing, it is necessary to evaluate the reliability of
a person before trying to communicate with. Hence, it is desirable
to find out how much a person should trust another one in a
network. The approach to answer this question is usually called
trust inference. In this paper, we propose a new trust inference
algorithm (Called RN-Trust) based on the resistive networks
concept. The algorithm, in addition to being simple, resolves
some problems of previously proposed approaches. The analysis
of the algorithm demonstrates that RN-Trust calculates the trust
values more accurately than previous approaches.

I. INTRODUCTION

Nowadays, the size of World Wide Web (WWW) is growing
rapidly. According to this fast growth, many new facilities are
provided to help users establish their interactions with the web.
Online service provision and web-based social networks are
such facilities. Although transactions and communications in
the web are easier and cheaper, determining the trustworthiness
of the remote party is not simple at all. When we have not
enough information about the other party of our connection,
good results of this collaboration can not be guaranteed. In
this situation, trust plays a crucial role in connecting people
and beginning transactions.

Web-base social networks (WBSNs) are those web sites
trying to simulate real social networks on the web. Analyzing
the structure of social networks and relationships among peo-
ple in these networks can provide very valuable information
for many research areas such as disease growth. Using the
web for simulating social networks, helps researchers extract
useful information faster and cheaper and analyze the struc-
ture of these kinds of information more accurately. Golbeck
completely described the properties of WBSNs in her PhD
dissertation [1].

A graph structure is usually used to model trust relationships
of people in WBSNSs. In this graph, called trust network, each
node represents a person and each edge represents the trust
relationship. A label is assigned to each edge to indicate the
trust value of the relationship. In other words, trust value on
an edge shows how much one node trusts another one. An
important problem of trust in WBSNs is to determine how
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much one person in the trust network should trust another
one who is not directly connected to him. The approach to
handle this problem is usually called trust inference. The node
that represents the person who wants to compute his trust
value to another one is called source. On the other hand, the
node that source wants to infer about is called sink or target.
Trust in WBSNs has some properties such as transitivity,
composability, and asymmetry which are described in [1] in
detail. Considering the asymmetric property of trust, the trust
network would be a directed graph.

Trust algorithms can be divided into two categories; global
and local algorithms. Global algorithms try to compute a
universal trust value for each person in the trust network.
This trust value is called reputation. In this case, regardless of
who is asking for a trust recommendation, the same answer is
given back. On the other hand, local trust algorithms calculate
trust values from the perspective of the person asking for the
trust recommendation. Similar to many previous works, we
differentiate the concept of trust from the reputation. The main
difference is that unlike reputation, trust is subjective. In this
paper, from the trust inference algorithm, we mean the local
one.

Till now, many trust models have been proposed with differ-
ent inference algorithms. However, most of these algorithms
are suffering from some common problems. Inaccuracy of
inferring trust through a chain (a single path from source to
sink), ignoring some useful information by eliminating some
paths, and the complexity of the inference algorithm are such
problems.

In this paper, we propose a new trust inference algorithm
in WBSNs called RN-Trust. In addition to being simple,
the algorithm resolves many problems of the previous ones.
Basically, the main idea is to use the Resistive Network concept
to simulate trust networks. A resistive network is a collection
of resistors which are connected in series and parallel. The
basic rules of a resistive network could be found in [13].

In the proposed model, each node in the trust network is
mapped to a node in the resistive network. Also, for each
two adjacent nodes in the trust network, a resistor is placed
between their corresponding nodes in the resistive network. It
is clear that the resistors’ values must have a reverse relation
with the trust values. After constructing this resistive network
between the source and the sink, the equivalent resistance of
this electric circuit can be used as a measure to calculate the
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trust value from the source to the sink. In RN-Trust, there is
no need to ignore any information. The problem of inferring
trust through a chain is resolved too. In addition, the algorithm
is very simple and its time complexity is polynomial. Actually,
it requires O(V3) time in the worst case in which V is the
number of nodes in the trust network.

The rest of the paper is organized as follows; In section
II, we introduce previous trust models proposed for WBSNs.
Our new model and its inference algorithm are discussed in
section III. Section IV is devoted to analyze the results and
to compare them with those obtained using other algorithms.
Finally, we conclude the paper in section V.

II. RELATED WORK

Determining trust value for an unknown entity is a famous
problem in distributed environments, even if it would not
be directly related to the social networks. Here, we explain
previous works on calculating trust values specially those in
the social networks area.

