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Extrapolation Methods for Sommerfeld Integral Tails
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Abstract—A review is presented of the extrapolation methods in (1) is usually split into two parts<6, a) and(a, co)—and
for accelerating the convergence of Sommerfeld-type integrals the first path segment is deformed into the first quadrant of
(i.e., semi-infinite range integrals with Bessel function kernels), o complex plane to avoid the guided-wave poles and branch

which arise in problems involving antennas or scatterers em- . . . P
bedded in planar multilayered media. Attention is limited to points of the integrand, as illustrated in Fig. 1. The value of

partition-extrapolation procedures in which the Sommerfeld in- @ iS selected to ensure that on the remaining tail segment the
tegral is evaluated as a sum of a series of partial integrals over integrand is free of singularities. Since a significant fraction
finite subintervals and is accelerated by an extrapolation method of the overall computational effort is typically spent on the
applied over the real-axis tail segment4, oo) of the integration | integral, it is essential that this integration be done as

path, where a >0 is selected to ensure that the integrand is fficient] ible. Th d t | h
well behaved. An analytical form of the asymptotic truncation efnciently as possible. The proven and most popular approac

error (or the remainder), which characterizes the convergence IS theintegration then summatioprocedure [2]-[4] in which
properties of the sequence of partial sums and serves as a basighe integral is evaluated as a sum of a series of partial integrals
for some of the most efficient extrapolation methods, is derived. gver finite subintervals as follows:

Several extrapolation algorithms deemed to be the most suitable

o0 o>
for the Sommerfeld integrals are described and their performance
is compared. It is demonstrated that the performance of these S = / J(©dE = Z“Z (2)
methods is strongly affected by the horizontal displacement of B =0
the source and field pointsp and by the choice of the subinterval ith
break points. Furthermore, it is found that some well-known
extrapolation techniques may fail for a number of values ofp S
and ways to remedy this are suggested. Finally, the most effective Wi = f(&)d¢ ®3)
extrapolation methods for accelerating Sommerfeld integral tails Si-1
are recommended. whereé_; < &y < & < ---with £_; = e andlim,, . &, =
Index Terms—Electromagnetic radiation, electromagnetic scat- o< is @ sequence of suitably selected interpolation points. These
tering, nonhomogeneous media, numerical analysis. break pointanay be selected based on the asymptotic behavior

of the integrandf(¢). Namely, the spectral functio@ arising
in layered media problems has the asymptotic form

I. INTRODUCTION
REEN'’S functions and integral equations that arise in Gz, 75 &) ~ e [C+ O] (4)
. . ~ . _ LA m
layered media problems comprise Sommerfeld-type in
tegrals of the form [1] where( is a constant and whexg which is related to: and

o ) Z', andy are easily determined [1]. It is also well known that
I= / Gz, 2561 (Ep)€de v=0,1,2 (1) the Bessel function behaves for large arguments as [5, p. 364]
0

1) 2
WD) ~ [ o cosep 2=/ ©)

where G is a spectral domain Green’s function (or integral

equation kernel) of the layered mediund, is the Bessel Hence, the simplest choice of break points are the equidistant
function of orderw, p is the horizontal distance betweenyints [6], [7]

the field and source points, and and 2’ are the vertical

coordinates of those points. These integrals are difficult to §n=b+tng, n=0 (6)
evaluate because their integrands possess singularities Q/ﬁ"f‘éreq — x/p is the asymptotic half-period of the Bessel
the integration path and are, in general, oscillatory and slomﬂy

I . ) S nction andb denotes the first break point greater than
convergent. To facilitate the integration, the semi-infinite rangg. . ajue ofb may be adjusted, for example, to coincide
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F¢ £ plane whereA is the forward difference operator defined &ys,, =
Spn+1 — Sn. If Ay — XA asn — oo, then the sequence is
said to converge linearly ifA\| < 1 and logarithmically if

|A| = 1. If |A] > 1, the sequence is divergent. Furthermore, the

Inte ti th . . . .
rarenen Be sequence is asymptotically monotone\if- 0 and alternating

Break points if A < 0. Alternating sequences are generally the easiest to
/ \ accelerate, while logarithmic monotone convergence is the
RS , : : =R¢ most challenging. Fortunately, as will be shown later, the

PR convergence of the sequences that arise in the present case
is either linear or logarithmic alternating.
We now give a brief history of previous work relevant to the

Fig. 1. Integration path in the complex plane. Between zero and the npartition-extrapolation method for Sommerfeld-type integrals.
path is deformed from the real axis to avoid the integrand singulariti

The partition-extrapolation method is applied over the real-axis tail segmljlhis a_pproach vyas originated by Longman [2], who used it
(a, 00). in conjunction with the Euler transformation [12, p. 62]. The

earliest applications of this technique to the Sommerfeld half-

oscillations of the Bessel function. Here, we chogse = /¢, Space problem were by Frischknecht [13] and by Siegel and
but other values may also work well. King [14]. Ryu et al. [15] used the partition-extrapolation
The computation of the tail integral in (2) has thus beemethod in conjunction with the’ transform of Gray and

reduced to finding the limit of a sequence of the partial surdgchison [16], which was especially designed for infinite
n integrals. Higher order version of this transform was later
S, = Z u; (7) developed by Gragtal.[17]. Cornille [18] used the first-order
=0 @ transform, as well as the Euler method, but his comparisons

asn — oo. However, this sequence usually approacles aPpear nonconclusive. Chisholet al. [19] used Wynn'se

0 7

R A

Singularities

slowly, i.e., theremainders algorithm [20], which is an efficient recursive implementation
oo of the Shanks transformation [21] and is closely related to the
"Tm=8,—9=— F(€) de, n>0 (8) Pacdt summation method [22]. Levin [23] compared the Shanks

& transformation to hig transformation and found the latter to

do not decay rapidly with increasing One, therefore, seeks abe superior. Iterations of the AitkeA? process, which is just

transformation?” of the sequencé¢s,, } into another sequencethe first-order Shanks transformation, were used by Alaylioglu

