
Separation of Duty in Role-Based Access Control Model through Fuzzy Relations

Hassan Takabi Morteza Amini Rasool Jalili
Network Security Center

Computer Engineering Department
Sharif University of Technology

Tehran, Iran∗.
{takabi@ce., m amini@ce., jalili@}sharif.edu

Abstract

As a security principle, separation of duty (SoD) is
widely considered in computer security. In the role-based
access control(RBAC) model, separation of duty constraints
enforce conflict of interest policies. There are two main
types of separation of duty policies in RBAC, Static SoD
(SSoD) and Dynamic SoD (DSoD). In RBAC, Statically Mu-
tually Exclusive Role (SMER) constraints are used to en-
force Static Separation of Duty policies. Dynamic Sepa-
ration of duty policies, like SSoD policies, are intended to
limit the permissions that are available to a user. However,
DSoD policies differ from SSoD policies by the context in
which these limitations are imposed. A DSoD policy limits
the availability of the permissions over a users permission
space by placing constraints on the roles that can be ac-
tivated within or across a users sessions. Like SMER, in
RBAC Dynamically Mutually Exclusive Role (DMER) con-
straints are used to enforce DSoD policies. We investigated
using of a fuzzy approach to address the issue in order to
provide a more practical solution. In this paper, we pro-
pose a model to express the separation of duty policies in
RBAC using the fuzzy set theory. The concept of trustwor-
thiness, which is fuzzy in nature, is used to express this
model. In comparison with non-fuzzy methods, our method
is more pragmatic and more consistent with the real world.
The expressiveness of our method is higher than the non-
fuzzy ones. We show expression of some constraints in our
method which cannot be expressed by non-fuzzy methods.
Applicability of the method is shown through an example of
the real world.

∗This work is partially supported by Iran Telecommunication Research
Center(ITRC) under grant number 500/8478.

1. Introduction

Separation of duty (SoD) is an important security prin-
ciple used for prevention of fraud and errors. It is used to
enforce conflict of interest policies, requiring that two or
more different users be responsible for the completion of
a task or set of related tasks. The purpose of separation of
duty in RBAC is ”to ensure that failures of omission or com-
mission within an organization are caused only as a result
of collusion among individuals. To minimize the likelihood
of collusion, individuals of different skills or divergent in-
terests are assigned to separate tasks required in the perfor-
mance of a business function. The motivation is to ensure
that fraud and major errors cannot occure without deliber-
ate collusion of multiple users”[13]. The simplest form of
the SoD principle states that, if a sensitive task is comprised
of two steps, then different users should perform different
steps. Generally, when a sensitive task is comprised of n
steps, an SoD policy requires the cooperation of at least k
(for some k ≤ n) different users to complete the task. Con-
sider the following example of purchasing and paying for
goods. The steps to perform such a task are: (1) ordering
the goods and recording the details of the order; (2) record-
ing the arrival of the invoice and verifying that the details
on the invoice match the details of the order; (3) verify-
ing that the goods have been received, and the features of
the goods match the details on the invoice; and (4) autho-
rizing the payment to the supplier against the invoice [8].
We want to ensure that for an order that was never placed
yet, no payment released, and that the received goods match
those in the order and those in the invoice. If we consider a
policy that requires a different user to perform each step, it
may be too restrictive. It may be permissible, for instance,
that the user who places the order also records the arrival
of the invoice. One may require that (a) at least three users
cooperation is needed to perform all four steps, and (b) two
different users perform steps (1) and (4) (i.e., no single user
can order goods and authorize payment for them).

