
M.D. Harrison and M.-A. Sujan (Eds.): SAFECOMP 2008, LNCS 5219, pp. 401–414, 2008.
© Springer-Verlag Berlin Heidelberg 2008

A Context-Aware Mandatory Access Control Model
for Multilevel Security Environments

Jafar Haadi Jafarian, Morteza Amini, and Rasool Jalili

Department of Computer Engineering, Sharif University of Technology, Tehran, Iran
{jafarian@ce,m_amini@ce,jalili@}sharif.edu

Abstract. Mandatory access control models have traditionally been employed
as a robust security mechanism in multilevel security environments like military
domains. In traditional mandatory models, the security classes associated with
entities are context-insensitive. However, context-sensitivity of security classes
may be required in some environments. Moreover, as computing technology
becomes more pervasive, flexible access control mechanisms are needed.
Unlike traditional approaches for access control, such access decisions depend
on the combination of the required credentials of users and the context of the
system. Incorporating context-awareness into mandatory access control models
results in a model appropriate for handling such context-aware policies and con-
text-sensitive class association mostly needed in multilevel security environ-
ments. In this paper, we introduce a context-aware mandatory access control
model (CAMAC) capable of dynamic adaptation of access control policies to
the context, and handling context-sensitive class association, in addition to
preservation of confidentiality and integrity. One of the most significant charac-
teristics of the model is its high expressiveness which allows us to express vari-
ous mandatory access control models such as Bell-LaPadula, Biba, Dion, and
Chinese Wall with it.

Keywords: Mandatory Access Control, Context-Awareness, Confidentiality,
Integrity.

1 Introduction

As computing technology becomes more pervasive and mobile services are deployed,
applications will need flexible access control mechanisms. Unlike traditional approa-
ches for access control, access decisions for these applications will depend on the com-
bination of the required credentials of users and the context and state of the system.

Unlike discretionary and role-based access control, mandatory access control mod-
els directly address multilevel security environments where information is classified
based on its sensitivity; although they have been deployed in commercial sectors too.

Numerous context-aware access control models are presented in literature. Mean-
while, none of these models directly target new security requirements of multilevel
environments; while some of them are applicable to such environments with consid-
erable effort. Since mandatory access control has traditionally been used in these
environments, a context-aware mandatory access control model seems the most ap-
propriate choice in this regard.

402 J.H. Jafarian, M. Amini, and R. Jalili

In traditional mandatory access control models, except for some special cases, the
security classes associated with entities are usually insensitive to context. However, in
some systems, we may need context-sensitive association of security classes. For in-
stance, in most intelligence agencies, the security level of documents decreases by the
elapse of time. Moreover, as computing technology becomes more pervasive, applica-
tions in multilevel security domains need more flexible mandatory access control
policies. Incorporating context-awareness into mandatory access control models gives
rise to a flexible and expressive model suitable for management of such con-
text-aware policies and dynamic class associations.

In this paper, we introduce CAMAC as a context-aware mandatory access control
model capable of dynamic adaptation of policies with the context and handling con-
text-sensitive class association, in addition to preserving confidentiality and integrity.
In fact, CAMAC uses Bell-LaPadula and Biba properties to preserve confidentiality
and integrity of information.

The rest of the paper is organized as follows. Section 2 introduces a brief survey on
context-aware access control models. In Section 3, CAMAC model is formally de-
scribed. In section 4, the expressiveness of CAMAC model is scrutinized. In section
5, evaluation of the model is introduced followed by our conclusion.

2 Related Work

Various mandatory access control models and policies have been introduced in litera-
ture. Bell-LaPadula [1, 2], Biba [3], Dion [4] and Chinese Wall [5] are examples of
such models and policies. Bell-LaPadula and Biba constitute the infrastructure of the
CAMAC model, although the definition used here is mostly based on a minimalist
approach introduced by Sandhu in [6, 7].

Many researches are targeted to applying context-awareness to the RBAC model.
Kumar et al. [8] proposed a context-sensitive RBAC model that enables traditional
RBAC to enforce more complicated security policies dependent on the context of an
attempted operation. Al-kahtani et al. [9] proposed the RB-RBAC model, performing
role assignment dynamically based on users' attributes or other constraints on roles.
GRBAC, Generalized RBAC, [10] incorporates three types of roles; subject roles cor-
responds to the traditional RBAC roles, object roles which are used to categorize
objects, and environment roles to capture environmental or contextual information.
Context-aware access control is achieved by employment of these role types in speci-
fication of access control policies. Zhang et al. [11] proposed DRBAC, a dynamic
context-aware access control for pervasive applications. In DRBAC, there is a role
state machine for each user and a permission state machine for each role. Changes in
context trigger transitions in the state machines. Therefore, user's role and role's per-
mission are determined according to the context. Georgiadis et al. [12] present a
team-based access control model that is aware of contextual information associated
with activities in applications. Hu et al. [13] developed a context-aware access control
model for distributed healthcare applications. The model defines the notion of context
type and context constraint to provide context-aware access control.