{57} with remainders{r/,}, possessing the property that ast al. [24]. Squire [10] also used this method as well as the

n — 00 e algorithm and suggested the Levin transformation [23] as a

Iri| L 0 g promising alternative. Blakemos al.[3] have found Levin's

rn| (&), p >0 (®) v transformation to be more efficient than thealgorithm,

albeit only marginally so. Bubenik [25] employed theal-

or nonlinear, accelerates the convergena the sequence gorithm. Hillion and Nurdin [26] used the Euler method, the
' ¢ algorithm, and the iterated Aitken process and found the

{5} An;_/ sequence tran_sformanon may _be V|_ew_ed as Ater to be superior. The iterated Aitken process was also used
extrapolation method [9] since the underlying principle is tB Burke et al. [27], who applied the partition-extrapolation
obtain an improved estimate from the sequence of approxima%{e | '

. . . method along various paths in the complex plane. Lin and
values. The integration then summation procedure, followed . . -

: . o . ei [28] used the Shanks transformation. Sidi [29] developed
by extrapolation, is referred to as tipartition-extrapolation

method[10] a new extrapolation method, especi_ally for_ infinite osci_ll_atory
For Somr.nerfeld-type integrals, the remainders (8) wil bmtegrals, known as thg’ tran_sformatlo_n. This method ut|I|ze§
shown to possess the asymptotic': expansion the analytic form of the remainder estimates and, thus, requires
the knowledge of the asymptotic behavior of the integrand,
which, however, is usually available for Sommerfeld-type
integrals. Mosig and Gardiol [30], [31] employed the Euler
) ) . method and developed its much more efficient version, which
wherew, are referred to aemainder estimatedhese remain- pocame known as the weighted-averages method. The latter
der estimates play an important role in sequence acceleratigg, depends on the knowledge of the asymptotic proper-
since they provide structural information about the behavior gfg ¢ the integrand. Chave [32] used the ®aglimmation
the dominant term of the remainder for large{11]. As will - athod implemented via the continued fraction expansion
become clear later, the most effective extrapolation metho&@orithm [33]—a procedure equivalent to thealgorithm.
explicitly utilize the information contained in the remaindefq algorithm was also implemented by Piessastsal.
estimates. _ [34] in the QUADPACK library. Lyness [8] (see also [35])
The convergence of the sequence of partial sums (7) Maisited the Euler method, which he felt to be unjustly
be characterized based on the behavior of the ratio neglected and suggested using break points corresponding to
A\, = ASy  _ tnt1 (11) the arithmetic average of two consecutive zero crossings of
ASn1 Un the Bessel function. Hasegawa and Tori [36] applied WHe

It is then said that the transformati@h which may be linear

0o
TannZai 7717 n— o0 (10)
=0
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transformation in conjunction with a quadrature rule-basethd allows us to characterizes the convergence of the sequence
Chebyshev series expansion, which is particularly effectivd partial sums (7). In Section lll, we develop in detail the
when the nonoscillatory part of the integrand is smooth. Sidktrapolation algorithms that we consider to be the most
[37] demonstrated the application of hi& transformation promising for the problem in hand. In particular, we discuss
to divergent oscillatory integrals and developed its modifietie weighted averages and algorithms, which may be
version [38], [39] (later named theW transformation [40]), used to efficiently implement various sequence transformations
which does not require any information on the asymptotiesulting from different choices of the remainder estimates.
behavior of the integrand. Mosig [6] derived a refined versidn Section IV, we present numerical tests and comparison of
of the weighted-averages method [30], [31] and found ihethods. Finally, in Section V, we draw conclusions and offer
superior to the Shanks and transformations. Ehrenmarkrecommendations.

[41] developed an improved method for choosing the break

points in Sidi's W transformation. Espelid and Overholt [7] Il. ESTIMATING THE REMAINDERS

applied a modified Euler transformation and some variations of
the Overholt method [42], which require the knowledge of thiﬁ1
asymptotic behavior of the integrand. They found Overholt
P-order-two method to be at least as efficient as Levin's

The remainder estimates, appearing in (10) play an
portant role in the development of extrapolation algorithms,
&s will become clear in Section II1. In this section, we derive

an explicit analytical form ofv,,, based on the asymptotic
transform. Lucas and Stone [4] compared the Euler meth havior of G, which is usually known in Sommerfeld-
the ¢ algorithm, and thenW transformation, and concluded '

t bl . Furth btai b duct) th
that the latter, with the Lyness break points, was the b%[je problems. Furthermore, we obtain (as a byproduct) the

lerat iiable. Ki d Ak 43 ymptotic form of\,,, which will allow us to characterize the
accelerator avaliable. Kinayman an sun [43] comparg nvergence of the sequence of partial sums (7). Our approach

the Euler transformation, the iterated Aitken process, thg imilar to that of Espelid and Overholt [7 | 6
e algorithm, thed algorithm [44], the Chebyshev—ToepIitz:,jgu?r[grlgﬁl)r O that of Espelid an verholt [7] (see also [6]
I

algorithm [45], and the method of averages [31] and foun view of (4) and (5), let us assume that or> b, f(¢)
the latter to be superior to the other methods. Hasegawa MLy written as ' -
Sidi [40] used the quadrature rule of Hasegawa and Tori [36] In
conjunction with thenW transformation. Finally, we mention F(&) = g(&p() (12)
that the partition-extrapolation method is also treated in theh
books by Brezinski and Redivo Zaglia [9], Wimp [46], Davig"
and Rabinowitz [47], and Evans [48]. e X ¢

