
H. Jahankhani, K. Revett, and D. Palmer-Brown (Eds.): ICGeS 2008, CCIS 12, pp. 190–199, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Logic for Inclusion of Administrative Domains and
Administrators in Multi-domain Authorization

Zeinab Iranmanesh, Morteza Amini, and Rasool Jalili

Network Security Center, Department of Computer Engineering,
Sharif University of Technology, Tehran, IRAN

{iranmanesh@ce,m_amini@ce,jalili@}sharif.edu

Abstract. Authorization policies for an administrative domain or a composition
of multiple domains in multi-domain environments are determined by either
one administrator or multiple administrators' cooperation. Several logic-based
models for multi-domain environments' authorization have been proposed;
however, they have not considered administrators and administrative domains
in policies' representation. In this paper, we propose the syntax, proof theory,
and semantics of a logic for multi-domain authorization policies including ad-
ministrators and administrative domains. Considering administrators in policies
provides the possibility of presenting composite administration having applica-
bility in many collaborative applications. Indeed, administrators and administra-
tive domains stated in policies can be used in authorization. The presented logic
is based on modal logic and utilizes two calculi named the calculus of adminis-
trative domains and the calculus of administrators. It is also proved that the
logic is sound. A case study is presented signifying the logic application in
practical projects.

1 Introduction

In multi-domain environments (hereafter we refer to them as MDEs), there are multi-
ple administrative domains. When a subject submits a request concerning some
actions on some resources, possibly supported by one or more credentials, it must
comply with authorization policies of the domain containing the resource if it is to be
granted [1]. MDEs’ characteristics such as being dynamic, distributed, heterogeneous,
and open raising the requirement of a more powerful authorization for them. There-
fore, for authorization policies’ representation in MDEs, a more flexible, distributed,
expressive, and declarative approach is needed. Logic has been used to represent au-
thorization policies in the literature due to its related strengths; e.g. logic provides rea-
soning facility, sufficient precision, expressiveness, flexibility, and declarativeness in
representation [2], [3], [4].

Some researches have used logic to represent authorization policies in MDEs,
including [1], [3], [5], [6]. However, proposed models have not considered an admin-
istrator as the legislator of an authorization policy and its administrative domain in
policies' representation explicitly. In this paper, we propose a logic considering inclu-
sion of administrative domains and also administrators in MDEs’ authorization poli-
cies; an administrator and an administrative domain can be primitive or composite.

 A Logic for Inclusion of Administrative Domains and Administrators 191

The rest of this paper is organized as follows: in the next section, some researches
related to multi-domain environments’ security are reviewed. In section 3, a broad
overview of the proposed logic is stated. The main logic, its two accommodated cal-
culi, and its other related topics are explained in section 4. A real world application of
the logic is studied in section 5. Finally, conclusions are summarized in section 6.

2 Related Work

Multiple domains approach to security management is introduced in some papers to
split the environment into several administrative domains to make distributed security
management possible. The concept is used in [7] as a security framework in pervasive
computing environment. Pearlman, et al. in [8] introduced virtual organizations (VO)
and virtual communities in which collaborative activities are made through multiple
institutions resource sharing. They address policy specification for shared resources in
cooperative manner and policy enforcement in VOs as a key problem in these envi-
ronments. The multi-domain approach is used in [9] and [10] for mobile computing
environments in controlling users’ access to services in different domains. Joshi et al.
in [11] proposed XML Role-Based Access Control (X-RBAC) specification language
for multi-domain environments. In XRBAC, domains cooperation and inter-domain
accesses becomes possible by specifying mediation policies. A domain-based role-
based access control model (RBAC-DM) has been presented by Demchenko, et al., in
[12] for distributed collaborative applications; however, it does not consider the coop-
erative approach in security management.