Ray et al. [14] proposed a location-based mandatory access control model by extend-
ing Bell-LaPadula model with the notion of location. In particular, every location is
associated with a confidentiality level and Bell-LaPadula no read-up and no write-down

 A Context-Aware Mandatory Access Control Model 403

properties are extended by taking confidentiality levels of locations into consideration.
Based on Baldauf et al.'s classification of context-aware systems [15], location-based
mandatory access control model can be categorized as a location-aware system.

3 CAMAC: A Context-Aware Mandatory Access Control Model

Through an example application enabled by a pervasive computing infrastructure in a
smart building of a military environment, we discuss motivation for access control
models such as ours. The building has many rooms including administration offices,
campuses, etc. Sensors in the building can capture, process and store a variety of in-
formation about the building, the users, and their activities. Pervasive applications in
such an environment allow military forces to access resources/information from any
locations at anytime using mobile devices (PDAs) and wireless networks. While clas-
sification is still the basis for all the access control decisions, users’ context informa-
tion and application state should also be considered. For example, an officer can only
control the audio/video equipment in a conference room if she/he is scheduled to
present in that room at that time by the manager in charge. In such applications, privi-
leges assigned to the user will change as context changes. The example above embod-
ies many of the key ideas of the research presented in this paper. To maintain system
security for such a pervasive application, we have to dynamically adapt access per-
missions granted to users as context information changes. Context information here
includes environment of the user such as location and time that the user access the
resource and system information such as CPU usage and network bandwidth. The
traditional mandatory models do not directly address the requirements of such an ap-
plication and although many context-aware access controls have been proposed in
literature, they are not appropriate for environments where security is directly contin-
gent upon classification. This paper aims at presenting a flexible and expressive
model appropriate for multilevel security environments where classification of infor-
mation is an integral property of the environment.

CAMAC is a context-aware mandatory access control model which utilizes contex-
tual information to enhance expressiveness and flexibility of traditional mandatory
access control models. Incorporation of context-awareness into the model changes
traditional models in two separate ways. Firstly, contextual information can be used to
define more sophisticated access control policies. As an example, an access control
policy might require that for a subject to acquire a read access to an object, some
timing restrictions must be satisfied. CAMAC model allows definition of such sophis-
ticated access control policies. Secondly, the confidentiality and integrity level of en-
tities can change based on contextual information. In traditional mandatory models,
the levels initially assigned to entities are not allowed to change based on the circum-
stances. For instance, confidentiality level of objects might decrease as their lifetime
increases (and so become accessible to less trustworthy subjects). CAMAC also al-
lows such dynamic level association based on contextual information.

3.1 Formal Definition of CAMAC

CAMAC model can be formally described as a ten-tuple:

〈EntitySet, RepOf, ConfLvl, IntegLvl, λ, ω, ContextPredicateSet, ContextSet, Opera-
tionSet〉

404 J.H. Jafarian, M. Amini, and R. Jalili

in which:

• EntitySet is the set of all entities in the system and is composed of four sets: User,
Subject, Object and Environment. User, Subject and Object are the set of all us-
ers, subjects and objects in the system respectively. Environment set has only one
member called environment.

• RepOf: Subject → User assigns to each subject the user who has initially initiated
or activated it. In other words, for s ∈ Subject, RepOf(s) represents the user on
behalf of whom the subject s acts.

• ConfLvl is a finite ordered set of confidentiality levels1 such as 〈cn,cn-1, …, c1〉 in
which cn and c1 are the highest and lowest levels respectively. As in
Bell-LaPadula model, each user, subject and object is associated with a confiden-
tiality level. It must be noted that there exist a difference between Bell-LaPadula
and CAMAC in terms of confidentiality level. While Bell-LaPadula confidential-
ity levels are defined by two components (a classification and a set of categories),
CAMAC confidentiality levels only include the first component, i.e. classifica-
tion. In section 5 we show that the second component, set of categories, is con-
textual information and can be easily incorporated to the model as a context type.

• IntegLvl is a finite ordered set of integrity levels such as 〈in,in-1, …, i1〉 in which in
and i1 are the highest and lowest levels respectively. As in the Biba model, each
user, subject and object is associated with an integrity level. Moreover, the above
difference also applies here; i.e. CAMAC integrity levels are defined by only a
classification component.

• λ is a mapping function which associates each user, subject and object with a
confidentiality level: λ:User ∪ Subject ∪ Object → ConfLvl

• ω is a mapping function which associates each user, subject and object with an
integrity level: ω: User ∪ Subject ∪ Object → IntegLvl.

• ContextPredicateSet is the set of current Context predicates in the system. Each
context predicate is a statement about the value of a contextual attribute. More on
context predicates will come in section 3.2.