Based on this review of previous work, we conclude that 9(§) ~ I Z g (13)
the Shanks transformation (usually implemented via the =0
algorithm) has been the most popular extrapolation methadd p(¢) is periodic with period2q such that
for accelerating Sommerfeld-type integrals, but there are indi-
cations that the less frequently used iterated Aitkérprocess p(+q) = —p(&). (14)
and some of the more recently developed accelerators, sucly@gerve that the integrand of (2) is asymptotically of this form
the Levin transformations, the weighted-averages method, &gh ; = 7 /p anda = . — 1/2. Next, substituting (13) into
theW andmW transformations are more efficient and as eagg) gives
to implement. However, these most promising methods have -
not yet been subjected to the same suite of realistic test cases. o~ Z o /Oo p(§)e < d¢ (15)
Furthermore, with the single exception of Mosig’s work [6], all " prd ! L gat
tests to date were done for a single value of the parameted ) ) ) ) ) )
for = 0. This is inadequate, because in many applicatioN@'Ch upon changing the variable of integration and using (6)
the integral (2) must be evaluated for a wide range of values¥id (14) becomes
p and a finite fixed value of. In addition, as Lucas and Stone L e > p(t) et
[4] have shown, the performance of the extrapolation methods 7n ~ (—=1)"'e™%¢ " Cz‘/ t+ ng)oti dt.  (16)
can be strongly affected by the choice of break points, which =0 P 1
should, therefore, be carefully examined. Finally, since ttRnally, upon expanding the denominator in a Taylor series
asymptotic behavior of the integrand in (1) is typically knownaboutt = b and formally integrating term by term, one obtains
it should be possible to characterize the convergence proper{ies) with the remainder estimates
of the sequence of partial sums (7) and to predict which of the —nge
acceleration methods are most likely to be effective for the wy = (1)t e—a
problem in hand. &

It is our purpose here to address all those issues amad the leading coefficient
to recommend the most effective acceleration methods for 0o
the Sommerfeld integral tails (2). This paper is organized ag = co/ p(t)e =t dt. (18)
as follows. In Section Il, we derive an explicit analytical b
expression of the remainder estimates, which serves as The higher index coefficients;, which are similar in form but
a basis for some of the most efficient extrapolation techniqueogressively more complicated, will not explicitly be used

ereg(£¢) has the asymptotic expansion

17
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and are omitted for brevity. Observe that may vanish if a A. Euler Transformation
proper value ofb is chosen, resulting in faster convergence ag 4 simple introduction to the extrapolation methods for

[7]. Itis readily shown that for = 0, the optimalb results in - seqyence acceleration, we first consider the Euler transforma-
break points (6) corresponding to the extrema of the periodjg, 18], [12, p. 62]. One step of this method is the simple

function p(¢). averaging procedure
The above procedure may also be used to demonstrate that

un+1 has the same asymptotic form as (16), except that the S =5, + %ASn = %(sn + Spt1) (24)
integrals defining the coefficients; are now over the finite
range(b, b + ¢). It then follows from (11) that which clearly is a linear transformation. If we defisd” =

Sy, the formula (24) may be applied repeatedly, resulting in

A, ~—e— |1 3 > 4 O(n=2)| — —e™2¢ (19) the triangular scheme
+n n—oo
SEHD = 1s® L g™ 1 p k>0, (25)

whered = b/q. Hence, we conclude that the series of partial
integrals (2) is asymptotically alternating. Furthermore, the So, -+, Sk are known,Sék) is the best approximation of
convergence is linear faf > 0 and logarithmic for¢ = 0. S. We recognize (25) as a recursive implementation of the

We have tacitly assumed in the above that 0. However, method of averages [30], [31]. It will be shown later that this

the special case wherg = 0 with » = 0 and ¢ > 0 S  method is effective for logarithmic alternating convergence.
also of practical interest. Clearly, in this cag&) = 1 and

(14) no longer holds. The latter contributes thel)™ factors
in (16) and (17) and causes the minus sign in (19), whi
must now be removed. Hence, in this case, the convergencd© derive the AitkenA® process [47, p. 43], we postulate
is linear monotone. that
Clearly, the analytical expression for the remainder esti-
mates given in (17) provides much insight into the conver-

gence properties of the sequence of partial sums (7). As W|IrlId determine the coefficientby applying the operatas to

become evident later, these analytical remainder estimates eglg% sides of the equation. Upon substituting this value back
serve as a basis for some of the most powerful extrapolation '

methods currently known. In cases where the informatiéﬂt0 (26), we obtain
on the asymptotic behavior of the integrand is not available , (AS,,)?

or difficult to extract, numerically derived remainder esti- n =S = Azg ~ Ontt T A(1/AS,)
mates—based on the actual numerical values of one or a few

consecutive terms of the series (2)—have been suggestedvirere S;, defines the transformed sequence. This procedure,
the literature. For later reference, we list below the alternativeéhich clearly is a nonlinear transformation, may be repeated,
choices ofw,, which have been found to be particularithus leading to the iterated Aitken algorithm

effective [23], [39], [50]:

cl?i Iterated Aitken Transformation

S a2 S, + cAS, (26)

(27)

(k)72
(1) _ gy _ (A5 >
wn = ASp = tnss (20) Sn ST g mE20 (@9
v L= (21) where we have used the first form given in (27)S¥f - - -, Sox
Wn :gn’AASS"—l Zé” Un 22)  are known,S**) is the best approximation o, whereas if
w, = — 2ono1iBon  Unlintl (23) So, -+, Sax41 are known, one should uéi{%). Observe that
AQSnfl Uy, — Un+1

the Aitken process improves upon the Euler transformation

- . . - llowing the coefficientc to be adaptively computed at
Heuristic arguments supported by numerical evidence mdmﬁ% all¢ : : .
g PP y ach iteration, rather than being set to a fixed value of 1/2.

that (20) and (21) are most suitable for alternating convg‘?‘#T
e

gence, while (22) and (23) are best choices for logarithm] umerical tests indicate that the iterated Aitken method is
monot’one and linear convergence ective for alternating and linear monotone convergence [51].