Some researches have been done in using logic to represent authorization policies
in MDEs. Some efforts have been put into specifying common abstract concepts such
as roles, groups, and delegation including [5], [13], and [14]. Abadi, et al. in [5] pre-
sented a calculus for access control in distributed systems. The specification of com-
posite requesters, access control lists, role, group, and unrestricted delegation have
been proposed in the calculus. Some researches have been performed to specify im-
plemented systems including [4], [15], [16], [17], [18], and [19]. Bowers, et al. in [16]
suggested a number of mechanisms for consumable credentials’ enforcement in a dis-
tributed authorization system based on linear logic. Woo and Lam in [20] presented a
general and logical framework for authorization in distributed systems. The main
drawback of the approach is that it is not even semi-decidable. Jajodia, et al. pre-
sented a logical language for authorization specification (ASL) in [6]. Access control
checking can be performed in linear time w.r.t. the number of rules in authorization
specification. Some ideas have been presented to specify a relatively complete set of
useful authorization scenarios when respecting decidability including [1] and [21].
Some researches have used intuitionistic logics to integrate more policy specification
and its enforcement including [22] and [23]. Bonatti, et al. in [3] considered composi-
tion of authorization policies that may be independently stated. Freudenthal, et al. in
[24] proposed a distributed role-based access control for systems that span multiple
administrative domains.

192 Z. Iranmanesh, M. Amini, and R. Jalili

3 Overview

Two calculi defined as the calculus of administrative domains and the calculus of ad-
ministrators are utilized in our proposed logic representing authorization statements.
The calculus of administrative domains formalizes domains and their various circum-
stances. In the calculus of administrators, every administrator represents a corre-
sponding real world's authority legislating authorization policies. An authorization
statement is a policy legislated by an administrator and is related to a domain; the ad-
ministrator and the domain may be either primitive or composite. The logic semantics
is presented using the standard Kripke model. Soundness of the logic is proved and a
case study using it is presented.

4 The Logic for Multi-domain Authorization

4.1 The Calculus of Administrative Domains

A domain is called primitive if it is an identified domain in MDEs; and, a domain is
named composite when it is a proper composition of other domains. The calculus of
administrative domains is defined as a formal system,),,(ddd IAD Ω= . The system

consists of the following sets:

i. dA is a non-empty, finite and distinct set of primitive domains (…,, 21 dd);

ii. dΩ is a set of functions applied on domains, including: top (┬), bottom (⊥), in-

tersection (∩), union (∪), and complement (-);
iii. dI is the set of calculus axioms which will be stated later.

The left parenthesis, "(", and the right parentheses, ")", may be necessary in formu-
las’ synthesis. ∪ , ∩ , and - get two domains as their input and their output being a
composite domain, is the inputs' union, intersection, and complement respectively. ┬
and ⊥ get no input; ┬ represents the union of all primitive domains and ⊥ presents
no domain. The language of D is called DL constituting from well formed adminis-

trative domains; it is defined inductively as follows:

i. Every primitive domain, id , is in DL .

ii. ┬ and ⊥ are in DL .

iii. If d and d ′ are in DL , then so are (dd ′∩), (dd ′∪), and (dd ′−).

The calculus axioms regarding the calculus functions’ properties are as follows:

(A1) DL is closed under ∩ , ∪ , and -.

(A2) ∩ and ∪ are idempotent in a wide sense.
(A3) ∩ and ∪ are commutative.
(A4) ∩ and ∪ are associative.
(A5) ∩ and ∪ are unital due to the satisfaction of the equations

┬ ∩≡∩ dd ┬ d≡ and ddd ⊥≡∪≡∪⊥ .

 A Logic for Inclusion of Administrative Domains and Administrators 193

The following axioms are related to the distributivity property of the calculus func-
tions over each other:

(A6))()()(ddddddd ′′∩∪′∩≡′′∪′∩

(A7))()()(ddddddd ′′∩−′∩≡′′−′∩

(A8))()()(ddddddd ′′∪∩′∪≡′′∩′∪

Soundness of the specified axioms is proved.

4.2 The Calculus of Administrators

In MDEs, two types of administrators (as legislators) can be found out: primitive and
composite; a primitive administrator is a potential single legislator; and, a composite
administrator is a proper combination of primitive and/or composite administrators.

