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Abstract—A review is presented of the extrapolation methods
for accelerating the convergence of Sommerfeld-type integrals
(i.e., semi-infinite range integrals with Bessel function kernels),
which arise in problems involving antennas or scatterers em-
bedded in planar multilayered media. Attention is limited to
partition-extrapolation procedures in which the Sommerfeld in-
tegral is evaluated as a sum of a series of partial integrals over
finite subintervals and is accelerated by an extrapolation method
applied over the real-axis tail segment (aaa, 111) of the integration
path, where aaa>>>0 is selected to ensure that the integrand is
well behaved. An analytical form of the asymptotic truncation
error (or the remainder), which characterizes the convergence
properties of the sequence of partial sums and serves as a basis
for some of the most efficient extrapolation methods, is derived.
Several extrapolation algorithms deemed to be the most suitable
for the Sommerfeld integrals are described and their performance
is compared. It is demonstrated that the performance of these
methods is strongly affected by the horizontal displacement of
the source and field points��� and by the choice of the subinterval
break points. Furthermore, it is found that some well-known
extrapolation techniques may fail for a number of values of���
and ways to remedy this are suggested. Finally, the most effective
extrapolation methods for accelerating Sommerfeld integral tails
are recommended.

Index Terms—Electromagnetic radiation, electromagnetic scat-
tering, nonhomogeneous media, numerical analysis.

I. INTRODUCTION

GREEN’S functions and integral equations that arise in
layered media problems comprise Sommerfeld-type in-

tegrals of the form [1]

(1)

where is a spectral domain Green’s function (or integral
equation kernel) of the layered medium, is the Bessel
function of order , is the horizontal distance between
the field and source points, and and are the vertical
coordinates of those points. These integrals are difficult to
evaluate because their integrands possess singularities near
the integration path and are, in general, oscillatory and slowly
convergent. To facilitate the integration, the semi-infinite range
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in (1) is usually split into two parts— and —and
the first path segment is deformed into the first quadrant of
the complex plane to avoid the guided-wave poles and branch
points of the integrand, as illustrated in Fig. 1. The value of

is selected to ensure that on the remaining tail segment the
integrand is free of singularities. Since a significant fraction
of the overall computational effort is typically spent on the
tail integral, it is essential that this integration be done as
efficiently as possible. The proven and most popular approach
is the integration then summationprocedure [2]–[4] in which
the integral is evaluated as a sum of a series of partial integrals
over finite subintervals as follows:

(2)

with

(3)

where with and
is a sequence of suitably selected interpolation points. These

break pointsmay be selected based on the asymptotic behavior
of the integrand . Namely, the spectral function arising
in layered media problems has the asymptotic form

(4)

where is a constant and where, which is related to and
, and are easily determined [1]. It is also well known that

the Bessel function behaves for large arguments as [5, p. 364]

(5)

Hence, the simplest choice of break points are the equidistant
points [6], [7]

(6)

where is the asymptotic half-period of the Bessel
function and denotes the first break point greater than.
The value of may be adjusted, for example, to coincide
with the first zero of the Bessel function exceeding. Unless
otherwise stated, here we simply set . Other possible
choices of break points include the (exact) zero crossings and
extremum points of the Bessel function [4], [8] in which
case the subinterval length varies with .
In the special case of , the subinterval length must be
chosen based on the exponential behavior of, rather than the
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Fig. 1. Integration path in the complex� plane. Between zero anda the
path is deformed from the real axis to avoid the integrand singularities.
The partition-extrapolation method is applied over the real-axis tail segment
(a; 1).

oscillations of the Bessel function. Here, we choose ,
but other values may also work well.

The computation of the tail integral in (2) has thus been
reduced to finding the limit of a sequence of the partial sums

(7)

as . However, this sequence usually approaches
slowly, i.e., theremainders

(8)

do not decay rapidly with increasing. One, therefore, seeks a
transformation of the sequence into another sequence

with remainders , possessing the property that as

(9)

It is then said that the transformation, which may be linear
or nonlinear, accelerates the convergenceof the sequence

. Any sequence transformation may be viewed as an
extrapolation method [9] since the underlying principle is to
obtain an improved estimate from the sequence of approximate
values. The integration then summation procedure, followed
by extrapolation, is referred to as thepartition-extrapolation
method[10].

