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On the Scalar Potential of a Point Charge Associated 
with  a Time-Harmonic  Dipole in  a  Layered Medium 

KRZYSZTOF A. MICHALSKI, MEMBER,  IEEE 

Abstrud-It is demonstrated that one can  choose the form of the 
magnetic  vector potential to render the scalar potential of a single  point 
charge  associated with a horizontal, time-harmonic  dipole  in a layered 
medium  identical to that associated with a vertical dipole, provided that 
the  source  and  observation points are w,ithin the  same  layer. This proves 
the  existence of the  so-called  mixed-potential  electric  field  integral 
equation for objects of arbitrary shape in layered  media. 

I. INTRODUCTION 

In solving radiation and scattering problems of electromagnetics, it 
is often useful to introduce the notion of a  scalar potential due to a 
single point charge associated with a time-harmonic Hertzian dipole 
[1]-[4]. It is well known that in a homogeneous space this potential 
does not depend on  the orientation of the  dipole [l], [2]. In a layered 
medium, however,  the  scalar potential depends on the chosen form of 
the magnetic vector potential, which is not unique [SI. Hence: the 
scalar potential of a point charge associated with a horizontal dipole 
is, in general,  different from that associated with a vertical dipole, 
when the medium is stratified [3]. The purpose of this communication 
is to demonstrate that one  can  choose  the  form of the magnetic vector 
potential in a  layered medium such that those scalar potentials are 
identical, provided that the source and observation points are within 
the same  layer.  This has important implications relative to the 
existence of the so-called mixed-potential electric field integral 
equation in layered medium [6]. Our development is limited, for the 
sake of simplicity, to the case of a medium consisting of two 
contiguous half-spaces. The  conclusions,  however, are also valid for 
a dielectric medium comprising any number of planar layers. 

11. STATEMENT OF THE  PROBLEM 

Consider  a time-harmonic Hertzian  dipole (the eJ*‘ time depen- 
dence is assumed and suppressed) residing above an interface 
between two dielectric half-spaces, which is taken to be the xy-plane 
of a  Cartesian  coordinate system (x, y, z )  with unit vectors (a, j., 2) .  
The medium of the upper (z  > 0) half-space has permittivity e l ,  
permeability p, ,  and wavenumber k, ,  and the corresponding parame- 
ters of the lower (z < 0) half-space are € 2 .  p 2 ,  and k2. The  dipole, 
whose orientation is arbitrary  and is defined by a unit vector i’ , is of 
infinitesimal length dl‘ and has a  current moment Id1 ‘ , where dl ’ = 
I’d/’. In accord with the equation of continuity, associated with this 
dipole are two point charges f Q where 1’ points from - Q to + Q 
and Z = j u Q .  The magnetic vector potential due  to the dipole is given 
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by 

A(r)=GA(r lr ’ )  Zdl’ (1) 

where r and r’ are the position vectors of the observation and source 
points, respectively, defined with respect to the global coordinate 
origin, and G,., is the dyadic  Green’s  function, which can be 
expressed as [6] 

G,.,=(~++~)G,+tjZG,,+%j.G,+ZLG,. (2) 

This form of the Green’s function results from the traditional 
approach [7], which postulates that a  horizontal,  say, x-directed 
dipole, generates the x- and z-components of the vector potential. 
However, one may as well take  the  y-component of the vector 
potential to accompany the primary x-component [5].  This strategy 
leads to a different form of the dyadic Green’s function: 

G ~-xxC:,+j.S.G,,+(rZj.+fijZ)G,,+2iGLL. - - *  (3) 

When a cylindrical coordinate system ( p ,  4, z )  is inscribed in the 
Cartesian system,  the elements of the dyadics (2) and (3) can be 
expressed in terms of Sommerfeld-type integrals [7]. These  expres- 
sions are listed for easy reference in the Appendix for the case where 
r and r’ are in the  upper half-space (i.e., z > 0 and z’ > 0). 