• ContextSet is an ordered set of context types. A context type is a property related
to every entity or a subset of existing entities in the system. A context type
ct ∈ ContextSet can be formally described a 5-tuple:
ct = 〈ValueSetct, OperatorDefinerSetct, RelatorSetct, EntityTypeSetct, LURSetct〉
More details on context types are given in section 3.3.

• OperationSet is the set of all operations in the system. An operation OPR ∈ Op-
erationSet can be formally defined as a pair: OPR = 〈AccessModeOPR, Constrain-
tOPR〉
More details on OperationSet are given in section 3.5.

3.2 Context Predicate

Each context predicate is a predicate which represents the value for a contextual at-
tribute. We define a context predicate cp ∈ ContextPredicateSet as a 4-tuple:

1 Since Biba uses the term 'integrity level', for Bell-LaPadula, we prefer to use the term 'confi-

dentiality level' instead of 'security level'.

 A Context-Aware Mandatory Access Control Model 405

cp = 〈en, ct, r, v〉

where en ∈ {User, Subject, Object, Environment, ValueSetct1,… , ValueSetctn},

ct ∈ ContextSet, r ∈ RelatorSetct ,v ∈ ValueSetct, and ct1,…,ctn ∈ ContextSet. For ex-
ample, 〈John, Location, Is, Classroom〉 is a context predicate and indicates the current
location of subject John.

Management and updating context predicates is the responsibility of Context Man-
agement Unit (CMU). The details on the implementation of CMU are beyond the
scope of this paper, and will be explained in another paper. Context Managing
Framework [16], the SOCAM project [17], CASS project [18], CoBrA architecture
[19], the Context Toolkit [20] can be used as an infrastructure in implementation of
CMU. In general, we assume that CMU updates ContextPredicateSet based on
changes of environment, users and system and therefore the consistency and accuracy
of ContextPredicateSet is permanently preserved.

If 〈E, X, R, V〉 is a context predicate, X[E][R] will indicate the value assigned to en-
tity E for context type X and relator R. In other words, X[E][R] = V. For instance if
〈John, Location, Is, Classroom〉 ∈ ContextPredicateSet, then Location[John][Is] =
Classroom. If such a context predicate does not exists in ContextPredicateSet, we will
assume that X[E][R] = ⊥ (read as null).

3.3 Context Type

Informally, a context is a property related to every entity or a subset of existing enti-
ties in the system. In fact, context type represents a contextual attribute of the system;
e.g. time or location of entities. Formally, a context type ct ∈ ContextSet is defined as
a 5-tuple:

ct = 〈ValueSetct, OperatorDefinerSetct, RelatorSetct, EntityTypeSetct, LURSetct〉

More detail on each component of the context type ct is given below.

3.3.1 Set of Admissible Values: ValueSetct
ValueSetct denotes the set of values that can be assigned to variables of context type
ct. Set representation can be used to determine members of ValueSetct. For instance,
the value set of context type time can be defined in the following way using set com-
prehension: ValueSettime = {n : | 0 ≤ n ≤ 24}.

3.3.2 Operator Definer Set: OperatorDefinerSetct
OperatorDefinerSetct is comprised of a finite number of functions each of which de-
fines logical, set and other user-defined operators on the value set of context type ct.
Each of these functions requires three arguments, but the types of these arguments are
different among the functions. Generally speaking, each Operator-Definerct deter-
mines that for two arbitrary values A and B related to ValueSetct and op ∈ a subset of
OperatorSet whether (A op B) is true or not. Since the signature of each Opera-
tor-Definer function is unique, the signature must be included along the definition.
The informal signature of Operator-Definer function is as follows:

Operator-Definerct: A set of values related to ValueSetct × a set of operators × A set
of values related to ValueSetct → {true, false}

406 J.H. Jafarian, M. Amini, and R. Jalili

For some context types, the specification of an Operator-Definer function might be
complex. There exist two alternatives for definition of Operator-Definer function.
First, it can be specified using propositional logic and second, it can be incorporated
into model using an external module. The detail is omitted due to lack of space.

3.3.3 Set of Admissible Relators: RelatorSetct
RelatorSetCT represents the set of admissible relators for context type CT. For in-
stance, for context type location, RelatorSetlocation can be defined as follows:

 RelatorSetlocation = {Is, Entering, Leaving}

3.3.4 Set of Admissible Entity Types: EntityTypeSetct
EntityTypeSetct denotes the set of entity types related to context type ct. In addition,
the value set of other context types can be included in EntityTypeSetct and it simply
means that a context type might express a property about a value of another context
type. In fact, EntityTypeSetct is a subset of the set {Subject, Object, Environment, Value-
Setct1

,… , ValueSetctn
}. As an example, context type location represents a property

which is only related to users, subjects and objects and therefore:

EntityTypeSetLocation = {User, Subject, Object}

As another example, consider a context type locationlvl which associates a confiden-
tiality level with each value of context type location. Then:

EntityTypeSetlocationlvl = {ValueSetlocation}

3.3.5 Level Update Rules: LURSetct
Each level update rule (LUR) describes how confidentiality or integrity levels of us-
ers, subjects and objects are updated based on their contextual values for context type
ct. Informally, a LUR ∈ LURSetct is a state machine in which confidentiality or integ-
rity levels represent states and 'conditions on contextual values' corresponds to transi-
tions. When a contextual value of context type ct related to an entity changes, the
conditions are evaluated and entity's (confidentiality or integrity) level is updated
based on the result of evaluation.