A. EigenTrust

The EigenTrust algorithm [7] which is proposed to inferring
trust in P2P networks, considers trust as a function of corrupt
vs. valid files that the node provides. A peer maintains infor-
mation about the trustworthiness of peers with which it has
interacted based on the proportion of good files it has received
from that peer. For one peer to determine the trustworthiness
of another with which it has not interacted, it needs to gather
information from the network and infer the trustworthiness. A
peer creates a direct trust rating for another peer based on its
historical performance. In its simple form, the algorithm uses a
matrix representation of the trust values within the system and
over a series of iterations it converges to a globally accepted
trust rating of each peer.

However, There is a fundamental difference between trust
in P2P networks and trust in social networks. P2P trust is
based on the reliability of a node to adhere to absolute correct
parameters. A file is either corrupted or it is not. There is
not a “sort of corrupted” file. A node properly implements
a protocol or it does not. Again, there is no in-between. In
social networks, though, trust is not based on this absolute
truth. Two people may hold vastly different opinions about a
topic (look only to religion or politics for extreme examples),
and there is no absolute truth to determine which one should
be trusted and which one should not. A person decides how
much to trust another based on personal opinion.

One problem that arises in algorithms that are based on
finding the principal eigenvector, like Kamvar (2003) [7],
Zeigler and Lausen(2004) [16], and Richardson et al., (2003)
[12], is that trust must first be normalized to work within the
matrix. This means that the normalized trust value from a
person who has made many trust ratings will be lower than
if only one or two people had been rated. However, socially,
trust is not a finite resource; it is possible to have very high
trust for a large number of people, and that trust is not any

weaker than the trust held by a person who only trusts one or
two others.

B. TidalTrust Algorithm

The TidalTrust algorithm is proposed by Golbeck in 2005
[1], [2]. An important assumption, Golbeck considered in her
algorithm, is that there is no distrust in the trust networks. This
means that any trust value is considered as a positive opinion.
She claimed that with regard to statistics extracted from the
real social networks, this assumption is not unreal.

TidalTrust algorithm considers the trust values to be num-
bers in a continuous range of [0..10]. As mentioned before,
a directed graph is used to represent trust relationships. Each
edge has a label in the range of [0..10] which 10 means full
trust and 0 means no information. Suppose that the node s in
the trust network wants to compute its trust value to the node
t which is not directly connected to s. First, s sends a request
to all its neighbors. This request is recursively forwarded until
it reaches to nodes having an edge to t. Then, the trust values
of these nodes to ¢ are moved backward across the paths that
their corresponding requests are came from. In the backward
path, when a node receives more than one value, it uses WAO
(weighted average operator) to combine these trust values. This
scenario continues until trust values reach to s across the same
paths of sending requests but in reverse direction. After this, s
uses WAO operator like the other nodes to combine its received
trust values and compute final trust value from s to t.

Studying the structure of real world social networks and
their properties such as high connectivity, Golbeck applied
two restrictions on her algorithm. First, she showed that trust
values inferred through shorter paths may be more accurate, so
she only considered shortest paths from source to sink in her
inference algorithm. Second, she extracted from her analysis
that the most trustworthy information usually comes from
highest trusted neighbors and lower trusted ones give lower
trustworthy information. Thus, she computed a trust threshold
for trust network in her algorithm and applied this threshold
in combining trust values. This means that in the combination
process for a node, those neighbors are considered which that
node has a trust value more than this threshold to them. She
showed that these restrictions lead to more accurate results in
many cases.

Perhaps, the most important preference of Golbeck’s al-
gorithm with respect to other ones is its simplicity and its
low time complexity (O(V + E)). Although she has used a
simple operator to combine trust values, looking at the results
of other algorithms, we can see that Golbeck’s results are
better in many cases. This is mainly because of her applied
restrictions in the algorithm. TidalTrust algorithm is known as
a famous and highly cited algorithm for inferring trust. This is
why we chose TidalTrust algorithm as the basis of our results
comparison.

Despite of popularity of the TidalTrust algorithm, it has
some problems. First, we must mention that with Golbeck’s
restriction on the length of inference paths, some useful
information may be missed. Yet, the more important problem
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is about single paths (chains) between the source (s) and the
sink (¢). Suppose that there is only a long chain between the
source and the sink, and all nodes in this chain have trust value
9 (high trust) to their neighbors. Now, suppose that there is
another chain with the same length with this difference that
all nodes have trust value 10 (full trust) to their neighbors
except the one just before the sink which has trust value 9 to
the sink. With the TidalTrust algorithm there is no difference
between these two cases. In both cases, the computed trust
value from s to ¢ is 9. However, it is clear that in the former
case the inferred trust value must be smaller than the latter
one. In fact, increasing the chain length should have a reverse
relation with the final inferred trust.