The calculus is a formal system,),,(mmm IAM Ω= ; its components are as follows:

i. mA is a non-empty, finite, and distinct set of elements called primitive adminis-

trators and are typically shown as …,, 21 mm ;

ii. mΩ is a set of three functions called combinatory operators; the functions consist

of: Conjunction (&), Disjunction (|), and Delegation (*);
iii. mI is a finite set of calculus axioms explained later completely.

Depending on the rules of formulas’ construction, "(" and ")" may be necessary.
The calculus functions get two primitive or composite administrators as their input
and their output is a composite administrator. The language of M, ML , containing

properly structured administrators is defined inductively as the smallest set such that:

i. Every primitive administrator, im , is in ML .

ii. If m and m′ are in ML , then so are (mm ′&), (mm ′|), and (mm ′*).

mm ′& is used when m and m′ legislate jointly; mm ′| is used when either m or m′

legislates a policy; and, mm ′* is used if m legislates as an agent of m′ .
The axioms determining the calculus functions' characteristics are as follows:

(A9) ML is closed under &, |, and *.

(A10) &, |, and * are idempotent in a wide sense.
(A11) & and | are commutative.
(A12) &, |, and * are associative.

The axioms related to the distributivity property of the proposed functions in the
calculus of administrators are as follows:

(A13))&(|)&()|(& mmmmmmm ′′′≡′′′

(A14))*(&)*()&(* mmmmmmm ′′′≡′′′

(A15))*(|)*()|(* mmmmmmm ′′′≡′′′

Stipulated axioms are proved to be sound according to the presented semantics.

194 Z. Iranmanesh, M. Amini, and R. Jalili

4.3 The Logic of Authorization Statements

In the logic, an administrator legislating an authorization statement and an administra-
tive domain associated with the statement are included in its representation, compos-
ite administrators and various compositions of domains’ situations are stated due to
the inclusion of the calculi. The alphabet of the logic is as follows:

i. A non-empty, finite and distinct set of authorization propositions shown in the
form of …,, 21 pp .

ii. ML : The set of administrators.

iii. DL : The set of administrative domains.

iv. The connectives of the logic: ~, leg (legislation), ¬ , and → . (∧ and ∨ can de-
fined based on ¬ and →).

v. The left parenthesis, "(", and the right parentheses, ")".

The calculi are included in the logic by accommodating ML and DL . The modal

logic connective is leg. Left operand of ~ is from ML and its right operand is from

DL . The set of all proper authorization statements, S, is the smallest set such that:

i. Every authorization proposition, ip , is in S.

ii. If s and s′ are in S, then so are (ss ′→) and s¬ (and accordingly, (ss ′∧) and
(ss ′∨)).

iii. If s is in S, m is in ML , and d is in DL , then slegdm ~ is in S.

The statement slegdm ~ implies an administrator m legislates an authorization

statement s related to d (an administrative domain). If no administrative domain is
specified for an authorization statement, the statement is valid in all defined domains.

4.4 Proof Theory

The inference rules of the authorization statements' logic consist of:

(R1)
s

sss
′

′→ ;
 (The modus ponens rule)

(R2)
dmslegdm

s

,every for , ~
 (The necessitation rule)

The axioms proved to be valid in the authorization statements' logic are as follows:

(A16) if s is a tautology in the propositional logic, then s is valid in the logic too.
(A17))) ~() ~(() ~(slegdmslegdmsslegdm ′→→′→

(A18)) ~() ~(slegdmslegdm ¬¬→

(A19)) ~() ~(~& slegdmslegdmslegdmm ′∧≡′

(A20)) ~(~ ~* slegdmlegdmslegdmm ′≡′

(A21)) ~|()) ~() ~((slegdmmslegdmslegdm ′→′∨

 A Logic for Inclusion of Administrative Domains and Administrators 195

(A22)) ~() ~(~ slegdmslegdmslegddm ′∧≡′∪

(A23)) ~() ~(~ slegdmslegdmslegddm ′¬∨≡′−

(A24)) ~()) ~() ~((slegddmslegdmslegdm ′∩→′∨

The axioms are proved to be sound according to the proposed semantics.

