
PTO: A Trust Ontology for Pervasive Environments
Mohsen Taherian, Rasool Jalili, Morteza Amini

Computer Engineering Department
Sharif University of Technology

{taherian@ce., jalili@, m amini@ce.}sharif.edu

Abstract— Traditionally, to handle security for stand-alone
computers and small networks, user authentication and access
control mechanisms would be almost enough. However, consid-
ering distributed networks such as the Internet and pervasive
environments, these kinds of approaches confront with flexibility
challenges and scalability problems. This is mainly because of
that open environments lack a central control, and users in
them are not predetermined. In such ubiquitous computing
environments, issues concerning security and trust become cru-
cial. Adding trust to the existing security infrastructures would
enhance the security of these environments. Although many trust
models have been proposed to deal with trust issues in pervasive
environments, none of them considered the semantic relations
among pervasive elements and specially among trust categories.
Employing Semantic Web concepts, we propose a computational
trust model based on the ontology structure, considering the
mentioned semantic relations. In this model, each entity can
calculate its trust about other entities and use the calculated trust
values to make decisions about granting or rejecting interactions.
The use of ontology structure can make the model extendible to
encompass other pervasive features such as context awareness in
a simple way.

I. INTRODUCTION

Pervasive computing environments, as a new generation
of the computing environments after distributed and mobile
computing ones, were introduced in 1991 with a new look
at the future of the computing environments. In the pervasive
computing environments, users expect to access resources and
services anytime and anywhere, leading to serious security
risks and problems with access control as these resources can
now be accessed by almost anyone with a mobile device.
Adding security to such open models is extremely difficult
with problems at many levels. An architecture with a cen-
tral authority can not be assumed in this case since access
control is required for external users. The portable hand-
held and embedded devices have severe limitations in their
processing capabilities, memory capacities, software supports,
and bandwidth characteristics. Existing security infrastructures
deal with authentication and access control. These mechanisms
are inadequate due to the increasing flexibility required by
pervasive environments.

Trust, which is similar to the way security is handled in
human societies, play an important role in enhancing security
of pervasive environments. However, it is not considered in tra-
ditional access control models seriously [1]. Till now, several

This research is partially supported by Iran Telecommunication Research
Center (ITRC).

trust models have been proposed for pervasive environments
including computational models and none-computational ones.
In a computational trust model, the values of the entity’s trust
to another one are estimated. On the other hand, the aim of a
non-computational trust model is only to find out whether an
entity is trusted or not. It is worthwhile to note that an entity
can trust another one in different categories. For example, the
device A may trust the device B in the category of reading a
file, but A may give up trusting B in the category of writing
a file. The semantic relations among pervasive devices and
also dependencies among trust categories may significantly
affect security policies. For instance, if we know a special
device belongs to the family of PDAs, and also if we have a
subsumption relation between PDAs and mobile devices, we
can generalize the security rules defined for mobile devices
to this particular device. Dependencies among trust categories
mean the security relevance of categories to each others. For
example, if an entity A has a high degree of trust to an entity
B in getting a web service, we may expect A to have a high
degree of trust to B in getting a mail service as a consequence.

Based on the knowledge of the authors, none of published
trust models for pervasive environments have considered the
mentioned semantic relations yet. Employing ontology struc-
ture propounded in Semantic Web, we propose a new trust
model for pervasive environments. This model, in addition
to being a computational trust model, considers semantic
relations among devices and among trust categories. Each
entity can calculate its trust degree to other entities and make
security decisions based on the calculated trust values. In
fact, each entity may accept or reject interaction with other
entities with regard to their trust values. Also, each entity
can vote for another entity after a direct interaction with
it. Furthermore, this model satisfies autonomy which is an
important property of pervasive entities. A device in pervasive
environment can define its security rules independently using
the SWRL language [2], which is a semantic language for
defining rules on ontology structures. Semantic Web Rule
Language (SWRL) enables Horn-like rules to be combined
with an OWL1 knowledge base.

The rest of the paper is organized as follows; In section II,
previous trust models proposed for pervasive environments are
reviewed. Section III describes the proposed trust ontology for
pervasive environments. The structure of our trust model and

1Ontology Web Language

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.39

301

22nd International Conference on Advanced Information Networking and Applications - Workshops

978-0-7695-3096-3/08 $25.00 © 2008 IEEE
DOI 10.1109/WAINA.2008.39

301

its main components are discussed in section IV. Section V is
devoted to a general evaluation of our trust model. Finally, we
conclude the paper and introduce some future work in section
VI.