Third International Symposium on Information Assurance and Security

0-7695-2876-7/07 $25.00 © 2007 IEEE
DOI 10.1109/IAS.2007.68

125

An SoD policy may be enforced either statically or dy-
namically. In static enforcement, Static SoD (SSoD) poli-
cies are specified. SSoD enforces constraints on the as-
signment of users to roles. Each SSoD policy states that
no k - 1 users together have all permissions to complete a
sensitive task. It seems that if an SSoD policy is satisfied,
then the corresponding SoD policy is also satisfied. How-
ever, care must be taken to ensure this. Consider the ex-
ample described above. Suppose that initially a user Bob
has the permission to order goods. After placing an order,
Bob’s order permission is revoked and then Bob is assigned
to have the permission to authorize payments. Now Bob
can authorize a payment against the order he placed ear-
lier. The SoD policy is violated even though Bob never has
the order permission and payment permission at the same
time. Such situations can be avoided by dynamic separa-
tion of duty(DSoD) policies. DSoD allows a user to be
authorized for two or more roles that do not create a con-
flict of interest when acted independently, but produce pol-
icy concerns when activated simultaneously. Dynamic Sep-
aration of duty (DSoD) relations, like SSoD relations, are
intended to limit the permissions that are available to a user.
This model component defines DSoD properties that limit
the availability of the permissions over a users permission
space by placing constraints on the roles that can be acti-
vated within or across a users sessions.

Separation of Duty has been studied extensively in
RBAC [3], [4], [5]. Ferraiolo et al. [13] states that ”one of
RBACs great advantages is that SoD policies can be imple-
mented in a natural and efficient way”. RBAC uses mutual
exclusion constraints to implement SoD policies. The most
common kind of mutual exclusion constraint is Statically
Mutually Exclusive Roles (SMER). Generally, a SMER
constraint requires that no user is a member of t or more
roles in a set of m roles {r1, r2, ..., rm}. SMER constraints
are part of most RBAC models, including the RBAC96
models by Sandhu et al. [14] and the proposed NIST stan-
dard for RBAC [15]. Literature in RBAC also studies dy-
namic mutually exclusive role (DMER) constraints. With
such a constraint, a user is prevented from activating mutu-
ally exclusive roles simultaneously in a session. SMER and
DMER constraints are the only types of constraints included
in the proposed NIST standard for RBAC [15].

This paper proposes a new paradigm for separation of
duty policies in role-based access control. The paradigm
is based on using the fuzzy set theory and in particular the
concept of trust and trustworthiness which have the fuzzy
nature. In description of the idea, we assume the reader is
familiar with the basic RBAC concepts.

The rest of this paper is organized as follows. Section 2
discusses the related work. In section 3, we present a brief
formal definition of the extended RBAC model. Finally,
section 4 provides our method for modeling separation of

duty(SoD) policies based on fuzzy set theory, followed by
our conclusion.

2. Related Work

The concept of SoD has long been existed in the phys-
ical world, sometimes under the name the two-man rule in
the banking industry and the military. In the information se-
curity literature the notion of SoD first appeared in Saltzer
and Schroeder [1] under the name separation of privilege.
Clark and Wilson [2] called attention to separation of duty
as one of the major mechanisms to counter fraud and error.
Separation of duty ensures that the objects in the real world
are consistent with the information about these objects in
the computer system. Nash and Poland [9] emphasized the
difference between dynamic and static enforcement of SoD
policies. In one of the earliest paper on RBAC, Ferraiolo et
al. [15] used the terms Static and Dynamic SoD to refer to
static and dynamic enforcement of SoD. A DSoD constraint
prevents a user from simultaneously activating mutually ex-
clusive roles in a session. However, as we now discuss,
DSoD constraints do not seem to enforce SoD policies, be-
cause they do not prevent a user from activating mutually
exclusive roles across multiple sessions. In RBAC, each
session has only one user. Thus, a sensitive task cannot be
finished in one session; several sessions are required. Con-
sider the example discussed in Section 1. Suppose that the
permission to place an order and the permission to issue
payment are assigned to two different roles that are speci-
fied to be mutually exclusive in a DSoD constraint. Bob can
start a session, activate the role having the order permission,
create an order, end the session, start another session, acti-
vate the role having the payment permission, and authorize
a payment against the order. This violates the SoD policy.
Kuhn [5] discussed mutual exclusion of roles for separation
of duty and proposes a safety condition: that no one should
possess the privilege to execute all step of a task, thereby
being able to execute the task. Simon and Zurko [11] and
Gligor et al. [4] discuss various kinds of constraints and
their usage in RBAC. The latter discusses also the compo-
sition of constraints. Both papers refer to their proposed
constraints as SoD policies. Several constraints languages
have been proposed to support SoD in RBAC [3], [6], [7].
Sandhu [10] presented a history-based mechanism for en-
forcing SoD policies dynamically. Li et al. [8] discussed
about enforcing SoD policies and also studied problem of
verification of enforcement. Moon et al. [12] proposed a
symmetric RBAC model that supplements the constraints
on permission assignment. The proposed model reflects the
conflicts of interests between roles by presenting the con-
straints on permission assignment that take the separation
of duties and role hierarchies into consideration.