In the  upper half-space, the scalar potential @d of the dipole  is 
given by the Lorentz  gauge as [3] 

@&) =? V A(r).  

By analogy to electrostatics [8], we can associate with @d a  scalar 
potential @ of a  single, time-harmonic point charge Q ,  as 

j u  
k ,  

(4) 

a - G d ( r ) = ,  @ ( r ) = l ’  . V ’ @ ( r )  
a1 (5 )  

where the primed operator nabla acts on source  coordinates, which 
are implicit in @(r) .  Our objective is to find a, given the vector 
potential Green‘s function G A .  To this end, let us suppose that a 
scalar function K+ exists, such that 

j w  1 - V . GA(r l r ’ )= -   V‘K+(r l r ’ ) .  
k: J W  

(6) 

Using this and (1) in (4) allows us to express the latter as 

@&)=i’ - V‘K+(r lr ‘ )Qd/ ’ .  

Comparing this with ( S ) ,  we finally conclude that 

@(r)=K+(r lr ‘ )Qdl ‘ .  (8) 

To recapitulate, if  a function K+ exists such that (6) is  satisfied, 
then a scalar potential of a single point charge Q associated with a 
time-harmonic Hertzian dipole Id1 ’ can be defined and is given by 
(8). If. for simplicity, the dipole moment is taken to be unity (Qdl’ = 
l), then, obviously, @(r)  = K+(rlr’) ,  and K+ is the sought-after 
scalar potential. In Section 111, we demonstrate that in a layered 
medium K+ satisfying (6) does  not, in general, exist if the traditional 
form (2) of the vector potential Green’s function G A  is employed. In 
Section IV, we show that K+  does exist, if the alternative form (3) of 
G A  is used. 



- r .  

\ 
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LLI. TRADITIONAL FORMULATION 

When  the traditional form (2) of G A  is employed and use is made of 
the explicit expressions for its elements given in the (2 1)-(24), the x-, 
y - ,  and 3-components of the left-hand side of (6) can be expressed as 

and 

respectively, where (in the notation of the Appendix) 

and 

Hence, keeping the right-hand side of (6) in mind, we conclude that in 
this case the function & does not exist for an arbitrarily oriented 
dipole. However, we can interpret K t  and Kg as the  scalar potentials 
of point charges associated, respectively, with a horizontal and a 
vertical dipole. Obviously,  these potentials are not identical. 

When pI = t(2, the potentials Kg and Klgiven  in (12) and  (13), 
respectively, reduce to those previously used in the analyses of wire 
antennas above a dielectric half-space [3], [9]. 

N. ALTERNATNE FORMULATION 

When'the alternative form (3) of G A  is employed and use is made 
of (22)-(27), the x- and  y-components of the left-hand side of (6) can 
be expressed as 

and 

respectively, with the z-component still given by (1 1). Hence, in this 
case a function K* satisfying (6)  does exist and is given by (13), i.e., 
K*(rJr') --= K:(rIr'). 

V . CONCLUSION 
We have demonstrated that when the alternative form (3) of the 

vector potential Green's function is  employed, the scalar potentials of 
point charges associated with the horizontal and vertical dipoles in a 
layered medium are identical, provided that the  source and observa- 
tion points are within the  same layer. Consequently, it is possible in 
this case to define a scalar potential of a single point charge associated 
with an arbitrarily  oriented, time-harmonic dipole. This i s  tantamount 
to saying that the mixed potential electric field integral equation [6] 
does  exist, provided that the scatterer or antenna is restricted to a 
single dielectric laver. 