LURSetct denotes a set which itself is comprised of two sets of LURs: confidential
level update rule set or C-LURSetct and integral level update rule set or I-LURSetct.

C-LURSetct includes confidential level update rules of type ct (C-LURct). A
C-LURct specifies how confidentiality level of entities is updated based on changes in
context predicates of type ct.

The confidential level update rules of C-LURSetct are generally divided into four
categories. The first, second and third categories includes C-LURct,USR, C-LURct,SBJ,
and C-LURct,OBJ respectively. Each of these rules defines a level update rule for confi-
dentiality level of users/subjects/objects based on changes in their contextual value for
context type ct. The fourth category includes a group of C-LURs in the form of
C-LURct,en. Each of these LURs defines a level update rule for confidentiality level of
a special entity. For instance, C-LURct,en defines how confidentiality level of an entity
en changes based on its contextual value for context type ct. It is evident that if
C-LURSetct contains a specialized C-LUR for an entity, it overrides the general
C-LURs defined in other categories. Notice that inclusion of these categories in
C-LURSetct is optional and C-LURSetct might be even empty.

 A Context-Aware Mandatory Access Control Model 407

I-LURSetct includes integral level update rules of context type ct (I-LURct). An
I-LURct specifies how integrity level of entities is updated based on changes in con-
text predicates of type ct. The integral level update rules of I-LURSetct are generally
divided into four categories as defined for C-LURSetct. As above, inclusion of these
categories in I-LURSetct is optional and I-LURSetct might be even empty.

Confidential/Integral Level Update Rule: C-LURct, I-LURct. As mentioned earlier,
each LUR is simply a state machine. Also, LURs are divided into two categories:
C-LURs and I-LURs. For a C-LUR, ConfLvl denotes the set of states and for an
I-LUR, IntegLvl constitutes this set. The transitions, on the other hand, are simply
some conditions on contextual values of entities for context type ct.

For an LUR to act in a correct way, we need to store the previous confidential-
ity/integrity levels of an entity, before applying that LUR to it. The reason for such
need will be explained later. Specifically, we need two extra variables for every pair
of (entity, context type). For a pair like (en, ct), these variables are represented by
λct(en) and ωct(en) and are initialized in the following way:

∀ ct ∈ ContextSet∀ en ∈ (Subject ∪ Object ∪ User).λct(en) = λ(en) ∧ ωct(en) = ω(en)

Each transition is composed of a set of statements each of which is a conjunction of
two conditions: one on contextual value and one on previous confidentiality/integrity
levels. The transition takes place if all conditions of all statements are evaluated to true.
For instance, suppose in a C-LURct the following transitions is defined:

{(Is, ≥,10, (=,TS)),(Is,≤ 20,(=,TS))}

This transition takes place if the following statement is evaluated to true:

(ct[en][Is] ≥ 10 ∧ λct(en) = TS) ∧ (ct[en][Is] ≤ 20 ∧ λct(en) = TS)

Furthermore, the second condition is optional and can be equal to (⊥, ⊥); since some-
times there is no restriction on the previous confidentiality/integrity level.

Due to lack of space, the formal definition of a level update rule is omitted here. In-
stead, an example is used to clarify the concept. Assume ConfLvl = 〈TS,S,C,U〉. Fig. 1
shows C-LURAge,OBJ that describes how objects' confidentiality level is updated based
on their Age.

Fig. 1. Confidential level update rules of context type Age for objects: C-LURAge,OBJ

408 J.H. Jafarian, M. Amini, and R. Jalili

C-LURAge,OBJ simply specifies that the confidentiality level of an object decreases
every decade with the restriction that the confidentiality level of an object can never
decrease more than two levels. In particular, assume a document named Doc is 10 to
20 years old and λAge(Doc) = λ(Doc) = S. When C-LURAge,OBJ is applied to Doc for
the first time, the transition ({(Is,≥,10,(=,S)), (Is,≤,20, (=,S))}) is evaluated to true and
therefore, λAge(Doc) = S, λ(Doc) = C. In other words, the above transition denotes the
following conditional statement:

(Age[Doc][Is] ≥ 10 ∧ λAge(Doc) = S) ∧ (Age[Doc][Is] ≤ 20 ∧ λAge(Doc) = S)

As long as the age of Doc is between 10 and 20, application of C-LURAge,OBJ on Doc
causes no change in levels, since none of the transitions from state C to U are evalu-
ated to true. When its age is changed to above 20, the transition ({(≥,20,Is,(=,S))}) is
evaluated to true and the following assignments takes place:

λAge(Doc) = C, λ(Doc) = U

Algorithms for Applying LURs to Entities. In this section, algorithms for applying
LURs to entities are presented. To reduce the complexity, we propose two algorithms:
one for C-LURs and one for I-LURs.