126

3. Fuzzy Role Based Access Control Model

In our previous work [16], we presented a method to
improve RBAC using fuzzy set theory. We defined two
parameters related to the concept of trust and trustworthi-
ness. The first parameter is user trustworthiness (UT) which
means how much a user in system is reliable and how
mush we trust him/her to assign a specific role or roles in
RBAC. The second parameter is role’s required trustworthi-
ness (RT) which determines the amount of trust is required
by a user to play the role in system. Then, we presented
an algorithm to compute these two parameters using fuzzy
relation equations. After computing a user trustworthiness
(UT) and a role’s required trustworthiness (RT), user-role
assignment (UA) and role activation are performed based
on the trust level of the user (UT) in comparison with the
required trust level of the role (RT). In user assignment(UA)
relation, user ui can be assigned to role rj , if and only if the
user trustworthiness (UT (ui)) satisfies the role’s required
trustworthiness (RT (rj)). Analogously, in role activation,
user ui can activate role rj , if and only if the user trust-
worthiness (UT (ui)) satisfies the role’s required trustwor-
thiness (RT (rj)).

The model definition is based on the RBAC formalism
presented in [13]. The model has the following compo-
nents:

• USERS: a set of users

• ROLES: a set of roles

• OBS: a set of objects

• OPS: a set of operations

• PRMS: a set of permissions

• TD: a set of TRUSTWORTHINESS DEGREEs

TD is a degree that represents the trustworthiness of a com-
ponent. Here we use the trustworthiness of the user (UT),
and the roles required trustworthiness (RT).

3.1. The Model Specification

Considering the following definitions and also the basic
fuzzy concepts, and the model components, a formal defin-
ition of our model will be presented.

• USERS, ROLES, OPS, and OBS (users, roles, opera-
tions and objects respectively).

• UA ⊆ USERS×ROLES, a many-to-manymapping
usere-to-role assignment relation.

• assigned users : (r : ROLES) → 2USERS , the
mapping of role r into a set of users. Formally:
assigned users(r) = {u ∈ USERS | (u, r) ∈ UA}

• PRMS = 2(OPS×OBS), the set of permissions.

• PA ⊆ PRMS×ROLES, a many-to-many mapping
permission-to-role assignment relation.

• assigned permissions(r : ROLES) → 2PRMS ,
the mapping of role r into a set of permissions. For-
mally:
assigned pemissions(r) = {p ∈ PRMS | (p, r) ∈
PA}

• UT (u : USERS) → TD, the mapping of user u
into the corresponding trustworthiness degree (many-
to-one mapping).

• RT (r : ROLES) → TD, the mapping of role r
into the corresponding trustworthiness degree (many-
to-one mapping).

• Op(p : PRMS) → {op ⊆ OPS}, the permission to
operation mapping, which gives the set of operations
associated with permission p.

• Ob(p : PRMS) → {ob ⊆ OBS}, the permission to
object mapping, which gives the set of objects associ-
ated with permission p

• SESSIONS =the set of sessions.

• session user(s : SESSIONS) → USERS, the
mapping of session s into the corresponding user.