II. RELATED WORK

Many trust models have been proposed for distributed envi-
ronments. A small number of them, such as the one proposed
by Abdul-Rahman in [3], were designed with such generality
to be applicable in all distributed environments. Other cases
usually concentrated on a particular environment. The trust
models for web-based social networks [4]–[6] and the ones
for peer-to-peer networks [7], [8] are examples of these trust
models. In this section, our focus is on the trust models have
been already suggested for pervasive computing environments.
In almost all distributed trust models, there must be some basic
services and/or facilities. Trust inference and trust composition
are examples of such facilities. By trust inference, we mean
calculating our belief to a statement based on the beliefs of
some other people who are trusted for us. Trust composition,
on the other hand, is a necessary part of the trust inference
algorithm which combines the beliefs obtained from different
sources.

The trust model proposed by Kagal et al. in 2001 [9], [10] is
one of the trust models for pervasive computing environments.
This model is not a computational trust model and uses
certificates to determine whether an entity is trusted or not.
In the Kagal’s suggested architecture, each environment is
divided into some security domains and for each security
domain a security agent is leveraged. The security agent is
responsible for defining security policies and applying them
in the corresponding domain. Interfaces of available services
in a domain are also provided by its security agent. When an
external user requests a service offered in a domain, he must
provide a certificate from one of the agents which are trusted
for the security agent of the domain. Then, he must send its
request accompanying the acquired certificates to the security
agent. The security agent checks the validity of the certificates
and responses the user’s request. In fact, the Kagal’s trust
model is more likely to be a certificate-based access control
model. In this model, an entity can be trustworthy or not from
the security agent’s point of view and no entity has a degree
of trust about other entities. Thus, interaction of entities with
other ones in the same domain is not supervised.

Among the existing trust models for pervasive environ-
ments, the model proposed by Almenarez et al. in [11],
[12], called PTM2, is very popular. This trust model is a
computational trust model and it is implemented on a wide
range of pervasive devices. Considering two kinds of trust,
direct trust and recommendation trust [11], the architecture
of this model is divided into two parts; 1) belief space which
assigns an initial trust value to new arriving entities, and 2)
evidence space which updates the trust values of entities with
respect to their behaviors over the time. To combine trust

2Pervasive Trust Management

values, the weighted average operator (WAO) is used and
values in the belief space are presented as fuzzy values. A
recommendation protocol is defined to recommend an entity
the trust values of other ones. If an entity wishes to interact
with another one, it uses this protocol to acquire that entity’s
trustworthiness degree. In the first interaction of an entity, its
initial trust value, which is assigned in the belief space, is
considered. However, over the time, the entity’s trust value
changes with respect to the entity’s behavior. It is worthy
to note that, the implementation of this model is added to
security infrastructure of some pervasive devices to enhance
their security [13].

All the mentioned approaches suffer from some common
drawbacks in pervasive environments. Perhaps, the main draw-
back is not taking into account the semantic relations among
pervasive devices and trust categories. We have defined a
pervasive trust model based on ontology structure between au-
tonomous entities. Considering mentioned semantic relations
makes the model capable of defining security rules with more
flexibility. The model is also simple enough to implement
in the very constrained devices which have strict resource
constraints.

III. PTO: PERVASIVE TRUST ONTOLOGY

In our proposed model, in addition to calculating the trust
values from each entity to the others, the semantic relations
among pervasive devices and relations among trust categories
are considered using an ontology structure. Ontologies include
computer-usable definitions of basic concepts in the domain
and the relationships among them. They encode knowledge
in a domain and also knowledge that spans domains. In this
model, to represent trust relations among pervasive devices, a
particular ontology is defined, called PTO (Pervasive Trust
Ontology). As known, each ontology O contains a set of
concepts (classes) C and a set of properties P . A class is
a collection of individuals and a property is a collection of
relationships between individuals (and data). A property that
relates an individual to another individual is called object
property and a property that maps an individual to a data literal
is called datatype property. Like a mathematical function,
a property has a domain and a range. While both domain
and range of object properties are ontology classes, the range
of datatype properties are data literals such as integer, time,
etc. The OWL, which is recommended by W3C3, is used to
describe the trust ontology. The purpose of OWL is to provide
an XML vocabulary to define classes, properties and their
relationships. The benefit of OWL is that it facilitates much
greater degree of inference than you get with RDF Schema.
The formal notation of trust ontology is as follows:

PTO: Pervasive Trust Ontology ={C, OP, DP}

C: OWL Classes =
{Device, Category, DirectTrust, RecTrust,
CategoryRelation, InteractionAuthority}

3The World Wide Web Consortium (W3C) is the main international
standards organization for the World Wide Web. (http://www.w3c.org).