Apply-CLUR (ct ∈ ContextSet, I ∈ C-LURSetct, e ∈ EntitySet\ {environment}){
λct(e) = λ(e)
For each state s in ConfLvl

For each transition from λ(e) with label {(co1,v1,r1,P1),...,(con,vn,rn,Pn)}
to s in I

if ((P1 = (⊥,⊥) AND Operator-Definerct(ct[e][r1], co1, v1)) OR
(P1 = (do1,l1) AND Operator-Definerct(ct[e][r1],co1,v1) AND

λct(e) do1 l1))
AND
…
AND
if ((Pn = (⊥,⊥) AND Operator-Definerct(ct[e][rn], con, vn)) OR
(Pn = (don,ln) AND Operator-Definerct(ct[e][rn], con, vn) AND

λct(e) don ln))
λ(e) = s

}

In order to preserve the confidentiality level of entity before being changed, λ(e) is
assigned to λct(e). Next, each transition from state λ(e) to all other states is evaluated.
If the result of evaluation for a transition to a state s is true, s is assigned to λ(e). If
none of the transitions is evaluated to true, λ(e) is not changed.

Furthermore, for every statement (coi,vi,ri,Pi) of a transition, if Pi = (⊥,⊥), then
only the first condition will be evaluated (Operator-Definerct(ct[e][ri], coi, vi)). But if
Pi ≠ (⊥,⊥) both conditions will be evaluated:

Operator-Definerct(ct[e][ri], coi, vi) AND λct(e) doi li

To apply C-LURct to an entity en, Apply-CLUR will be called in the following way:

Apply-CLUR(ct,C-LURct,en)

 A Context-Aware Mandatory Access Control Model 409

Since the algorithm for applying I-LURs to entities has minor changes compared to
Apply-CLUR (λ substituted with ω and ConfLvl substituted with IntegLvl), we omit
the details here.

The Reason for Storing Previous Levels of Entities. As mentioned above, we need two
extra variables for each pair of (e, ct) where e ∈ EntitySet \ {environment} and ct ∈
ContextSet: one for storing previous confidentiality level of the entity before being
changed by one of C-LURs of ct and one for storing its previous integrity level before
being changed by one of I-LURs of ct. They are represented by λct(en) and ωct(en)
respectively.

Since, LURs are applied to entities on special occasions, for a change in context, it
is impossible to find out whether an LUR has already been applied to an entity or not.
In order words, when a change occurs in context, there must be a way to recognize
whether this change has already been considered or not. These extra variables are
needed to for this matter. Further detail on this issue is omitted due to lack of space.

An Algorithm for Updating Levels of an Entity. UpdateEntityLevels updates the confi-
dentiality and integrity levels of a specific entity (passed to it as an argument) based
on the appropriate LURs of all context types in ContextSet.

UpdateEntityLevels(e ∈ EntitySet\{environment}, ET ∈ {USR,SBJ,OBJ}){
for each context type ct ∈ ContextSet in order

if C-LURct,e ∈ C-LURSetct
Apply-CLUR(ct, C-LURct,e, e)

else if C-LURct,ET ∈ C-LURSetct
Apply-CLUR(ct, C-LURct,ET, e)

if I-LURct,e ∈ I-LURSetct
Apply-ILUR(ct, I-LURct,e, e)

else if I-LURct,ET ∈ I-LURSetct
Apply-ILUR(ct, I-LURct,ET, e)

}

In this algorithm, ET represents the type of Entity. USR, SBJ, and OBJ represent
User, Subject and Object sets respectively. The LURs of context types are applied
based on the ordering defined by ContextSet; i.e. the first element of the ordered set is
applied first and so forth. For each context type ct, it first checks if there is a specific
C-LUR defined for entity e (If C-LURct,e ∈ C-LURSetct) and if so, the C-LUR is ap-
plied to the entity. Otherwise, it checks if there is a general C-LUR based on the type
of entity (else if C-LURct,ET ∈ C-LURSetct) to be applied to it. The same procedure is
adopted for I-LURs.

3.4 Operations

3.4.1 AccessRightSetopr
The set of access rights in CAMAC model is comprised of read and write. In
CAMAC, every operation, based on what it carries out, includes a subset of these
modes; e.g. if it only does an observation of information and no alteration, it only
includes read and so on. AccessRightSetopr is a subset of the set {read, write} which
denotes access right set of the operation.