C. Trust Network Analysis with Subjective Logic

Another work on inferring trust value which has used a new
logic called Subjective Logic is proposed by J¢sang in [4].
He claimed that existing logics are not appropriate enough to
model uncertain probabilities, so he proposed Subjective Logic
and defined its operators. This logic is based on Dempster-
Shafer belief combination rule [15].

Unlike the TidalTrust algorithm, the belief combination
model of Dempster-Shafer and the consensus operator of
Jpsang assume equally reliable sources. Although the time
complexity of Jpsang algorithm is worse than TidalTrust algo-
rithm, assuming equally reliable sources is its main drawback.
We believe in the recommendations of an entity as long as
we trust it. The recommenders trust degree is important for
evaluating the reliability of the sources. The other point is that
WAO operator is simpler than consensus operator, so Tidal-
Trust algorithm is usually preferred over J¢sang algorithm in
the aspect of simplicity in addition to the time complexity.
Perhaps, the only significant preference of J¢sang algorithm
over TidalTrust algorithm is the consideration of the concept
of distrust which has been ignored by Golbeck.

D. Inferring Trust using Fuzzy Logic

Using fuzzy logic and its operators in trust models has been
considered in many works [3], [11], [14]. However, in the
area of social networks, it is firstly proposed by Lesani in
[8], [9]. His fuzzy algorithm supports the linguistic terms as
trust rating of a node to another one in the trust network.
The fuzzy membership functions for the linguistic terms such
as low, medium, medium low, medium high and high can be
defined.

The results of Lesani’s simulation indicate that the fuzzy
algorithm offers more precise information than the TidalTrust.
However, because of that he uses TidalTrust algorithm as the
basis of his fuzzy algorithm, it has the same drawbacks of
TidalTrust algorithm.

III. THE TRUST MODEL

In this section, we introduce our trust model and discuss
how this model can resolve problems of the previous models.
Basically, the main idea is to use the Resistive Network
concept to simulate the trust network. To this aim, each trust

relationship between two persons is modeled by a resistor
such that the more the trust value, the less the value of
corresponding resistor. Thus, the trust network is converted
to a Resistive Networks. To map a trust network to a resistive
network we need to define a mapping function that takes a
trust label as an input and gives the equivalent resistance as
the output. This function and its properties are described later
in this paper.

The idea is intuitively clear. Suppose that we have a simple
trust network with only two nodes u and v which the trust
value from u to v is t. Mapping this trust network to a resistive
network, and connect a voltage source between v and v in the
resistive network, a current will be flowed between u and v.
This current can be interpreted as the trust relation from u to
v. If there was no resistor between u and v, v and v would
have the same voltage. We can say: u has the same opinion of
v. In this situation, the maximum current flows between v and
v. If there was a resistor between u and v, then the amount
of current flows from u to v decreases. Thus, the trust values
have reverse relation with the values of the resistors. The more
the trust values, the less the values of resistors. If there is not
full trust between two nodes in the trust network, no resistor
might be placed between corresponding nodes in the resistive
network. On the other hand, if we have low trust between two
nodes in the trust network, we must consider a resistor with
relatively big resistance between the related two nodes in the
corresponding resistive network.

The trust values in our model are supposed to be continuous
values in the range of [0, 1]. Now, we can define the mapping
function between trust values and resistance values. As men-
tioned in the previous part, trust values should have reverse
relation with quantity of resistance. We choose a logarithmic
function to this aim which is defined as follows:

r=—logt (D

where r is the resistance value of the resistor assigned to
the trust relation which has the value ¢. It is obvious that when
our trust value is 1 which means full trust, the corresponding
resistor has zero resistance which means there is no resistor
between two nodes.