302302

OP: Object Properties =
{hasDirectTrust, hasRecTrust, trustedDevice,
trustedCategory, trustRelated, canInteract,
interactionDevice, interactionCategory}

DP: Datatype Properties =
{initialTrustValue, hasTrustValue,
hasRelevanceValue, interactionNo, updateTime}

In the rest of this section, the classes and properties of PTO
are briefly introduced.

A. Classes of the Trust Ontology

The class Device represents the available devices of per-
vasive environment such as users, sensors and PDAs. The
class Category includes individuals which represent trust
categories, e,g., login access or reading file. In fact, the trust
category describes the semantics of a trust relation.

Similar to many other trust models, two kinds of trust are
considered in our model. First, direct trust which is given by
the knowledge of an entitys nature or its past interactions in
the physical world, without requesting information from other
entities. Second trust type is indirect trust or recommendation
trust. When two entities, unknown to each other, are willing
to interact, they can request other entities to give information
about the other party. This process of asking other entities and
calculating the final trust value from the received information
is called trust inference.

To model the trust relations, for both direct trust and
recommendation trust, some properties must be defined in the
ontology. These properties have some attributes themselves. In
Semantic Web languages, such as RDF and OWL, a property
is a binary relation; it is used to link two individuals or an
individual and a value. However, in some cases, the natural
and convenient way to represent certain concepts is to use
relations to link an individual to more than just one individual
or value. These relations are n-ary relations. For instance, it
might be required to represent properties of a relation, such as
our certainty about it, relevance of a relation, and so on. One
solution to this problem is to create an individual representing
the relation instance itself, with links from the subject of the
relation to this instance and with links from this instance
to all participants that represent additional information about
the instance. In the class definition of the ontology, an ad-
ditional class is required to include instances of this n-ary
relation itself. Classes DirectTrust and RecTrust are of
such classes.

One of the main features of our model is considering
dependencies among trust categories. Like direct trust and
indirect trust relation, this relation among trust categories is
an n-ary relation. The class CategoryRelation is defined
to include instances of this n-ary relation. Finally, to indicate
authorized interactions the class InteractionAuthority is
defined.

B. Properties of the Trust Ontology

initialTrustValue: An instance of this datatype property
assigns an initial trust value to a new arriving entity. This

assignment is done by special agents called trust manager
which are described in the next section. One way is to assign
different initial trust values to the new entity corresponding
to different trust categories. Another way is to assign only
one initial trust value for all trust categories. Concentrating
on simplicity of the model, the latter one is considered in this
paper. The criteria of assigning this value are dependent on
the policies of the trust manager.

Notice that all the trust values in the PTO are assumed to be
float numbers in range [1..10]. This constraint can be applied
on datatype properties using the property restriction concept.

hasDirectTrust: When an entity interacts with another
one, it gains a degree of trust about that entity. This type
of trust is called direct trust. Since this relation is not a
binary relation and it has some attributes, the pattern described
before to define n-ary relations is used. Fig. 1 shows the
schema of hasDirectTrust property. In this figure, the
properties which cooperate to establish a direct trust relation
are illustrated. The class DirectTrust includes instances
of the relation. The property trustedDevice determines
the device at the other side of the trust relation. The prop-
erty interactionNo identifies number of interactions which
have been already done between these two entities. The prop-
erty hasTrustValue assigns a trust value in range of [1..10]
to the trust relation, and the property trustedCategory

characterizes the trust category in which the trust relation is
set up.

Fig. 1. hasDirectTrust property

hasRecTrust: If an entity wants to begin a interaction
with another one, it may want to know the opinions of
other entities about the other party. The trust value derived
in this way is called indirect trust or recommendation trust.
Like hasDirectTrust, this relation is also an n-ary relation.
The schema of this relation is illustrated in Fig. 2. The
class RecTrust includes individuals of this relation. All
attributes of this relation is similar to the direct trust relation
except that instead of property interactionNo, the property

303303

updateTime is considered. This property determines the time
of last trust inference. Details of the inference algorithm are
discussed in section IV.