410 J.H. Jafarian, M. Amini, and R. Jalili

3.4.2 Constraintopr
Each operation includes a constraint which denotes the prerequisite conditions that
must be satisfied before the operation is executed. For opr ∈ OperationSet, this con-
straint is represented by Constraintopr and is mainly composed of condition blocks.
There exist three types of condition blocks: Confidential condition blocks (C-CB),
Integral condition blocks (I-CB) and Contextual condition blocks (Cxt-CB). In defin-
ing each condition block, we make use of variable USR, SBJ and OBJ to represent
user, subject and object respectively. Use of these variables allows us to define ge-
neric constraints. Next, we define different types of condition blocks and later a
grammar for derivation of constraints is presented.

Confidential Condition Block (C-CB). A confidential condition block is defined as a
triple 〈λ1, op, λ2〉 in which λ1, λ2 ∈ ConfLvl and op ∈ DomOperatorSet. For instance
〈λ(SBJ), ≥, λ(OBJ)〉 is a C-CB denoting the simple security property of
Bell-LaPadula.

Integral Condition Block (I-CB). An integral condition block is defined as a triple 〈ω1,
op, ω2〉 in which ω1, ω2 ∈ IntegLvl and op ∈ DomOperatorSet. For instance 〈ω(SBJ),
≥, ω(OBJ)〉 is an I-CB denoting the integrity *-property of Biba.

Contextual Condition Block (Cxt-CB). A contextual condition block is defined as a
triple 〈Value1, op, Value2〉ct in which Value1,Value2 ∈ ValueSetct{.element}, ct ∈ Con-
textSet and op ∈ OperatorSet. The subscript ct determines that operator definer func-
tions of context type ct must be used to evaluate this Cxt-CB. Instances of Cxt-CB are
〈Time[environment][Is], <,9〉Time and 〈Age[SBJ][Is],>,Age[OBJ][Is]〉Age.

A Grammar for Derivation of Constraints. Constraints are built using the following
unambiguous grammar:

Constraint → Constraint ∨ C1
Constraint → C1
C1 → C1 ∧ C2
C1 → C2
C2 → (Constraint)
C2 → Cxt-CB|C-CB|I-CB

For example, for an operation named GenerateReport the following constraint may
be defined using the above grammar:

ConstraintGenerateReport = (〈λ(SBJ),≥,S〉) ∨ (〈λ(SBJ),=,C〉 ∧ 〈Time[environment][Is], ≥, 6〉Time ∧
〈Time[environment][Is], ≤, 12〉Time)

Definition of operations finalizes specification of elements of CAMAC model.
Next we consider how requests are authorized in CAMAC.

3.5 Authorization of Action

A subject's request to access an object is represented by an action. Formally, an action
A is a triple 〈s, o, opr〉 in which s ∈ Subject, o ∈ Object and opr ∈ Operation. Fur-
thermore the user of an action is the user on behalf of whom the subject is acting; i.e.
u = RepOf(s). The algorithm AuthorizeAction handles authorization of actions.

 A Context-Aware Mandatory Access Control Model 411

AuthorizeAction(A = 〈s, o, opr〉)
{

u = RepOf(s)
ConstraintA = Constraintopr

 UpdateEntityLevels(u,USR)
UpdateEntityLevels(s,SBJ)
UpdateEntityLevels(o,OBJ)
λ(s) = GLB(λ(s), λ(u))

ω(s) = GLB(ω(s), ω(u))
if Read ∈ AccessRightSetopr

ConstraintA = ConstraintA ∧ (〈λ(SBJ),≥,λ(OBJ)〉 ∧
〈ω(OBJ),≥,ω(SBJ)〉)
if Write ∈ AccessRightSetopr

ConstraintA = ConstraintA ∧ (〈λ(SBJ),≤,λ(OBJ)〉 ∧
〈ω(OBJ),≤,ω(SBJ)〉)

Assign u, s, o to USR, SBJ, OBJ in ConstraintA respectively
return Evaluate(Constraintopr)

}

Upon occurrence of an action, initially the confidentiality and integrity levels of
user, subject and object of an action must be updated. As mentioned in section 3.3,
UpdateEntityLevels algorithm updates the levels of an entity using all the applicable
LURs of all context types. Calling the algorithm for user, subject and object takes care
of these updates. Since the confidentiality and integrity levels of a subject must be
dominated by the corresponding levels of its user, after updating levels of user and
subject, the following assignments seems indispensable:

λ(s) = min(λ(s), λ(u)), ω(s) = min(ω(s), ω(u))

After level updates are done, the constraint of the action must be evaluated. Con-
straint of an action A is represented by ConstraintA and is initially equal to operation
constraint. Before evaluation takes place, the corresponding confidentiality and integ-
rity constraints must be added to the constraint of action based on access right set of
the operation. In other words, if read ∈ AccessRightSetopr, simple security property of
Bell-LaPadula and simple integrity property of Biba must be added to ConstraintA

read ∈ AccessRightSetopr.ConstraintA = ConstraintA ∧ (〈λ(SBJ),≥,λ(OBJ)〉 ∧
〈ω(OBJ),≥,ω(SBJ)〉)