Similar to other trust models in this paper, the trust network
is modeled as a directed graph G. Nodes in G represent
people and an edge between the nodes u and v represents
a trust relationship between them. A label on the edge (u,v)
represents the trust value from u to v. Notice that we assume
trust as a asymmetric relation and the trust value from w to v
is not the same as the trust value from v to u. To apply the
asymmetric property of trust in our modeling, an ideal diode
is used. That is, an ideal diode is added beside the resistor
between u and v. As you know, if there exists an ideal diode
between two nodes v and v, it impacts the current to flow in
our desired direction. In other words, if a diode is used such
that its cathode be at the u side and its anode be at the v side,
only when the current flows from u to v, the resistor plays its
role and in reverse direction, diode becomes cut-off and does
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Fig. 1. (a) An edge in a trust network with the trust value ¢ from u to v;
(b) Corresponding edge in the resistive network.

not allow the current to flow. The overall process of mapping
an edge in the trust network to a part of resistive network is
shown in Fig. 1.

A. RN-Trust Algorithm

The aim of this part is to show how we can infer the trust
value from s as a source to ¢ as a target that are not directly
connected in the trust network G. Here, a new trust inference
algorithm is proposed called RN-Trust.

To infer the trust value from s to ¢, the trust network G is
mapped to a resistive network, called Res. Note that there is no
connection in the resistive network between the nodes which
their trust relationship has value 0. The resistance of each
resistor can be calculated according to the mapping function
introduced before. Given ¢ as the trust value between v and v
in G, the corresponding resistor with resistance r between u
and v in Res is calculated as 7 = — log’.

To calculate the inferred trust value between the source node
s and the target node ¢, first the equivalent resistance between
s and ¢ is computed. Suppose that the equivalent resistance
between s and t is Req(s,t). The inferred trust value between
s and t, called T'(s,t), can be calculated from the following
equation:

T(s,t) = 10~ fealst) 2

To obtain the equivalent resistance of a resistive network,
first an optional voltage difference will be applied between
source node and target node and then one of the circuit analysis
methods will be used to calculate the amount of electric current
that flows through the circuit. Because of the existence of
diodes beside the resistors, the current can just flow from s
to t. If the applied voltage difference be V' and the calculated
amount of current be I, the equivalent resistance R can be
calculated as follows:

|4
R=— 3)

Among the existing methods for analyzing an electric cir-
cuit, the most general one is the node voltage method [13].
The second method of circuit analysis, which is so popular,
employs mesh currents [13] as the independent variables.
The idea is to write the appropriate number of independent
equations, using mesh currents as the independent variables.

B. Properties of the Model

Our model should obey some principle. Accompanying the
introduction of these principles, the way that RN-Trust satisfies
them are described as follows.
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The values of all resistors must be greater than or equal
to zero. Since a value in range of [0, 1] is used as a trust
value ¢ and logt < 0, regarding to our mapping function
r = —logt, we have r > 0 for all resistors.

The inferred trust between source and target can not be
greater than 1. It is clear that the inferred trust value
is always less than or equal to 1. We know that always
Reg >0, 50 107 Rea < 1.

If there is no path between two nodes, the inferred trust
value must be 0. To show why this is true in the proposed
method, it is enough to note that if no path is found from
a source to a target, an infinite resistor is placed between
them, so the inferred trust value becomes zero. An infinite
resistor can be defined as a resistor with a high resistance
capacity, for example 103K ().

If all paths from the node s to the node ¢ pass through
a node wu, then the trust value which s has to u, must
be greater than or equal to the trust value which s has
to t. To show the correctness of this one, first equivalent
resistance between s and u, Req(s,u), and then between
w and t, Rq4(t,u), are calculated . Because of that
all paths from s to ¢t pass through w, the equivalent
resistance between s and ¢, Req(s, t), can be considered
as the combination of two series resistors Req(s,u) and
Req(u,t) which are serially connected. Thus, we have:

Req(s,t) = Req(s,u) + Reg(u,t)

Because all resistors and equivalent resistors have value
greater than or equal to zero, we have:

Req(s,t) > Req(s,u)

According to our mapping function we can conclude:

107 Reals:t) < 107 Reals:t) = P(s,u) > T'(s,1)

By increasing a label on the graph G which means
increasing the trust value between corresponding nodes,
it must not cause to decrease the inferred trust value
between any nodes and vice versa. The correctness of
direct part is showed. The proof of the reverse part is
similar. Since the value of the equivalent resistor has
reverse relation with the trust value, increasing the label
of the edge (u,v) leads to decrease of the equivalent
resistance between those two nodes in Res. It is obvious
that when a resistance decreases in the resistive network,
the equivalent resistance of the whole network decreases
too. Thus, according to the the Eq. 2, the inferred trust
value increases.