4.5 Semantics

The Kripke-style structure for the proposed logic is presented as JIWM ,,= . The

components of M consist of:

• W is the set of possible worlds.

• WPI 2: → : is an interpretation function mapping every authorization proposition
to a subset of W in which the proposition is true.

• WWDMJ ×→× 2: : is an interpretation function mapping each pair formed from
an administrator and an administrative domain to a binary relation from W to W.
The administrator and administrative domain are primitive.

If an administrator m being in w knows w′ reachable according to his known al-
lowable requests regarding a domain d, then),(),(dmJww ∈′ is established. The

function R extends J, accepting composite administrators and domains as input:

),(),(dmJdmR = (1)

For a primitive administrator and a primitive domain, R and J results are the same.

),(),(),&(dmRdmRdmmR ′∪=′ (2)

The union of administrators’ knowledge is obtained by their conjunction.

),(),(),*(dmRodmRdmmR ′=′ (3)

Delegation of administrators bridges between their known reachable worlds.

),(),(),|(dmRdmRdmmR ′∩=′ (4)

By administrators’ disjunction, their common knowledge is considered.

),(),(),(dmRdmRddmR ′∪=′∪ (5)

The knowledge of an administrator about the union of two domains is the union of
his knowledge about each of them.

,(mR ┬ ∪
id

idmR
∀

=),() (6)

id is a typical primitive administrative domain.

),(),(),(dmRdmRddmR ′∩=′∩ (7)

196 Z. Iranmanesh, M. Amini, and R. Jalili

An administrator’s knowledge about two domains' intersection is the intersection
of his knowledge about each of them.

),(),(),(dmRdmRddmR ′−=′− (8)

The knowledge of an administrator about dd ′− is got by removing his knowledge
about d ′ from his knowledge about d.

),(),(),(ii dmRdmRmR −=⊥ (9)

id can be any primitive administrative domain.

The function K extends I by mapping each authorization statement to a subset of
possible worlds where it is true. It is defined as follows:

)()(ii pIpK = (10)

K and I give identical results if their input is an authorization proposition.

)()(sKWsK −=¬ (11)

)()()(sKsKssK ′∩=′∧ (12)

)()()(sKsKssK ′∪=′∨ (13)

)}()(|{)(sKwthensKwifwssK ′∈∈=′→ (14)

)}(),(),.(allfor |{) ~(sKwthendmRwwwwslegdmK ∈′∈′′= (15)

4.6 Soundness

The logic of authorization statements is proved to be sound. A logic is sound if:

i. Each of its axioms is valid according to the logic semantics.
ii. Its inference rules preserve the validity.

Then by induction on proof’s length, one can verify that every well-formed expres-
sion would also be valid semantically. We avoid to present soundness proof of the
logic due to high volume of proofs if we want to explain them.

5 Case Study

In order to point out the applicability of the proposed logic in real world applications,
we present a case study using the logic and related to grid computing environments.

Grid resources are geographically distributed across multiple administrative do-
mains and owned by different organizations. For solving large-scale computational
and data intensive problems, resources are shared among different domains; thus, cre-
ating virtual organizations (VOs). Each domain has its own security requirements

 A Logic for Inclusion of Administrative Domains and Administrators 197

including authorization ones legislated by domain’s administrators. By constructing
virtual organizations, authorization policies are legislated by administrators’ coopera-
tion for their administered domains’ various situations. The specified foundations of
grid environments are considered in all related projects such as Globus and NASA
IPG. We consider the specified concepts in a typical grid project and represent them
using our proposed logic. Consider the following scenario. In a virtual organization,
there are four organizations (domains) whose situation is shown in Fig. 1.