C. Weighted-Averages Method

The weighted-averages method is a more sophisticated
Series acceleration methods are based on the idea t@ksion of the Euler transformation, which useighted

the information contained in the sequence of partial sumgeans of consecutive partial sums, with weights selected based

So, - -+, S» should be extracted and utilized in a way thagn the remainder estimates,. To derive this algorithm, we

is more efficient than the conventional process of adding denote the weight associated wifly by W, and generalize
one term after the other [11]. Below, we discuss the mogt4) as [52]

important series extrapolation techniques currently known,
with emphasis on those methods that appear to be most suitable S — Wi Sn + Wt 15041
for the acceleration of the Sommerfeld integral tails. ’ Wy + Wit

[ll. A CCELERATING CONVERGENCE BY EXTRAPOLATION

(29)
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which, upon using (8), may be written as can be shown to be equivalent to tReorder-two transforma-
) . tion of Espelid and Overholt [7], if the latter is extended to
Wrﬂn + Wn+l7 n+1 .
W . (30) accommodate thé dependence of the integrand.
nl Note that (24) is a special case of (29) wher 1. Hence,
™ from (31) and (32) it follows that the Euler transformation
d is only effective if wy, /w41 = —1 + O(£,?). Using the
analytical remainder estimates (17), we find that this condition
is only satisfied if{ = 0 and p > 0 (i.e., for logarithmic
n= Wit _ ™ ) (31) alternating convergence), in which cage= 1. Therefore,
W Tn+1 as expected, the weighted-averages method is superior to the

The problem, of course, is that the remaindersre unknown. Euler transformation. _
However, if 7, possess the asymptotic expansion (10), we The weighted-averages method presented above was first

S, =5+

It is now clear that the remainderg, of the transforme
sequence will be annihilated if the weights are in the ratio

readily show that developed by Mosig [6], using an approach that can be traced
. W back to Hartet al. [53, p. 39]. However, Mosig used a
= 1402, n— 00 (32) different asymptotic expansion of the remainders than (10)
nL Wt and, consequently, the coefficients” he obtained differ
which suggests that we choose from, but are forn > 1 equivalent to, those given by (38)
W 33 (with the plus sign since he limited attention to the alternating
= Wpa1 (33) case). In view of the fact that the derivation was based on the

asymptotic behavior of the integrand, Mosig remarked that

usingp = 2 could be too optimistic and recommended using
14+n=0(7) (34) p = 1 instead. This conservative choice was also employed
- ) o ) in the earlier version of the weighted-averages algorithm [30],
the condition (9) is satisfied witp = 2 — 0. Furthermore, [31] [54], which does not take into account the dependence
with this choice, the remainders, have the same form asgf the integrand or.
(10) except that the remainder estimates are now scaleq biFinaIIy, we note that the generalized weighted-averages
¢.7. Consequently, the transformation (29) may be appligdyorithm (35)—(37) can also be used in conjunction with the

Then, if

repeatedly, leading to the recursive scheme numerical remainder estimates (20) and (21). In particular, we
5® 4 77(k)S(k) find that if (20) is used in (36), the first iteration of (35) yields
S+ — "—"(k)"“ n, k>0 (35) the Aitken A2 process. This combination of the weighted-
1+nn averages algorithm and the remainder estimates (20) gives rise
with to a new, nonlinear transformation, which will be referred to
Pk as theM transformation.
n*) = — YWn <§"_+1> (36)
Wnt1 \ &n D. E Transformation
~— <1 + pk q—") (37) A common feature of the extrapolation algorithms discussed
Wntl & thus far is that each was obtained by an iterative application
where the second form is valid for large Given the partial of some very simple sequence transformation. However, many
sumsSy, - - -, Sk, this algorithm, which will be referred to asof the existing sequence acceleration methods are based on
the generalized weighted-averages method, prodﬂé@sas a different approach, in which one constructs an algorithm
the best approximation aof. that is exact for a certaimodel sequencélhe most general

Using the analytical remainder estimates (17) in (34), wextrapolation method was introduced by Schneider [58)iel
find thato = 0 (i.e.,, p = 2) for both p > 0 (alternating [56], and Brezinski [57], who independently postulated the
convergence) angg = 0 (linear monotone convergence).model sequence

Furthermore, replacing,, by (17) in (36) and (37), we obtain el

a+pk S, =5+ a;h;(n), n>0k>1 (40)
(k) = ¢ <£"_+1> (38) ;
~ et (14 o+ pk p=2 (39) Wh_e_re Pi(n) are kn(_)wn but otherwise arbitrary fun_ctions.
B+n )’ Writing (40) for the indexes:, ---, n + k leads to a linear

uation system, which may be solved farHowever, unless

. . , e
where the plus and minus signs apply to the alternating aﬁﬁe sequenceS, ) exactly satisfies (40), the value of so
linear monotone cases, respectively. Note that the equidist Blained will depend on the indexesand k. Hence, if we

break poi_nFs (6) (2)re l_Jsed in (39). The recurs_ion (3_5) Wifenote this solution by (S,) and use Cramer's rule, we
the coefficientsn,” given by (38) and (39) is a linear ypiqin
transformation known as the weighted-averages method.

When the asymptotic coefficients (39) are employed for the Ex(Sy) = M (41)
alternating convergence case, the weighted-averages method Dr[1; i(n)]
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where whereas the elements with odd subscripts are auxiliary
Sn Stk quantities [20]. Thus, ifSp, ---, So, are known, 6;(;3 is
Yo(n) - o(n+k) the best approximation of, while if Sp, ---, Sopy1 are

Dy [Sns ti(n)] = (42) known, one should usé). Numerical tests indicate that the

: ' ) e algorithm is effective for alternating and linear monotone
Ye—1(n) oo heei(nt k) convergence [51].
and whereDy[1; 1;(n)] is the same determinant with the When the Shanks transformation or thealgorithm are
elements of the first row replaced by one. The ratio @fpplied to a power series with coefficients then it can be
determinants (41) may be computed by the recursive procedah®wn thateg;f = ex(So) yield the diagonal Pa approxi-
known as the Brezinski-&vie protocol [46, p. 186] or th& mants [21], [22], [61]. Furthermore, the successive convergents
algorithm [57], [58] or by its more efficient implementationof the correspondingcontinued fractions lie on a staircase
due to Ford and Sidi [59]. Th& transformation (41) contains line of the ¢ array [62]. Consequently, series acceleration
some of the most effective sequence transformations curreriing continued fractions and thkealgorithm are equivalent,
known as special cases corresponding to different choicesboft it transpires that the implementation of the latter is
the functionsy;(n) [9, p. 57]. In those special cases, howevemore economical.
the particular structure of the determinants can usually be
exploited to devise more efficient procedures than the generalGeneralized Levin Transformation
E algorithm. The transformation (41) is linear if the functions
1;(n) do not depend o8, and it is nonlinear ify; (n) involve
S,,. Below we discuss two choices ¢f(n), which lead to the
Shanks and generalized Levin transformations.