• session roles(s : SESSIONS) → 2ROLES , the
mapping of session s into a set of roles. Formally:
session roles(si) ⊆ {r ∈ ROLES |
(session users(si), r) ∈ UA}

• avail session perms(s : SESSIONS) →
2PRMS , the permissions available to a user
in a session=

⋃

r∈session roles(r)

assigned permissions(r)

4. Separation of Duty Policies through Fuzzy
Relations

As our intent is modeling the real world, using a fuzzy
approach to model the separation of duty policies, can pro-
vide a more practical solution. We define three types of sep-
aration of duty policies using fuzzy set theory. These types
are Fuzzy Static Separation of Duty(FSSoD), Fuzzy Sta-
tically Mutually Exclusive Role(FSMER), and Fuzzy Dy-
namically Mutually Exclusive Role(FDMER) respectively.
These policies are defined as follows:

127

We assume that u, r, p, td are a user, role, permission,
and trustworthiness degree. us, rs, and ps are a set of
users, roles, and permissions respectively . Functions
UT (u), and RT (r) give us the trustworthiness degree of a
user u and a role r. The FuzzyUnion notion refers to the
union operation of two fuzzy sets that defined in section 3.

FSSoD policies
A Fuzzy Static Separation of Duty(FSSoD) policy is ex-

pressed as fssod({p1, p2, ..., pn}, td).
FSSoD ⊆ (2PRMS×TD) is collection of pairs (ps, td) in
Fuzzy Static Separation of Duty, with the property that only
a set of users that together have enough trustworthiness de-
gree can perform a task that requires all of these permissions
in {p1, p2, ..., pn}. We assume a role with all of these per-
missions (r

′
) and then compute RT for this assumed role

using compute RT (r
′
) and name it td.

Formally:
assigned users of permission(p) =

{u ∈ USERS|∃r : (u, r) ∈ UA, (p, r) ∈ PA}
assigned users of permissions(ps) =⋃

p∈ps

assigned users of permission(p)

∀(ps, td) ∈ FSSoD, ∀us ⊆ USERS : Compare(
FuzzyUnionu∈(us∩assigned users of permissions(ps))

(UT (u)), td) = TRUE

In the presence of a role hierarchy Fuzzy Static Separa-
tion of Duty is redefined based on authorized users rather
than assigned users as follows:
authorized roles p(p) = {r ∈ ROLES|r ≥ r

′
,

(p, r
′
) ∈ PA}

authorized users of permission(p) = {u ∈ USERS|
∃r ∈ authorized roles p(p) : (u, r) ∈ UA}

authorized users of permissions(ps) =⋃

p∈ps

authorized users of permission(p)

∀(ps, T) ∈ FSSoD, ∀us ⊆ USERS : Compare(
FuzzyUnionu∈(us∩authorized users of permissions(ps))

(UT (u)), td) = TRUE
In FSSoD policies, at the contrary of SSoD policies,

there is no need to determine the exact number of users. It
is sufficient to check, whether a set of users together have
enough trustworthiness degree to perform the task or not.
Therefor, enforcement of the least privilege principle [1]
with FSSoD is easier than with SSoD.

FSMER Constraints
A Fuzzy Statically Mutually Exclusive Role(FSMER)

constraint is expressed as fsmer({r1, r2, ..., rm}, td)
FSMER ⊆ (2ROLES × TD) is collection of pairs

(rs, td) in Fuzzy Statically Mutually Exclusive Role, where
td is a trustworthiness degree, with the property that a user

can acquire roles from {r1, r2, ..., rm} that their trustwor-
thiness degree together is not greater than td.