D1 D2
D4

D3

Fig. 1. Domains’ situation instance

m1, m2, and m3 are administrators legislating authorization policies for domains
d1, d2, and d3 respectively; and, for the domains’ various combinations collabora-
tively. Also, m4 administrates d4 and specifies its authorization policies. Suppose au-
thorization policies’ list being at hand is as follows:

) (4~4 [AP8])21(~)2&1(AP7][

)321(~))2&1(*3(AP6][

 4~4 [AP5])23(~3 [AP4]

) 1~1() 3~3([AP3]

 2~2 [AP2] 1~1 AP1][

636

4

25

33

21

pplegdmplegddmm

plegdddmmm

plegdmplegddm

plegdmplegdm

plegdmplegdm

→∩
∩∩

−
∨

Each ip is an authorization proposition implies a set of permissions. In grid envi-

ronments, multi-organization is transparent to a user; thus, he doesn’t state a specific
domain in his request. One of services in core middleware layer of grid architecture is
security service. In the case that virtual organization’s authorization policies are ex-
pressed using our proposed logic, when a user offers his request, the security service
is responsible for authorization. The service inspects all policies; if the request is
complied with a policy, it is granted; otherwise, it is rejected. If a resource concerned
in a request would not be in some domains common area (dd ′∩), every policy re-
garding the resource’s domain (d), idd ∪ , and idd − is considered in authorization;

otherwise, policies concerning d and its combinations except idd − are considered.

Indeed, among considered policies containing a type of domains’ combinations, those
are selected whose legislator is a combination of the domains’ administrators. For in-
stance, consider the following request. User u1 presents a request whose resources are

198 Z. Iranmanesh, M. Amini, and R. Jalili

related to 31 dd ∩ ; and, actions are permitted according to 3p based on offered cre-

dentials. The request is granted due to the following inference:

3

)24),(21(

33)31(~)3|1() 1~1() 3~3(plegddmmplegdmplegdm
AA

∩⇒∨

6 Conclusions

In multi-domain environments, authorization policies of an administrative domain are
legislated by one administrator or multiple administrators’ cooperation. In addition,
policies may be associated with a predefined domain or domains’ various combina-
tions such as their intersection. The proposed logic in this paper considers administra-
tors as the legislators of policies in policies’ representation. This approach provides
the possibility of utilizing administrators’ characteristics in authorization. Three styles
of administrators’ composition are presented. The other contribution of this paper is
the explicitly and exactly defined inclusion of associated administrative domains in
policies’ representation. Three styles of administrative domains’ combination are con-
sidered. Both administrators and domains can be primitive or composite. The exactly
defined semantics and proof theory of the logic provides the possibility of authoriza-
tion policies’ representation as well as reasoning about them regarding their legisla-
tors and related domains. Soundness of the logic is proved and its completeness proof
is postponed as a future work.

References

1. Li, N., Grosof, B.N., Feigenbaum, J.: A Logic-based Knowledge Representation for Au-
thorization with Delegation. In: Proceedings of the 12th IEEE workshop on Computer Se-
curity Foundations, p. 162. IEEE Computer Society, USA (1999)

2. Ortalo, R.: Using Deontic Logic for Security Policy Specification. Report, Toulouse (FR):
LAAS (1996)

3. Bonatti, P., Vimercati, S.D.C.D., Samarati, P.: An Algebra for Composing Access Control
Policies. ACM Transactions on Information and System Security, 1–35 (2002)

4. Zhang, X., Parisi-Presicce, F., Sandhu, R., Park, J.: Formal Model and Policy Specification
of Usage Control. ACM Transactions on Information and System Security, 351–387
(2005)

5. Abadi, M., Burrows, M., Lampson, B., Plotkin, G.: A Calculus for Access Control in Dis-
tributed Systems. ACM Transactions on Programming Languages and Systems, 706–734
(1993)

6. Jajodia, S., Samarati, P., Subrahmanian, V.S.: A logical language for expressing authoriza-
tions. In: IEEE Symposium on Security and Privacy, USA, pp. 31–42 (1997)