Fig. 2. hasRecTrust property

trustRelated: The dependency between two categories of
trust is modeled with this property. According to Fig. 3, the
class CategoryRelation contains individuals of the rela-
tion. The property trustedCategory represents the related
category and the property hasRelevanceValue allocates a
float value in range of [0..1] for the relevance degree.

Fig. 3. trustRelated property

canInteract: This property indicates that if interac-
tion of a device with another one in a particular cat-
egory is authorized or not. With regard to Fig. 4,
the class InteractionAuthority contains individuals
of the relation. The property interactionDevice and
interactionCategory respectively represent the device
and the category which the interaction will be granted to.

Fig. 4. canInteract property

IV. THE TRUST MODEL

Based on PTO, a trust model is proposed to manage trust
relations in a pervasive environment. The components of this
model can be added to the pervasive devices to enhance
security of interactions among them. A simple algorithm is
suggested to infer trust values and update them. In this section,
components of the proposed trust model are explained in
detail.

A. Trust Manager

A pervasive environment, is divided into some different
domains and each domain has a trust manager. The trust
manager is responsible for assigning the initial trust values,
defining semantic relations among trust categories, defining
a hierarchy of the devices, and holding the base trust on-
tology. The hierarchy of devices can be defined with using
the subClassOf property of the ontology. The base trust
ontology contains the relations among the trust categories and
the hierarchy of pervasive devices. These relations can be
defined by the security manager of each domain.

When a new entity enters a domain, it sends a message to
the domain’s trust manager and declares its physical specifica-
tions. According to these specifications and its own policies,
the trust manager finds out if this new entity is an individual of
the class Device or it is one of the Device subclasses. Then,
an initial trust value is assigned to the entity. After updating
the ontology, trust manager sends the file of the ontology to
the new entity. Thus, all entities receive the domain’s base
trust ontology when they enter the domain. The trust manager
also broadcasts a new massage to update the ontologies of
already existing entities. The structure and the format of the
alert message are out of the paper scope.

B. Security Rules

The autonomy of pervasive devices is one of their basic
properties. In our model, each entity is independent of the
other ones in defining security rules. The policies are described

304304

in the SWRL language, which is a language to process and to
query the ontologies which are written in the OWL language.

We use a simple pattern to define security rules. At
the left side of the security rules, using all of the PTO
classes and properties except the ones illustrated in Fig. 3
are allowed. The predefined classes, properties, and individ-
uals of OWL and SWRL, such as rdfs:subClassOf and
swrlb:greaterThan, are also acceptable. In this pattern, the
right side of the rules can be only in the following form:

canInteract(d1, x) ∧
interactionDevice(x, d2) ∧
interactionCategory(x, c)

Although the above constraint reduces the flexibility of
defining rules, it makes the trust model decidable. In the
evaluation section, the effect of this constraint on decidability
of the model is analyzed. An example of a security rule is
provided below:

hasDirectTrust(pc1,?x) ∧
trustedDevice(?x,mobile1) ∧
trustedCategory(?x, execute-process) ∧
hasTrustValue(?x, ?z) ∧
swrlb:greaterThan(?z, 7) ∧
swrlx:createOWLThing(?y, ?x)
→
canInteract(pc1, ?y) ∧
InteractionAuthority(?y) ∧
interactionDevice(?y, mobile1) ∧
interactionCategory(?y, execute-process)

One points in the mentioned example rule must be cleared.
In the right side of SWRL rules, creation of a new indi-
vidual is not allowed. Thus, an additional package, called
swrlx.owl is added to PTO. This package has a property
called createOWLThing which is used at the left side of a
rule to create individuals which are needed at the right side of
that rule. Then, at the right side, these created individuals can
be assigned to the corresponding OWL classes. With regard
to the pattern we just defined for the security rules, only
one individual of the class InteractionAuthority must
be cerated in a rule.

Before beginning the interaction, a device looks up in its
security rules to find the matching rules. If the found rules
are satisfied, the entity begins the interaction. Otherwise, the
interaction would be denied.

C. Trust Inference

In any trust model, one of the main parts is the algorithm
of inferring trust. Trust inference means calculating indirect
trust values (or recommendation trust values). In addition to
indirect trust, the way in which direct trust values are created
is important too. Suppose that device e1 does not have any
information about entity e2 and it is willing to interact with e2.
Consider that this type of interaction needs a degree of trust in
the trust category c1. Now, e1 needs to derive the trust value
of e2 by asking other entities. Thus, e1 broadcasts a query
message to other entities. It is clear that to answer the sender,
address of the sender must be located in the message. Also, a
timeout must be declared by the sender to ignore indefinite

waiting. Each entity which has a direct trust to e2 in the
category c1, replies e1. After finishing the declared timeout,
e1 calculates the derived trust value with respect to delivered
answers. Equation (1) shows this operation.