Whenever a new path is created from a source to a
target which has no intersection with previous paths, the
trust value from the source s to the target ¢ must be
increased. This fact is intuitively understandable. When
a new evidence is obtained, more trust is achieved. We
show that RN-Trust satisfy this principle too. If a new
disjoint path is created in the trust network, a new disjoint



path will be added to the corresponding resistive network
as well. Suppose that the equivalent resistance before
adding the new path is Ry4(s,t), and the equivalent
resistance of the new path is Rp,q¢4(s,t). The equivalent
resistance between s and ¢, i.e. Re4(s,t), is equivalent
to the combination of two parallel connected resistors
R(}ld(37t) and Rpat;,,(s, t).

Rold(s: t) X Rpath(s7 t)
Rold(57 t) + Rpath(87 t)

From the above equation, it can be concluded that:

Req(s,t) =

ch(sa t) S Rold(sa t)

Because of that trust value is proportioned to the reverse
of resistors’ values, it it obtained that:

T(S7 t) Z Told(s, t)

Now, we show that RN-Trust algorithm tackles afore men-
tioned problems of previous algorithms. The first problem
pointed in the J¢sang algorithm is considering equally reliable
sources, while in the RN-Trust algorithm, the trust value from
each node to its neighbors affect the final inferred value of
trust. In the resistive network Res, there are smaller resistors
between a node and its more reliable neighbors than its
other neighbors. This action causes a little voltage difference
between the source node and its reliable neighbors. The second
problem is the problem of long chains, which both TidalTrust
and its fuzzy algorithm suffer from. In RN-Trust, if there exist
a chain, the equivalent resistance of Res will be equivalent to
the sum of some series resistors. When the length of the chain
is increases, the equivalent resistance is also increases. Thus,
the inferred trust value decreases. Another point is that, unlike
TidalTrust algorithm, in RN-Trust, no path and no information
is missed. In RN-Trust algorithm, all paths, and not only the
shortest paths, are considered to calculate the final inferred
trust value.

C. Time Complexity of RN-Trust

The first part of our algorithm, RN-Trust, maps the trust
network G to the resistive network Res. This mapping process
requires O(FE) time in which F is the number of edges in G.
The main part of the algorithm is to calculate the equivalent
resistance R, in Res.

In order to calculate the equivalent resistance in a resistive
network, one of the afore mentioned methods like mesh current
analysis is used. This method requires O(V3) time to complete
in which V is the number of nodes in G. Thus, the aggregate
time of our algorithm is polynomial, i.e. O(V3).

As you see, the time complexity of RN-Trust does not
significantly differ from other mentioned algorithms such as
TidalTrust which takes O(V + E) [1] and J¢sang’s algorithm
which takes O(V + E + L« M) (L is the average number of
edges exist in the paths between a source and a target, and M
is the average number of these paths) [6].
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Fig. 2. A Sample trust network for TidalTrust algorithm

TABLE I
RESULTS OF THE TIDALTRUST ALGORITHM FOR THE TRUST NETWORK IN
FIG. 2.
A[B|C|D|E|F|G|H][I]|[J KL
A - |5 |75 10| 75| 5 | 25| 25| 5 | 10| 25| 75
B | 75| - | 75| 10| 75| 0 | 57| 25| 5 | 5 | 25| 88
C 755 |- | 10| 75| 5 | 10| 25[5 | 10] 25| 75
D[ 10|35 | 75| - | 75| 3 | 25| 25| 5 | 5 | 38| 3
E | 75| 5 | 75 10| - | 3 | 57| 25| 5 | 5 | 25| 88
F [ 755 | 75| 10| 75| - | 57| 25| 5 | 75| 2.5 75
G [ 10|35 |75 10| 75| 3 | - | 25| 5 | 10| 25| 75
H [ 10|35 | 75 10| 75| 3 | 57| - |5 |0 |5 [0
T | 75| 5 | 75/ 10| 75| 5 | 57| 25| - | 10| 25| 10
T - - - - 1 -1-1-1-1-1-1-7175
K[ 10|35 | 75 10| 75| 5 | 25| 25| 5 | 10| - | O
L |- N - - N N - - N - - N

IV. EXPERIMENTAL RESULTS

In this section, both TidalTrust algorithm and RN-Trust
algorithm are applied on a sample trust network shown in Fig.
2. The results of applying TidalTrust algorithm and RN-Trust
algorithm are shown in Table I and Table II respectively. To
apply RN-Trust algorithm, the trust values are scaled down to
the range of [0, 1]. Also, the outputs are scaled up to the range
of [1..10] for better comparison.