Formally:
assigned roles(u) = {r ∈ ROLES|(u, r) ∈ UA}
∀(rs, T) ∈ FSMER, ∀u ⊆ USERS : Compare(

FuzzyUnionr∈(rs∩assigned roles(u))(RT (r)), td)
= FALSE

In the presence of a role hierarchy Fuzzy Statically Mu-
tually Exclusive Role is redefined based on authorized roles
rather than assigned roles as follows:
authorized roles(u) = {r ∈ ROLES|r′ ≥ r,

(u, r
′
) ∈ UA}

∀(rs, T) ∈ FSMER, ∀u ⊆ USERS : Compare(
FuzzyUnionr∈(rs∩authorized roles(u))(RT (r)), td)

= FALSE

FDMER Constraints
A Fuzzy Dynamically Mutually Exclu-

sive Role(FDMER) constraint is expressed as
dmer({r1, r2, ..., rn}, td)

FDMER ⊆ (2ROLES × TD) is collection of pairs
(rs, td) in Fuzzy Dynamically Mutually Exclusive Role,
where td is a trustworthiness degree, with the property that
in a session a user can activate roles from {r1, r2, ..., rm}
that their trustworthiness degree together is not greater than
td.

Formally:
session user(s) : SESSIONS → USERS
session roles(s) = {r ∈ ROLES|

(session user(s), r) ∈ UA}
∀s ∈ SESSIONS,∀(rs, T) ∈ FDMER,
∀u ∈ USERS : Compare(

FuzzyUnionr∈(rs∩session roles(s))(RT (r)), td)
= FALSE

In the presence of a role hierarchy Fuzzy Dynamically
Mutually Exclusive Role is redefined based on session au-
thorized roles rather than session roles as follows:
session authorized roles(s) = {r ∈ ROLES|r′ ≥ r,

(session user(s), r
′
) ∈ UA}

∀s ∈ SESSIONS,∀(rs, T) ∈ FDMER,
∀u ∈ USERS : Compare(

FuzzyUnionr∈(rs∩session authorized roles(s))

(RT (r)), td) = FALSE
In FSMER/ FDMER policies, using td we can limit the

access permissions of a user such that a user has not per-
missions greater than a specified level, whereas in SMER/
DMER policies, we can’t express such constraints. Also
in SMER/ DMER policies, to enforce least of privilege
principle, One has to consider all possible combinations of
roles that can be assigned/ activated together. The number
of such combinations is likely much larger than the number

128

of roles, and therefore, considering all such combinations
due to verify constraints is very difficult and complicated.
That is obvious that, using FSMER/ FDMER to enforce
least privilege principle is much easier than using SMER/
DMER, because in this case, less policies are needed to
express constraints -will be shown in section 5 with an
example- and also it is more powerful to express constraints.

FUSMER/ FUDMER Constraints
Another group of policies can be expressed using our

method too. In FUSMER/ FUDMER we can use the user
trustworthiness degree (UT (u)) instead of td. In FSMER/
FDMER, a user can only acquire/ activate roles from a role
set that their trustworthiness degree together is not greater
than td,whereas in FUSMER/ FUDMER a user can only ac-
quire/ activate roles from a role set that their trustworthiness
degree together is not greater than UT (u). In fact, using
FSMER/ FDMER policies, we express constraints such that
each user regardless of its trustworthiness degree can only
acquire/ activate roles from a role set that their trustworthi-
ness degree together is not greater than td,whereas in FUS-
MER/ FUDMER the roles that a user can acquire/activate
depends on its trustworthiness degree. It is clear that by
using SMER/ DMER policies we can not express such con-
straints.

5. Application Example

In order to illustrate the applicability of the proposed
model, consider the buying and paying for goods problem
from section 1 as an example. The model components are
defined as follows:
USERS = {Alice, Bob, Cathy, Dina}
ROLES = {r1, r2, r3, r4}
PRMS = {p1, p2, p3, p4, p5, p6, p7}, such that p1 is
’ordering the goods’, p2 is ’recording the details of the
order’, p3 is ’recording the arrival of the invoice’, p4 is
’verifying that the details on the invoice match the details
of the order’, p5 is ’verifying that the goods have been
received’, p6 is ’verifying that the features of the goods
match the details on the invoice’, and p7 is ’authorizing the
payment to the supplier against the invoice’.
assigned permissions(r1) = {p1, p2}
assigned permissions(r2) = {p3, p4}
assigned permissions(r3) = {p5, p6}
assigned permissions(r4) = {p7}
We have these constraints that (a) at least three users
cooperation is needed to perform all four steps, and (b)
no single user can order goods and authorize payment for
them.
With non-fuzzy method which is explained in RBAC
standard [13], these constraints are expressed as:
ssod({p1, p2, p3, p4, p5, p6, p7}, 3)