Tinfer(e1, e2, c1) =

∑
i�=1,2 T (ei, e2, c1) × T (e1, ei, c1)

∑
i�=1,2 T (e1, ei, c1)

(1)

The entities who reply e1 are denoted by ei. T (ei, e2, c1) is
the value of direct trust from entity ei to e2 in the trust category
c1 and T (e1, ei, c1) is the direct trust value from e1 to ei in
the trust category c1. Considering trust value of the sender to
the repliers causes that the answers from more reliable entities,
having more impact on the inferred trust value. Note that if
e1 does not have a direct trust to ei (e1 has not done any
interaction with ei in the trust category c1 yet.), it considers
the initial trust value of ei (initialTrustValue(ei)) instead
of T (e1, ei, c1). As it is mentioned before, this initial trust
value is assigned by the trust manager. It is obvious that the
inferred trust value will be located in the valid range of trust
values defined by class TrustValue of trust ontology. After
computing the inferred trust value, e1 updates its ontology too.
The time of inferring trust (tinfer) will be also stored in the
ontology using updateTime property.

In our inference method, the weighted average operator
(WAO) is used to combine the trust values. Although other
distributed trust models use alternative operators to combine
trust values which may cause reaching more accurate results,
like the consensus operator [14] used in [6], for pervasive
devices which have considerable limitations on battery life,
memory capacities, size, and performance, the simplicity fac-
tor is preferred.

D. Updating the Trust Values

To update indirect trust values, different approaches can be
used. One way is that each entity recalculates its trust value
to another entity after a predefined time periods. Another way
is to derive the trust value whenever a rule consists the time
constraint is fired up. A combination of these two approaches
can be used too. In a pervasive domain, the security manager
can choose one of the above methods.

Now, the question is that how direct trust values can be
changed. In this model, after completing a transaction, entities
can vote for each other. The new direct trust value can be
computed by the equation (2).

Tnew(e1, e2, c1) =
Told(e1, e2, c1) × intNo + vote(e1, e2, c1)

intNo + 1
(2)

In this equation, Told(e1, e2, c1) represents the direct trust
value from e1 to e2 in the category c1 before beginning the
transaction. The term vote(e1, e2, c1) represents the opinion of
e1 about e2 in the category c1 after completing the transaction,
and intNo is the number of transactions between e1 and
e2 which have taken place in the category c1 before this
transaction. Tnew(e1, e2, c1) is the new direct trust value from
e1 to e2 in the category c1. Updating the trust ontology of
e1 includes updating the direct trust value and the interaction

305305

number. Note that the new direct trust values can be alerted
to the trust manager to take these values into account for its
later decisions.

V. MODEL EVALUATION

In this section, we first discuss on the decidability of
the inference on the security rules of the model. Then, we
try to highlight the advantages of this trust model over
previous ones. As mentioned before, after firing each se-
curity rule, at most three predicate may be asserted in the
rule base of the ontology. These predicates are corresponded
to the properties canInteract, interactionDevice,

interactionCategory. Suppose that in a pervasive domain,
n is the number of devices and m is the number of categories.
According to the domain and range of these properties and
with any number of security rules, the (n − 1) × m is the
maximum number of predicates that can be asserted into the
rule base of each device after inference process. On the other
hand, with this constraint on the security rules which the right
side of them are in a predefined format and no predicate of
the right side can be used in the left side, there will be no loop
in the rule base. These reasons demonstrate that the inference
problem in the trust model is decidable.

Using ontology to model trust relations among pervasive de-
vices makes the model capable of including semantic relations
among pervasive devices. These semantic relations can be used
in defining security policies. Combining OWL and semantic
rules which is the idea of SWRL rules provide us a faster
inference than other semantic rule languages. There are some
algorithms to inference on SWRL rules which a particular one
of them is rete algorithm [15].

Considering the dependencies among trust categories and
defining hierarchical structure of pervasive devices, provides
us more flexibility to define security rules. With this feature,
a wide range of security policies can be expressed in a simple
way. Adding more attributes of pervasive environments such as
context-awareness is possible with making a little extension to
the model. For example, suppose that we want to add a context
variable such as the location. The property hasLocation and
a class validPlaces can be defined in the trust ontology to
support this context variable. Consequently, new security rules
can use this new concept to enhance their expressiveness.