APPENDIX 

COMPONENTS OF THE VECTOR POTENTIAL GREEN'S FUNCTIONS 

In this Appendix, we give the explicit expressions for  the elements 
of the dyadic G A ,  in both the conventional form (2) and in  the 
alternative form (3),  for  the case where  the  source  and  the 
observation points are in the upper half-space (3 > 0, z' > 0). To 
make the formulas more  compact, we first introduce the notation: 

E = ( p - p ' ( ,  (=arctan [ys] 
- E 2 P l - E 1 8 2  h _ p 2 8 1 - p l P 2  , r -  

€201 + Elf32 P2P l+  P l B 2  
(19) 

/32=k2-X2, 1 1  Im (Pj)sO (20) 

where kf = w2piei, i = 1, 2. With  these  definitions, we can express 
the components of the dyadic (2) as listed below. 

or, equivalently, 

GG,(rlr')= -- - So - ' )  (23a) 
'I a ( 4n ay 

with the equivalent form 

Finally, 

Similarly, the elements of the dyadic (3) can be expressed as listed 
below. 

or, equivalently, 



or 

or 

Gxy(rlr‘) = -sin 2 r  
r e - r h  

The element G, in (3 )  is, of  course, identical to the  corresponding 
element in (2), and .is given by (24). 
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Field Representation in Gyrotropic Media by One Scalar 
Superpotential 

WERNER WEIGLHOFER 

Abstract-The electromagnetic field of an arbitrary current den& 
distribution parallel to the distinguished axis of a gyrotropic medium is 
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represented in terms of one scalar superpotential. The fourth-order 
partial differential equation  for the superpotential is  solved  for  some 
special forms of the impressed current demily distribution. 

INTRODUCTION 

In recent papers [ 11, [2],  the method of scalar  Hertz potentials for 
gyrotropic media-which was originally developed for source-free 
regions, [ 3 ] ,  [4]-was generalized to gyrotropic media including 
electric and magnetic current density distributions of  arbitrary form. 

Here we restrict our attention to longitudinal current density 
distributions, i.e., sources parallel to the distinguished axis of the 
gyrotropic medium (This  axis  is  chosen to  be the z-axis, with unit 
vector e:.) So the  electric and magnetic current density distribution is 
given by 

J(r)=J,(r)ez,  M(r)=Mz(r)ez. (1) 

(Vectors are bold,  tensors are bold with an  overbar.)  The tensors of 
permittivity and permeability of the gyrotropic medium have the form 

? = (  i:: O E  .”), .=( <p2 ;: ;), (2) 

wherein the matrix elements shall be constant numbers. 
The electromagnetic field {E, H} satisfying Maxwell’s equations 

iw.Z * E - V x H =  - J ,  

V x E + i w j i .   H =   - M ,  (3) 

can then be represented by two scalar  Hertz potentials u(r) and u(r) in 
the form 

E=Z-l . (VxZ) . ( V x u e z )  

- ( i ~ p ~ / c ~ ) ~ ~  * (vxuei)-( l / iw~)J,eZ,  

H = f i - l  . ( V x p )  . (Vxuez)  

+ ( i w c l / p l ) j i T .  (Vxuez)-(l/ioF)Mzez, (4) 

(the superscript T denotes the transposed tensor) if the scalar  Hertz 
potentials u and u are solutions of 

( c l / E ) 1 2 e ~  +wp17(au/aZ) = -.rz/(iwE), 

- w ~ l ~ ( ~ u / ~ z ) + ( p l / p ) ~ ~ u =  - k f z / ( i u p ) .  ( 5 )  

The abbreviations used above are 

E$= V: + (E/El ) (d2/az2)  + k:, Hrn = V:+ (p/pl)(a2/az2) + k i ,  

(6) 

v2=v . v=v;+(a2/az2), v=vr+ez(a /az) ,  (7) 

k:=k2(p f -p ; ) /pp1 ,  k i = k 2 ( E 2 -  1 c z Y t e 1 ,  

k2=W2Ep, 7 = ~ 2 / ~ 1 + p z / p I .  (X) 

The electromagnetic field representation (4) was derived  under  the 
assumption of purely longitudinal current density distributions, Le., 
the impressed sources are parallel to the distinguished axis of the 
gyrotropic medium. In the presence of current density distributions 
which are transversely oriented with respect to the distinguished axis 
the introduction of scalar  Hertz potentials becomes more compii- 
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