Also, if write ∈ AccessRightSetopr, *-property of Bell-LaPadula and integrity
*-property of Biba must be added to ConstraintA.

write ∈ AccessRightSetopr.ConstraintA = ConstraintA ∧ (〈λ(OBJ),≥,λ(SBJ)〉 ∧
〈ω(SBJ),≥,ω(OBJ)〉)

At last, u, s and o are assigned to USR, SBJ and OBJ respectively and the con-
straint is evaluated using a parser, operator definer functions of context types, and
dominance relationship. If the result of evaluation is true, the action is granted and
otherwise denied.

412 J.H. Jafarian, M. Amini, and R. Jalili

4 CAMAC Expressiveness

Various mandatory concepts can be expressed using CAMAC. In this paper, due to lack
of space, we only express set of categories with it, while some famous models and poli-
cies such as Dion and Chinese Wall can conveniently be expressed by the model.

The confidentiality levels in the original Bell-LaPadula model are defined by two
components: a classification and a set of categories. On the other hand, as defined in
section 3.1 the confidentiality levels of CAMAC model consists of the first compo-
nent and the set of categories is simply ignored. The same statement holds for
integrity levels of Biba. We intend to show that the set of categories is inherently a
contextual concept and can be simply modeled as a context type. Here, we take confi-
dentiality levels into consideration. The set of categories for integrity levels can be
modeled in a similar way.

The set of categories is a subset of a non-hierarchical set of elements and the ele-
ments of this set depend on considered environment and refer to the application area
to which information pertains or where data is to be used. A classic example of this
set is {Nato, Nuclear, Crypto} which denotes the categories in which the classifica-
tion of the confidentiality level is defined. We define a context type C-Category as
follows:

C-Category = 〈ValueSetC-Category, OperatorDefinerSetC-Category, RelatorSetC-Category, EntityType-
SetC-Category, LURSetC-Category〉

• ValueSetC-Category = {P({Nato,Nuclear,Crypto})}
• OperatorDefinerSetC-Category

{
Operator-DefinerC-Category (A ∈ ValueSetC-Category, o ∈ OperatorSet,B ∈ Val-

ueSetC-Category){
(A = {Nato} ∧ B = {Nato,NuClear} ∧ o = '⊂') ∨ ….

}
}

• RelatorSetC-Category = {Is}
• EntityTypeSetC-Category = {User, Subject, Object}
• LURSetC-Category = {C-LURSetC-Category, I-LURSetC-Category}

o C-LURSetC-Category = φ, I-LURSetC-Category = φ

Now the constraints of all operations in OperationSet are changed in the following
way:

∀ opr ∈ OperationSet | read ∈ AccessRightSetopr .
Constraintopr = (Constraintopr) ∧ (〈C-Category[OBJ][Is],⊆,C-Category[SBJ][Is]〉C-Category)

∀ opr ∈ OperationSet | write ∈ AccessRightSetopr .
Constraintopr = (Constraintopr) ∧ (〈C-Category[SBJ][Is],⊆,C-Category[OBJ][Is]〉C-Category)

Assume opr ∈ OperationSet and read ∈ AccessRightSetopr. Based on definition, a
confidentiality level L1 = (c1,s1) is higher or equal to (dominates) level L2 = (c2,s2) if
and only if the following relationships are valid: c1 ≥ c2, s1 ⊇ s2

Notice that an action A = 〈s,o,opr〉 is authorized if the following condition blocks
are true: 〈λ(s), ≥, λ(o)〉, 〈C-Category[s][Is], ⊇, C-Category[o][Is]〉

 A Context-Aware Mandatory Access Control Model 413

These condition blocks denote aforementioned relationships and since both of them
must be satisfied for an action including opr to be authorized, it has the same effect as
incorporating set of categories in confidentiality levels.

5 Evaluation and Conclusion

CAMAC model could be evaluated and compared with other mandatory models on
plenty of basis: authorization time complexity, complexity of policy description, sup-
port for context-awareness, expressiveness and security objective. Here we only con-
sider time complexity of authorization due to lack of space.

One important metric would be the computational time needed to authorize an
action.

It can be shown that for the computational time to be polynomial, the maximum of
time complexities of all Operator-Definer functions, must be polynomial. This as-
sumption may not be necessarily true in all cases. Specifically, if the function is added
as an external module to the system, there is no guarantee in this regard.