smer({r1, r4}, 2)
We define Y , a finite set of values that can be
assigned to trustworthiness degree, as follows:
Y = {0, 0.2, 0.4, 0.6, 0.8, 1} We compute the user
trustworthiness(UT) for users and role’s required
trustworthiness(RT) for roles using proposed algo-
rithm in section 4 and we have:
UT (Alice) = [0.6, 0.6, 0.4, 0.3, 0.2, 0.1]
UT (Bob) = [0.5, 0.6, 0.7, 0.7, 0.7, 0.9]
UT (Cathy) = [0.5, 0.5, 0.6, 0.7, 0.8, 0.8]
UT (Dina) = [0.6, 0.5, 0.7, 0.6, 0.8, 0.9]
RT (r1) = [0.6, 0.6, 0.5, 0.5, 0.4, 0.4]
RT (r2) = [0.5, 0.6, 0.7, 0.7, 0.8, 0.8]
RT (r3) = [0.1, 0.2, 0.4, 0.6, 0.7, 0.9]
RT (r4) = [0.1, 0.1, 0.3, 0.5, 0.7, 0.9]

Now,we expressed mentioned constraints using our pro-
posed method as:
fssod({p1, p2, p3, p4, p5, p6, p7}, td)
We assume a role with all of these permissions {p1, ..., p7}
and then compute RT for this assumed role using
compute RT . The computed value for RT is td =
[0.7, 0.7, 0.7, 0.7, 0.8, 0.9]
Considering formal definition of FSSoD policies in section
6 and the value of UT and RT for users and roles and value
of the td, at least three users is needed that together have
enough trustworthiness degree to perform all of four steps
and in fact to have all of {p1, p2, p3, p4, p5, p6, p7} permis-
sions, and there are no two users that together have enough
trustworthiness degree to perform all of these tasks.

The second constraint expressed as:
fsmer({r1, r4}, td) that td is
td = [0.5, 0.5, 0.6, 0.6, 0.7, 0.9].
Considering formal definition of FSMER policies in section
6 and the value of RT for roles, as RT of {r1, r4} together
is greater than td, no single user can acquire these two roles.

Also we can express constraints as:
fusmer({r2, r4}, UT (u)) that UT (u) is a user’s trustwor-
thiness degree.
Considering formal definition of FUSMER policies in sec-
tion 6 and the value of UT and RT for users and roles, as
RT of {r2, r4} together is greater than UT of each of users,
no single user can acquire these two roles.

Assume that, we want to express a constraint that a user
that acquire r4, can not acquire r1 or r2, but there is no
constraint to acquire r1 and r2 together. We can express this
constraint using fsmer({r1, r2, r4}, td). As the RT (r4) is
relatively big, a user that acquire r4 can not acquire any
other role. The RT (r1) and RT (r2) are relatively small,
thus a user can acquire both of them. If we want to use
SMER policies due to express this constrain, we should use
smer({r1, r4}, 2), smer({r2, r4}, 2) policies.

As described above, we can express such constraint us-

129

ing one FSMER policy, whereas if we use SMER policies
to express this constraint, at least two policies are needed.