The generalized Levin transformation [23] arises by choos-

ing ¥;(n) = w,&, in the model sequence (40). Hence, in

this transformation the limitS is approximated by theith

partial sum plus thesth remainder estimate multiplied by

a correction function (a polynomial of ordér— 1 in &%),

which approaches a constantas— oc. From (41), we find
The Shanks transformation [21], which is nonlinear, ariselsat the determinantal representation of the generalized Levin

from the choicey;(n) = A*LS, = AS,y; in the model transformation is

sequence (40). Hence, in this transformation, the lifiis L

approximated by theith partial sum plus a weighted sum of La(S,) = Di(Sn/wns &) (48)

the nextk terms of the series. From (41), we find that the Di(1/wn; &)

determinantal representation of the Shanks transformation js i i ,
When the determinants in (48) are expanded by the first row,

en(Sn) = Die(Sn; ASn+i). (43) the minors that arise are of the Vandermonde type, for which
Dyp(1; AS,y) explicit expansions are available [63, p. 9]. As a result, one
adily obtains an explicit representation bf.(S,) [46, p.
9]. For the equidistant break points (6), this expression
%Juces to a simpler form given by Weniger [11], which,
or § = 1, further specializes to the formula originally

determinantal identities (see also [46, p. 244]). Rather th ﬁrived by Levin [23]. A more efficient, recursive form of

: ‘e v ; . Is transformation was developed by Fesdeal. [50] and
repeating Wynn'’s rigorous arguments, here we give a S|mp¥ , ) )
heuristic derivation of this algorithm [60]. was later extended for arbitrary > 0 by Weniger [11]. In

First, we note that the Shanks transformation may 6 e general case, however, the trg nsformaftiqn (48) is most
considered a higher order generalization of the Aitk&h efficiently computed by théy algorithm of Sidi [29], [37],

. .. [49], which may be derived as follows.
fol: = 1 (4 27). H hl ‘
tpr:izc’ianssmisrllrécew;%efine (43) reduces to (27). Hence, wit With +;(n) = w,y&,,* in the model sequence (40), we rewrite

the latter as

E. Shanks Transformation

The matrices that arise in (43) are of the Hankel type for whid
efficient algorithms exist [46, p. 198], [9, p. 33]. However, th
most convenient way to compute the Shanks transformatio
the e algorithm, which Wynn [20] developed from (43) usin

=0, V=8, (44) -
and (Sn = S)fwn =Y a&’,  nz0, k=1 (49)
=0
M =1/A8, = Y 1 1/A8 (45)

and observe that the right-hand member in the above is a
which allows us to write the second form given in (27) as polynomial of degreé —1 in the variable;* = x,,. Hence, if
we considels,, andw,, as functions of the continuous variable
x evaluated atr = z,,, and apply thadivided differencd63]
of orderk to both sides of (49), we obtain

=Y /A, (46)
Generalizing the above, we obtain
65:1_)1 = 6?_—&1) + 1/A6§€n), n, k>0 47 6k[(5n = 9)/wp] =0 (50)

which, together with (44), is a recursive version of the Shankgecauses* annihilates polynomials of degree smaller than
transformation. Namely, it can be shown tlaéi) = ex(S,), Here, the divided difference operaidf is defined recursively
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as [11, p. 245], [9, p. 116] Below, we give a brief review of some of the most important
s s methods in this category.
() = (un1) = (“")7 n, k>0 (51) The J transformation of Homeier [66], [67] is an iter-
Tntk+l — In ative method, which makes explicit use of the remainder

estimates and also depends on a family of auxiliary sequences.
Many of the existing extrapolation methods—including the
weighted-averages method and the generalized Levin transfor-
&%(Sp/wn) mation—can be obtained as variants of this transformation by
Li(Sn) = 88 (1 wy,) properly choosing the auxiliary sequences. In this sense7the
o ) transformation is very general and it provides a powerful the-
which is an equivalent form of (48). If now we denote theetical framework for the development of new convergence
numerator and the denominator of (52) M,(L") and N,(L" , accelerators.

respectively, it follows from (51) that both obey the same The Chebyshev-Toeplitz and Legendre—Toeplitz algorithms

with §°(u,) = u,. Sinceé* is a linear operator, we readily
find from (50) thatS may be estimated as

(52)

three-term recurrence formula of Wimp [45] are linear rhombus rules with weights related
R® _ gk to the coefficients of the respective orthogonal polynomials.