7. Kagal, L., Finin, T., Joshi, A.: Trust-based security in pervasive computing environments.
IEEE Computer, 154–157 (2001)

8. Pearlman, L., Welch, V., Foster, I., Kesselman, C., Tuecke, S.: A community authorization
service for group collaboration. In: The 3rd IEEE International Workshop on Policies for
Distributed Systems and Networks (Policy 2002), pp. 50–59. IEEE Computer Society
Press, Monterey (2002)

 A Logic for Inclusion of Administrative Domains and Administrators 199

9. Au, R., Looi, M., Ashley, P.: Cross-domain one-shot authorization using smart cards. In:
The 7th ACM Conference on Computer and Communications Security (CCS 2000), pp.
220–227. ACM Press, Athens (2000)

10. Au, R., Looi, M., Ashley, P., Tang Seet, L.: Secure authorization agent for cross-domain
access control in a mobile computing environment. In: Kim, K.-c. (ed.) ICISC 2001.
LNCS, vol. 2288, pp. 343–359. Springer, Heidelberg (2002)

11. Joshi, J.B.D., Bhatti, R., Bertino, E., Ghafoor, A.: Access-control language for multido-
main environments. IEEE Internet Computing, 40–50 (2004)

12. Demchenko, Y., de Laat, C., Gommans, L., van Buuren, R.: Domain based access control
model for distributed collaborative applications. In: The Second IEEE International Con-
ference on e-Science and Grid Computing, IEEE Computer Society Press, Amsterdam
(2006)

13. Howell, J., Kotz, D.: A formal semantics for SPKI. In: The 6th European Symposium on
Research in Computer Security, pp. 140–158 (2000)

14. Lampson, B., Abadi, M., Burrows, M., Wobber, E.: Authentication in distributed systems:
Theory and practice. ACM Transactions on Computer Systems, 265–310 (1992)

15. Abadi, M.: On SDSI’s linked local name spaces. Journal of Computer Security, 3–21
(1998)

16. Bowers, K.D., Bauer, L., Garg, D., Pfenning, F., Reiter, M.K.: Consumable Credentials in
Logic-Based Access-Control Systems. In: The 2007 Network and Distributed Systems Se-
curity Symposium, pp. 143–157 (2007)

17. Halpern, J.Y., van der Meyden, R.: A logic for SDSI’s linked local name spaces. In: The
12th IEEE Computer Security Foundations Workshop, pp. 111–122 (1999)

18. Halpern, J.Y., van der Meyden, R.: A logical reconstruction of SPKI. In: The 14th IEEE
Computer Security Foundations Workshop, pp. 59–70 (2001)

19. Li, N., Mitchell, J.C.: Understanding SPKI/SDSI using first-order logic. In: The 16th IEEE
Computer Security Foundations Workshop, pp. 89–103 (2003)

20. Woo, T.Y.C., Lam, S.S.: Authorization in Distributed Systems: A New Approach. Journal
of Computer Security, 107–136 (1993)

21. Li, N., Mitchell, J.C., Winsboroug, W.H.: Design of a role-based trust management
framework. In: The 2002 IEEE Symposium on Security and Privacy, pp. 114–130 (2002)

22. Cederquist, J.G., Corin, R.J., Dekker, M.A.C., Etalle, S., den Hartog, J.I., Lenzini, G.: The
audit logic: Policy compliance in distributed systems. Technical Report TR-CTIT- 06-33,
Centre for Telematics and Information Technology, University of Twente (2006)

23. Garg, D., Pfenning, F.: Non-interference in constructive authorization logic. In: The 19th
IEEE Computer Security Foundations Workshop, pp. 283–296 (2006)

24. Freudenthal, E., Pesin, T., Port, L., Keenan, E., Karamcheti, V.: dRBAC: Distributed Role-
based Access Control for Dynamic Coalition Environments. In: 22nd International Confer-
ence on Distributed Computing Systems, pp. 411–420 (2002)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