6. Conclusion

In this paper, a new paradigm for separation of duty poli-
cies in role-based access control model were introduced.
The proposed paradigm uses fuzzy set theory to model sep-
aration of duty policies in the RBAC model. We defined
the FSSoD, FSMER/ FDMER, and FUSMER/ FUDMER
policies based on the concept of trust and trustworthiness,
which are fuzzy in nature, are used. In comparison to non-
fuzzy methods in expressing separation of duty policies, our
method is more pragmatic, and more consistent with the real
world. It is shown that enforcement of least privilege princi-
ple with FSSoD is easier than with SSoD. In comparison to
SMER/ DMER as using FSMER/ FDMER needs less poli-
cies to express constraints. In addition, the method facili-
tates expression of constraints which can not be expressed
using non-fuzzy methods.

References

[1] J. H. Saltzer and M. D. Schroeder, The protection of
information in computer systems, In Proceedings of
the IEEE, 63(9), pp. 1278-1308, 1975.

[2] D. D. Clark and D. R. Wilson, A comparision of com-
mercial and military computer security policies, In
Proceedings of the IEEE Symposium on Security and
Privacy, pp. 184-194, 1987.

[3] J. Crampton, Specifying and enforcing constraints
in role-based access control, In Proceedings of the
Eighth ACM Symposium on Access Control Models
and Technologies (SACMAT 2003), pp. 43-50, Como,
Italy, 2003.

[4] V. D. Gligor, S. I. Gavrila, and D. F. Ferraiolo, On the
formal definition of separation-of-duty policies and
their composition, In Proceedings of IEEE Sympo-
sium on Research in Security and Privacy, pp. 172-
183, 1998.

[5] D. R. Kuhn, Mutual exclusion of roles as a means of
implementing separation of duty in role-based access
control systems, In Proceedings of the Second ACM
Workshop on Role-Based Access Control (RBAC97),
pp. 23-30, 1997.

[6] G. J. Ahn and R. Sandhu, Role-based authorization
constraints specification, ACM Transactions on Infor-
mation and System Security, 3(4):207226, 2000.

[7] G. J. Ahn and R. Sandhu, The RSL99 Language for
Role-Based Separation of Duty Constraints, In Pro-
ceedings of the 4th ACM Workshop on Role-Based
Access Control, Fairfax, Virginia, pp. 43-54, 1999.

[8] N. Li, Z. Bizri, and M. V. Tripunitara, On mutually-
exclusive roles and separation of duty, In Proceed-
ings of the 11th ACM conference on Computer and
communications security, pp. 42-51 ,Washington DC,
USA ,2004.

[9] M. J. Nash and K. R. Poland, Some conundrums con-
cerning separation of duty, In Proceedings of the IEEE
Symposium on Research in Security and Privacy, pp.
201-209, 1990.

[10] R. S. Sandhu, Transaction control expressions for
separation of duties, In Proceedings of the Fourth
Annual Computer Security Applications Conference
(ACSAC88), 1988.

[11] T. T. Simon and M. E. Zurko, Separation of duty in
role-based environments, In Proceedings of the 10th
Computer Security Foundations Workshop, pp. 183-
194. IEEE Computer Society Press, 1997.

[12] C. J. Moon, D. H. Park, S. J. Park, and D. K. Baik,
Symmetric RBAC model that takes the separation of
duty and role hierarchies into consideration, Comput-
ers and Security, Vol. 23, No. 2, pp. 126-136, 2004.

[13] ANSI. American National Standard for Information
Technology- Role Based Access Control, ANSI IN-
CITS 359-2004, 2004.

[14] R. Sandhu, E. Coyne, H. Feinstein, and C. Youman,
Role Based Access Control Models, IEEE Computer,
Vol. 29, No. 2, pp. 38-47, 1996.

[15] D. F. Ferraiolo, R. Sandhu, S. I. Gavrila, D.R. Kuhn,
and R. Chandramouli, Proposed NIST Standard for
role based access control, ACM Transactions on In-
formation and system securiy, Vol. 4, No. 3, pp. 224-
274, 2001.

[16] H. Takabi, M. Amini, and R. Jalili, Trust-Based
User-Role Assignment in Role-Based Access Con-
trol, In Proceedings of the ACS/IEEE International
Conference on Computer Systems and Applications
(AICCSA 2007), 2007.

130