R = L "R o k>0 (53) Numerical experiments indicate that the former is effective

Snthtr — &n for alternating and the latter for logarithmic monotone con-

. . 0 0 vergence [64].

with the starting valuesi/,” = S"/w"(,?)nd ](\,:’;‘) =1/wn. " The @ transformation of Grayet al. [17], which was

If So, - -+, Si are known,Ly(So) = My /Ny is the best ggpecially developed for infinite integrals, can be obtained as

approximation ofS. _ _ _ a special case of th& transformation (41) whem;(n) =
Different choices ofw,, in the generalized Levin transfor-f(SnJri)_ Clearly, in this transformation, the limi is approx-

mation (52) result in extrapolation methods with different,ated by thenth partial sum plus a weighted sum of the

acceleration properties. The numerical remainder es'[imaFPr%grand values at the nektbreak points. Therefore, th@

(21)-(23) yield, respectively, thg «, andv transformations  (ansformation is closely related to the Shanks transformation

of Levin [23], while (20) gives rise to the modifiedtrans- 5nq may be expected to perform similarly as the latter. A

formation of Smith and Ford [64], which will be referred tOrecyrsive computational scheme for tietransformation was
as thet’ transformation. All four transformations, which argjerived by Pye and Atchison [68].
nonlinear, may efficiently be computed by thé algorithm — yne , algorithm of Wynn [69] (whose rules are quite similar
using the appropriate remainder estimatgs _ to those of the: algorithm) can also be obtained from (41)

It is readily shown that the first-ordef transformation by properly choosing the auxiliary functions;(n) [9, p.
is identical with the AitkenA? process (27). This is not 101] This algorithm, which is very powerful for logarithmic
surprising if one notes that the latter is based on (26), whighynotone sequences, but fails to accelerate alternating conver-

is a simple one-term model sequence with= AS,,. Hence, gence, is based on Thiele’s continued-fraction interpolation
the iterated Aitken method may also be viewed as a techm% ch. 3].

utilizing numerical remainder estimates.
The Levinw transformation is considered to be among th

most versatile and powerful convergence accelerators curren éﬁarithmic convergence. The second-orﬁaigorithm&é") is

known [64]'_ It appears that this transformation was alreage ntica| with the Lubkini” transform [71] (not to be confused
kn_oyvn to Bickley and Miller [65], who also appear to haV‘?Nith Sidi's W transformation discussed above), which may
originated the modern approach of constructing SEqUeNG€s pe considered as a generalization of the Aitkkh

tra\;lvggs rtmhatlonsl_v!? annllhltl_au?g dlffgrznce otperattors [1171]' thprocess. An iterative algorithm based @37) was developed
i e explicit, analytical remainder estimates (17), gy Weniger [11], [72].

generalized Levin transformation reduces to #etransfor-
mation of Sidi [29], [37], which was developed especially for
infinite oscillatory integrals such as (1). It follows from (52)
that theW transformation is linear. We now present numerical test results for the extrap-
It was also suggested by Sidi [38], [39] that the numericalation methods discussed in Section Ill. Since the Euler
remainder estimates (20) be used in Histransformation if transformation was shown to be a less effective variant of
the information on the asymptotic behavior of the integrand ke weighted-averages method, we have dropped it from
not available. The so-obtainedV transformation [4], [40] is consideration in favor of the latter. All computations were
thus equivalent to th¢ transformation. done in double precision (15-16 decimal digits).
As the first test case, we consider the series

The 6 algorithm of Brezinski [44], which was derived
modifying the ¢ algorithm, accelerates both linear and

IV. NUMERICAL TESTS AND COMPARISON OF METHODS

G. Other Methods

oo —1)"
There exist other well-known extrapolation techniques, Z 571—421 = 0.604898643421630 (54)
which are either equivalent to the methods discussed thus far n=0

in this paper, or have been shown to be less effective (or nathich was used by Levin [23], among others. This series ex-
applicable at all) for the class of problems considered hef@bits logarithmic alternating convergence and has asymptotic
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Fig. 2. Performance of various extrapolation algorithms for the series (54ig. 3. performance of thealgorithm for the integral (55) with three choices
of break points: the equidistant points (6) with= 7/ p, the extremum points,
and zeros of the Bessel function. The number of significant digits obtained

behavior similar to that of common Sommerfeld integrands. Hfter ten integration subintervals is plotted verdyg for z = 0.

Fig. 2, we plot the number of significant digits—computed as
—log,, [relative erro—versus the number of terms, obtaineg . N N .
. . : he most challenging case, resulting in logarithmic alternating
by the major extrapolation methods. Since the performance
, . - convergence.
of the #, ¢, u, and v transformations was very similar, we We have tested the partition-extrapolation method for three
have only included the results for théransformation. For the P b

weighted-averages method and #é transformation, which choices of break po_mts: the equidistant po_mts (6) vt
. L . . . 7 /p, the zero crossings, and extremum points of the Bessel
require explicit analytical remainder estimates, we w@gtto

the n + 1st term of the series. We have found that for reasoﬁusncnon' For the first five zeros the tabulated values were

unknown, the asymptotic form of the coeﬁicienﬁé) given by usel\sli ﬂnd, the h|ghtert_ order ZEros wgre co;gute?hfrol\rln the
(37) results in a faster convergence than the exact form (StEﬁc ahon’s asymptotic expansions [5, . ]. The New-

Consequently, the former was used (with= 2) to generate n—Raphson iteration [4] was also tried, but for the low
the results présented in Fig. 2 orders of Bessel functions considered here it resulted in only

As the next case, we consider the integral insignificant improvement of the extrapolatiqn results. The
extremum points were approximated by taking an average
value of two consecutive Bessel function zeros, as suggested

00 —jk:|z| e—ikr a ,—jks|z| by Lyness [8].

/ 75 Jo(§p)EdE = — —/0 i Jo(§p)€dE  Unless otherwise stated, the acceleration is applied from

“ (55) the first integration subinterval possible, which in most cases

which is based on the Sommerfeld identity [73, p. 242]. Hergeans extrapolation beginning wifly. As will be seen below,
r=/p2+22 k. = k2 €2, andk = ko/e, wherek, Some methods do not work well unless the extrapolation is
is the free-space wavenumber anis the (possibly complex) delayed by one subinterval. Such delay is automatically built-
dielectric constant of the medium. The square roots defihing in for some transformations—as, for example, theansfor-
and k are to be taken with negative imaginary parts. Observation, which uses the numerical remainder estimates (20) and
that the left-side integral in (55) is of the form (2), with= |»| can thus be first applied only aftéf becomes available.