In addition to considering semantic relations, our trust
model is a computational trust model against the Kagal’s trust
model [9], [10]. Using WAO, a simple inference protocol is
proposed to calculate the indirect trust values. For pervasive
devices which have significant limitations on battery life,
memory capacities, size, and performance, the simplicity of
inference protocol offers many benefits to calculate the indirect
trust values. Another advantage of the model is considering
the autonomy of pervasive devices. Each device can define its
private security rules independent of the others. This provides
such flexibility for devices to employ both direct and indirect
trust values in defining their security policies.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have introduced a new semantic-aware
trust model for pervasive environments based on ontology
concepts. A standard ontology, called PTO, is defined to
support trust in pervasive environments. The trust ontology
is represented with the OWL language and queries on the
ontology can be expressed in existing rule languages such as
SWRL. Using the ontology structure, the model provides a
standard trust infrastructure for pervasive devices. Based on
PTO, a trust model is proposed to manage trust relations in
a pervasive domain. This model calculates trust values for
pervasive devices which can be used in granting or denying
interactions among them. Each device has its own ontology
and it can define its policies independent of other devices.
Satisfying the matching rules is the condition of beginning
interactions. Asserting some constraints on security rules made
the inference problem of the trust model decidable.

Future work includes defining the structure of messages
and patterns of security rules. Moving toward implementing
this model on pervasive devices like PDAs and evaluating the
performance impacts are also in our future plans.

REFERENCES

[1] C. English, P. Nixon, S. Terzis, A. McGettrick, and H. Lowe, “Dynamic
trust models for ubiquitous computing environments,” in Ubicomp
Security Workshop, 2002.

[2] “Swrl: A semantic web rule language combining owl and ruleml,”
http://www.w3.org/Submission/SWRL.

[3] A. Abdul-Rahman and S. Hailes, “A distributed trust model,” in New
Security Paradigms Workshop. ACM Press, 1998, pp. 48–60.

[4] G. A. Golbeck, “Computing and applying trust in web-based social
networks,” Ph.D. dissertation, University of Maryland, 2005.

[5] G. A. Golbeck and J. Hendler, “Inferring binary trust relationships in
web-based social networks,” ACM Transactions on Internet Technology,
vol. 6, no. 4, pp. 497–529, 2005.

[6] A. Josang, R. Hayward, and S. Pope, “Trust network analysis
with subjective logic,” in Australasian Computer Science Conference
(ACSC2006), Hobart, Australia, 2006, pp. 85–94.

[7] N. Griffiths, K. M. Chao, and M. Younas, “Fuzzy trust for peer-to-peer
systems,” in P2P Data and Knowledge Sharing Workshop (P2P/DAKS
2006), at the 26th International Conference on Distributed Computing
Systems (ICDCS 2006). Lisbon, Portugal: IEEE Computer Society,
2006, pp. 73–73.

[8] Y. Wang and J. Vassileva, “Trust and reputation model in peer-to-peer
networks,” in 3rd International Conference on Peer-to-Peer Computing
(P2P 2003). IEEE Computer Society, 2003, pp. 150–157.

[9] L. Kagal, T. Finin, and A. Joshi, “Trust-based security in pervasive
computing environments,” IEEE Computer, vol. 34, no. 12, pp. 154–
157, 2001.

[10] L. Kagal, T.Finin, and A.Joshi, “Moving from security to distributed
trust in ubiquitous computing environments,” IEEE Computer, 2001.

[11] F. Almenarez, A. Marin, C. Campo, and C. Garcia, “Ptm: A pervasive
trust management model for dynamic open environments,” in First
Workshop on Pervasive Security, Privacy and Trust PSPT04, 2004.

[12] F. Almenarez, A. Marin, D. Diaz, and J. Sanchez, “Developing a model
for trust management in pervasive devices,” in Fourth Annual IEEE
International Conference on Pervasive Computing and Communications
Workshop (PERCOMW06), 2006.

[13] “Ubisec project, pervasive trust management model (ptm),”
http://www.it.uc3m.es/ florina/ptm.

[14] A. Josang, “The consensus operator for combining beliefs,” Artificial
Intelligence Journal, vol. 142, no. 1-2, pp. 157–170, 2002.

[15] C. Forgy, “Rete: A fast algorithm for the many pattern/ many object
pattern match problem,” Artificial Intelligence 19, pp. 17–37, 1982.

306306