To compare RN-Trust’s results with the results of TidalTrust
algorithm, the trust values from some sources to some targets
are analyzed and it is discussed which results are more
reasonable with regard to properties of trust in the real social
networks.

As already mentioned, the TidalTrust algorithm has a major
disadvantage on calculating trust through a chain. For example,
consider the trust value from A to E. It is obvious that there is
only one path from A to E which is A—B—FE. The TidalTrust
algorithm gives value 7.5 for the trust of A to E. However,
regarding to the trust values in this path, at first blush, trust
value from A to F seems to be less than the calculated
value by TidalTrust algorithm. When A has not full trust to
B, how it can obtain the same trust of B to E? RN-Trust
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TABLE 1II
RN-TRUST TRUST VALUES SCALED UP TO RANGE OF [1..10].

A|B|C|D|E|F |G| H|I J | K|L
A | - 5 | 7.5] 10| 3.7| 3.7] 7.9] 25| 43| 81| 4 | 69
B | 28| - 2.1 28] 75| 0 | 22| 0.7) 3.7] 49] 1.1] 5
C | 47| 23] - 47| 1.8| 5 10| 1.2] 38| 10| 3.6 8
D |3 1.5] 23] - 1.1] 1.1 2.5] 2.5] 1.3] 42| 3 | 3.5
E | 37| 19| 28] 37| - 14| 29| 09| 5 | 5 1.5] 6.7
F | 37| 19| 28| 3.7| 14| - 29| 09| 5 | 75| 1.5] 73
G | 25| 12| 1.9] 2.5] 09| 09] - 0.6 1.1| 10| 2.5] 7.7
H |5 |25 375 19| 19| 39| - 2210 | 5 | 35
1 7.5| 37| 5.6| 7.5| 2.8] 2.8] 59| 19| - 6 | 3 10
J | - - - - - - - - - - - 7.5
K| 10| 5 | 7.5] 10| 3.7] 3.7| 79| 25| 43| 81| - 0
L |- N N - N N B N N B N N

gives the value 3.7 for the trust from A to E which seems to
be a more acceptable result. In fact, in RN-Trust algorithm,
the final trust value for a chain is calculated by multiplying
all the trust values in the chain. This multiplication comes
from the properties of logarithmic function chosen as our
mapping function. When there is a chain in the trust network,
the equivalent resistor’s value of related part in the resistive
network will be equal to the sum of all resistors’ values in the
chain (the resistors in the chain are series resistors).

The second drawback mentioned for TidalTrust algorithm is
excluding longer paths in the calculating indirect trust value.
This way, some useful information may be lost since shortest
paths are only considered. This can be seen from the results
of the TidalTrust algorithm in the Table I. For example, the
result of TidalTrust gives value O for the trust from H to
L, because it only considers the path H—K—L as the only
shortest path. However, the question is why the other path
H—K—A—C—G—J—L has been ignored. Actually, the
trust values across this long path are relatively high and they
can affect the entire trust value from H to A. In RN-Trust,
the trust value from H to A is 3.5 which shows that the other
paths has been also considered. In fact, parallel paths cause
parallel resistors in our resistive network and consequently,
this make the final trust value become greater.

V. CONCLUSIONS

In this paper, we have introduced a new method to model
trust relationships among people. Accompanying this method,
a new trust inference algorithm is proposed, called RN-Trust.
A trust network is modeled with a resistive circuit. That is,
each trust relationship is mapped to a resistor beside an ideal
diode. The role of diode is satisfying the asymmetric property
of trust in the real world. A logarithmic function is used to map
trust values to resistors’ values. Furthermore, some required
properties of the model were introduced and it was investigated
how RN-Trust satisfies them. We discussed how trust inference
with RN-Trust takes out some major problems of previous
algorithms. Also, the time complexity of RN-Trust algorithm
is calculated and proved to be a polynomial time which has
not significant difference with previous algorithms.

Future works includes adding more aspects of trust such
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as distrust to the trust network and finding a new algorithm
to model this concept (by adding extra electronic elements to
our resistive network). Although we proposed this model for
WBSNs, our model has enough generality to being applied
in other environments. Applying RN-Trust algorithm in new
computational environments such as peer-to-peer networks and
multi-agent systems is also in our future plans.
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