and o = 1/2. To avoid the branch point singularity of the We first apply to (55) the: algorithm, which is known
integrand att = kq+/¢, the value ofz (see Fig. 1) was chosenfor its robustness and is thus an appropriate benchmark for
asa/ky = /R{e} + 1 and the integral on the right side ofother techniques. In Fig. 3, we plot the number of significant
(55) was evaluated on a semi-elliptical path in the complehgits obtained after ten integration subintervals versus the
¢ plane, as suggested by Gay-Balmaz and Mosig [74]. Thisrmalized horizontal distance between the source and ob-
integral and the partial integrals (3) were computed to machigervation pointskqp. The number of integration subintervals
accuracy by an adaptive quadrature based on the Pattersoetpiired to achieve a certain accuracy is a good estimate of the
formulas [75], [76]. The numerical results presented here artemputational cost involved and thus a good indicator of the
for e = 16 — j0.1. With one exception, we use= 0, which is efficiency of the method. The three curves in Fig. 3 correspond
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Fig. 4. Performance of the transformation for the integral (55) with three Fig. 5. Performance of thg «, v transformations, and the algorithm for

choices of break points: the equidistant points (6) witk 7/ p, the extremum the integral (55) when Bessel function extremum points are used as break

points, and zeros of the Bessel function. The number of significant digigeints and the extrapolation is delayed by one subinterval. The number of

obtained after ten integration subintervals is plotted veksysfor = = 0. significant digits obtained after ten integration subintervals is plotted versus
kop for = = 0.

to the three different choices of break points discussed aboy@strated in Fig. 5, where the corresponding results fordhe
It is noted that for the equidistant break points the curvggorithm are also included for comparison. Clearly, all three
exhibits an erratic behavior—almost certainly caused by th@yin transformations are superior to th@lgorithm, but the

break points not being related to the actual location of the Zelgsrformance margin narrows considerably for higher values
(or extrema) of the Bessel function (except that the spacing &f 1.

those points is equal to the asymptotic half-period of the latter). | Flgs. 6-8, plots similar to those in Figs. 3 and 4 are
As the parametep varies while the lower integration limit  shown for thet’, iterated Aitken, andM transformations,
remains fixed, the break points and the Bessel function Zer@spectively, the latter using the asymptotic coefficients (37)
continuously change their relative positions, thus affecting th@th , = 2. We note the absence of glitches on the staircase
convergence properties of the sequence of the partial sums ¢{)}ves corresponding to break points based on the Bessel
Apparently, this causes near breakdowns of ¢helgorithm  function extrema and zeros, which may be attributed to the
for a number of values op. fact that all three transformations have a built-in delay in

The curves in Fig. 3 corresponding to Bessel function zergse extrapolation. However, with the equidistant break points,
and extremum points as break points exhibit a staircase beh@iése transformations fail for a number of discrete values
ior (previously observed by Mosig [6]) with some “glitches’of kp, similarly to thet, u, and v transformations. This
superposed on it. The staircase steps can be correlated withighRirther evident in Fig. 9, where the number of significant
values ofp for which the consecutive break points pass througfigits achieved by the: transformation is plotted versus the
the fixed valuez, thus causing the length of the first integratiomumber of integration subintervals fokop = 0.164, which
interval to vanish. The glitches are apparently also relatedrresponds to the first dip of the dotted lines in Figs. 4
to this phenomenon, since (as is shown later in Fig. 5) theyd 6-8. As explained in connection with Fig. 3, these dips
disappear when the extrapolation is delayed by one intervalay be attributed to the continuously changing convergence
We note that, as expected, the convergence is faster whenghsperties of the sequence of partial sums (7) as the break
break points are based on the Bessel function extrema ratpeints and the zero crossings of the Bessel function change
than zero crossings. their relative positions with varying. This conjecture is

In Fig. 4, we show similar results for thetransformation. supported by Fig. 10, where the sequences of ten initial partial
In this case, the breakdowns are much more pronounced tsams computed with the equidistant break points (6) and
those observed in Fig. 3. Theandwv transformations exhibit a with the break points based on the Bessel function extrema
similar behavior (not shown, for brevity). The performance dre plotted for the critical value ofyp = 0.164. (Only the
these transformations with break points corresponding to theal parts ofS,, are shown, because the imaginary parts are
extrema of the Bessel function can be significantly improvatkegligible in this case.) Observe that for this value:gh, the
by delaying the extrapolation by one subinterval. This isequence of partial sums computed with the equidistant break
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Fig. 6. Performance of thé transformation for the integral (55) with three Fig. 7. Performance of the iterated Aitken transformation for the integral
choices of break points: the equidistant points (6) witk 7/ p, the extremum (55) with three choices of break points: the equidistant points (6) with
points, and zeros of the Bessel function. The number of significant digi{s= r/,, the extremum points, and zeros of the Bessel function. The number
obtained after ten integration subintervals is plotted vetsysfor = = 0. of significant digits obtained after ten integration subintervals is plotted versus
kop for z = 0.

points ceases to be strictly alternating, since there is at least one
instance where two consecutive partial sums are greater than 2 -
the limit of the sequence—a phenomenon previously observed | ..... M
by Lucas and Stone [4].

The results in Fig. 11 illustrate the performance of e r
transformation and the weighted-averages method, which both?
utilize the analytical remainder estimates (17) and the equidis—%
tant break points (6). (The break points based on the Bessef
function extrema were also tried, but this choice resulted inS
a slight deterioration of the performance.) In the case of the=
weighted-averages method, results are presented for the exaft
and asymptotic forms of the coefficiem;ék), given by (38) 4
and (39), respectively (with the plus sign). Observe that the%
asymptotic form appears to have an advantage for the smalle€
values ofkgp. (Following Mosig’'s [6] recommendation, we 2
have also tried using = 1 in (38), but this change did not
improve the performance of the method.) The fact that neither '*°
the W transformation nor the weighted-averages method suffer : ;
any breakdowns with the equidistant break points may be Y : :
attributed to the fact that the analytical remainder estimates
(17) depend on the fixed asymptotic length of the integration
subintervalg. As a result, these methods are less affected by
changes in the character of the sequence of partial sums causg®d. Performance of tha!-transformation for the integral (55) with three
by the varying position of the break points relative to thehoices of break points: the equidistant points (6) witk «/p, the extremum
Bessel function zeros. points, and zeros _of the _Bessel _functlon._The number of significant digits

- ) ) _ obtained after ten integration subintervals is plotted veksysfor z = 0.