In this paper, we explained the need for a context-aware mandatory access control
model and presented CAMAC as a model which satisfies such a need. CAMAC
model utilizes context-awareness to provide dynamicity and context-sensitivity of
levels to enable specification of sophisticated mandatory policies. In addition, various
mandatory controls can be incorporated into the CAMAC model. Bell-LaPadula and
Biba strict integrity policy are the inbuilt part of the model and other Biba policies,
Chinese Wall policy and Dion can be appended to the model using context types.
Also, an amalgamation of mandatory policies can be used simultaneously. For in-
stance, Bell-LaPadula, Biba strict integrity policy, and Chinese Wall Policy can all be
deployed at once.

References

1. Bell, D.E., LaPadula, L.J.: Secure Computer System: Unified Exposition and Multics In-
terpretation. Technical Report MTR-2997 Rev. 1. MITRE Corporation (1976)

2. Bell, D.E., LaPadula, L.J.: Secure Computer Systems: Mathematical Foundations. Techni-
cal Report MTR-2547. MITRE Corporation (1976)

3. Biba, K.: Integrity Considerations for Secure Computer Systems. In: Corporation, M.
(ed.): Technical Report MTR-3153, Bedford, MA (1977)

4. Dion, L.C.: A Complete Protection Model. In: IEEE Symposium on Security and Privacy,
Oakland, CA, pp. 49–55 (1981)

5. Brewer, D.F.C., Nash, M.J.: The Chinese Wall Security Policy. In: IEEE Symposium Re-
search in Security and Privacy, pp. 215–228. IEEE CS Press, Los Alamitos (1989)

6. Sandhu, R.S.: Lattice-Based Access Control Models. IEEE Computer 26(11), 9–19 (1993)
7. Sandhu, R.S., Samarati, P.: Access Controls: Principles and Practice. IEEE Communica-

tions 32 (9), 40–48 (1994)
8. Kumar, A., Karnik, N., Chafle, G.: Context Sensitivity in Role Based Access Control.

ACM SIGOPS Operating Systems Review, 53–66 (2002)
9. Al-Kahtani, M.A., Sandhu, R.: A Model for Attribute-Based User-Role Assignment. In:

18th Annual Computer Security Applications Conference, pp. 353–364. IEEE Computer
Society Press, Las Vegas (2002)

414 J.H. Jafarian, M. Amini, and R. Jalili

10. Covington, M., Moyer, M., Ahamad, M.: Generalized role-based access control for secur-
ing future applications. In: 23rd National Information Systems Security Conference, Bal-
timore, MD, USA (2000),
http://csrc.nist.gov/nissc/2000/proceedings/toc.pdf

11. Zhang, G., Parashar, M.: Context-aware dynamic access control for pervasive applications.
In: Communication Networks and Distributed Systems Modeling and Simulation confer-
ence, San Diego (2000)

12. Georgiadis, C.K., Mavridis, I., Pangalos, G., Thomas, R.K.: Flexible Team-based Access
Control Using Contexts. In: Sixth ACM Symposium on Access Control Models and Tech-
nologies, pp. 21–27. ACM Press, Chantilly (2001)

13. Hu, J., Weaver, A.C.: A Dynamic, Context-Aware Security Infrastructure for Distributed
Healthcare Applications. In: First Workshop on Pervasive Privacy Security, Privacy, and
Trust, Boston, MA, USA (2004), http://www.pspt.org/techprog.html

14. Ray, I., Kumar, M.: Towards a location-based mandatory access control model. Computers
& Security 25, 36–44 (2006)

15. Baldauf, M., Dustdar, S.: A Survey on Context-aware Systems. Technical report TUV-
1841-2004-24. Distributed Systems Group, Technical University of Vienna (2004)

16. Korpipää, P., Mäntyjärvi, J., Kela, J., Keränen, H., Malm, E.-J.: Managing Context Infor-
mation in Mobile Devices. IEEE Pervasive Computing 2 (3), 42–51 (2003)

17. Tao Gu, X.H.W., Pung, H.K., Zhang, D.Q.: A Middleware for Building Context-Aware
Mobile Services. In: IEEE Vehicular Technology Conference, Milan, Italy, vol. 5, pp.
2656–2660 (2004)

18. Fahy, P., Clarke, S.: CASS: Middleware for Mobile, Context-Aware Applications. In:
Workshop on Context Awareness at MobiSys., Boston, pp. 304–308 (2004)

19. Chen, H., Finn, T., Joshi, A.: Using OWL in a Pervasive Computing Broker. In: Workshop
on Ontologies in Open Agent Systems, AAMAS 2003, Melbourne, Australia, pp. 9–16
(2003)

20. Dey, A.K., Salber, D., Abowd, G.D.: A Conceptual Framework and a Toolkit for Support-
ing the Rapid Prototyping of Context-Aware Applications. Human-Computer Interaction
(HCI) Journal 16(2-4), 97–166 (2001)

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 600
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.01667
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 600
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.01667
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 2.00000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /SyntheticBoldness 1.000000
 /Description <<
 /DEU ()
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.000 842.000]
>> setpagedevice