As mentioned in Section lll, the commonly used earlier
version of the weighted-averages method [30], [31], [54] does
not take into account the dependence of the integrand,on As mentioned in Section |, fop = 0 we use equidistant
i.e., the exponential factor in (38) is not included, even Break points with; = = /¢, where we assume thgt> 0. In
¢ # 0. However, this approach may result in a significarthis case, because of the exponential decay of the integrands,
performance penalty, as the results in Fig. 12 illustrate.  the integrals are rapidly convergent and acceleration is not

— M — extrema
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a+nm/p
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109 kg p
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Fig._9. Performan_ce of the—transformatiop for the _integral (55) using three,:ig. 11. Performance of the weighted-averages method anitieansfor-
choices of break points: the equidistant points (6) itk 7/p, the extremum  aiion for the integral (55). The number of significant digits obtained after
points, and zeros of the Bessel function, -at= 0 and kop = 0.164 o integration subintervals is plotted verss, for = = 0.

(which corresponds to the first dip of the dotted lines in Figs. 4 and 6-8).
The number of significant digits obtained is plotted versus the number of
integration subintervals. Plotted is also the nonaccelerated direct sum using

; . —— Weighted—averages
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4 6 8 10 Fig. 12. Performance of the weighted-averages method for the integral (55).

The number of significant digits obtained after ten integration subintervals is
plotted versuscop for koz = 0.05. The solid and dotted lines are obtained
Fig. 10. Real part of the sequence of ten initial partial sums for the integia$ing (38) with¢ = = and{ = 0, respectively.
(55) evaluated at = 0 andkop = 0.164 (which corresponds to the first
dip of the dotted lines in Figs. 4 and 6-8), using the equidistant break points . .
(6) with ¢ = /p and the break points corresponding to the Bessel function As the last test case, we consider the mtegral
extrema. The value of the integral to which the sequences are converging is oo o—jk:|z]
shown as the horizontal line. / -
o Jk:

J1(€p)E* dE

. . . .. —jkr a —jk.|z|
essential. Nevertheless, as the results in Fig. 13 indicate, even  _ (3 4 jz) pe : _/ € JL(Ep)Etde  (56)
in this case the convergence can be improved by extrapolation. r o Jk=
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Fig. 13. Performance of various extrapolation algorithms for the integral (5[5)9_ 14. Performance of the weighted-averages methodiithieansforma-
with p = 0 andkoz = 0.1. The equidistant break points (6) with= 7/ tjon and the= algorithm for the integral (56). The number of significant digits
were employed. obtained after ten integration subintervals is plotted vetsysfor z = 0.

obtained by differentiating (55). Observe that the left-sideemainder estimates, i.e., the generalized Levin transforma-
integral in (56) has the form of (2), witfk = |z| and tionst, u, andv, thet and M transformations, the iterated
a = —1/2. When » = 0, this integral has a diverging Aitken method, as well as (to a lesser degree)ladgorithm
integrand and is defined in the sense of Abel summabilifye., the Shanks transformation), fail for a number of values
[37]. For the last case, in Fig. 14, we compare the performanekp, when the equidistant break points are employed. These
of the weighted-averages method, thé transformation and failures can be remedied by choosing the break points based on
the ¢ algorithm (the latter using break points based on ttibe Bessel function extrema. Even with this choice, however,
Bessel function extrema, with extrapolation delayed by orlee generalized Levin transformations and (to a lesser degree)
interval). Similar plots for the iterated Aitken method and ththe ¢ algorithm perform poorly unless the extrapolation is
Levin-type transformations, which utilize numerical remaindetelayed by at least one integration subinterval. Thand A/
estimates, indicate that these methods perform poorly fisansformations and the iterated Aitken method have a built-in
divergent integrands, barely achieving three significant digitelay, hence, no special action is required in their case.
of accuracy in ten integration subintervals (not shown, for We have conducted tests for convergent integrals and for
brevity). We should stress, however, that integrals of thiivergentintegrals defined in the sense of Abel summability. In
type do not arise when the mixed-potential integral equati¢he former case, th# and A/ transformations are, by a narrow
(MPIE) formulation is employed [1]. margin, the most efficient convergence accelerators when
considered over a wide range @f They are closely followed
by the generalized Levin transformations—particularly the
t transformation and by th&V transformation, the iterated
We have presented a review of the most promising eRitken method, and the weighted-averages method with:the
trapolation methods currently known for the acceleration afgorithm trailing farther behind.
Sommerfeld-type integral tails, with particular emphasis on For the divergent integrals, only th&  transformation,
those algorithms, which explicitly utilize remainder estimatethe weighted-averages method—which both utilize analytical
since they tend to be particularly effective. The remaindeemainder estimates—and thealgorithm are effective, with
estimates can be numerically derived or analytical. In thbe W transformation being the most efficient of the three
latter case, the knowledge of the asymptotic behavior of thechniques. The other methods, which are based on numerical
integrand is required. We have found that the performanpemainder estimates, perform poorly in this case.
of the extrapolation methods depends stronglypoand also  Hence, if the information on the asymptotic behavior of
on the choice of subinterval break points. The equidistatite integrand is available, which is usually the case for
break points based on the asymptotic half-period of the BesSeimmerfeld-type integrals in multilayered media, tidrans-
function can only be used with those techniques that utiliZermation and the weighted-averages method emerge as the
analytical remainder estimates, i.e., thétransformation and most versatile and efficient currently known convergence
the weighted-averages method. Methods based on numeradelerators for Sommerfeld integral tails.

V. CONCLUSION
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