For Sommerfeld-type integrals, the remainders (8) will be
shown to possess the asymptotic expansion

(10)

where are referred to asremainder estimates. These remain-
der estimates play an important role in sequence acceleration
since they provide structural information about the behavior of
the dominant term of the remainder for large[11]. As will
become clear later, the most effective extrapolation methods
explicitly utilize the information contained in the remainder
estimates.

The convergence of the sequence of partial sums (7) may
be characterized based on the behavior of the ratio

(11)

where is the forward difference operator defined by
. If as , then the sequence is

said to converge linearly if and logarithmically if
. If , the sequence is divergent. Furthermore, the

sequence is asymptotically monotone if and alternating
if . Alternating sequences are generally the easiest to
accelerate, while logarithmic monotone convergence is the
most challenging. Fortunately, as will be shown later, the
convergence of the sequences that arise in the present case
is either linear or logarithmic alternating.

We now give a brief history of previous work relevant to the
partition-extrapolation method for Sommerfeld-type integrals.
This approach was originated by Longman [2], who used it
in conjunction with the Euler transformation [12, p. 62]. The
earliest applications of this technique to the Sommerfeld half-
space problem were by Frischknecht [13] and by Siegel and
King [14]. Ryu et al. [15] used the partition-extrapolation
method in conjunction with the transform of Gray and
Atchison [16], which was especially designed for infinite
integrals. Higher order version of this transform was later
developed by Grayet al. [17]. Cornille [18] used the first-order

transform, as well as the Euler method, but his comparisons
appear nonconclusive. Chisholmet al. [19] used Wynn’s
algorithm [20], which is an efficient recursive implementation
of the Shanks transformation [21] and is closely related to the
Pad́e summation method [22]. Levin [23] compared the Shanks
transformation to his transformation and found the latter to
be superior. Iterations of the Aitken process, which is just
the first-order Shanks transformation, were used by Alaylioglu
et al. [24]. Squire [10] also used this method as well as the

algorithm and suggested the Levin transformation [23] as a
promising alternative. Blakemoreet al. [3] have found Levin’s

transformation to be more efficient than thealgorithm,
albeit only marginally so. Bubenik [25] employed theal-
gorithm. Hillion and Nurdin [26] used the Euler method, the

algorithm, and the iterated Aitken process and found the
latter to be superior. The iterated Aitken process was also used
by Burke et al. [27], who applied the partition-extrapolation
method along various paths in the complex plane. Lin and
Mei [28] used the Shanks transformation. Sidi [29] developed
a new extrapolation method, especially for infinite oscillatory
integrals, known as the transformation. This method utilizes
the analytic form of the remainder estimates and, thus, requires
the knowledge of the asymptotic behavior of the integrand,
which, however, is usually available for Sommerfeld-type
integrals. Mosig and Gardiol [30], [31] employed the Euler
method and developed its much more efficient version, which
became known as the weighted-averages method. The latter
also depends on the knowledge of the asymptotic proper-
ties of the integrand. Chave [32] used the Pad´e summation
method implemented via the continued fraction expansion
algorithm [33]—a procedure equivalent to thealgorithm.
The algorithm was also implemented by Piessenset al.
[34] in the QUADPACK library. Lyness [8] (see also [35])
revisited the Euler method, which he felt to be unjustly
neglected and suggested using break points corresponding to
the arithmetic average of two consecutive zero crossings of
the Bessel function. Hasegawa and Tori [36] applied the
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transformation in conjunction with a quadrature rule-based
Chebyshev series expansion, which is particularly effective
when the nonoscillatory part of the integrand is smooth. Sidi
[37] demonstrated the application of his transformation
to divergent oscillatory integrals and developed its modified
version [38], [39] (later named the transformation [40]),
which does not require any information on the asymptotic
behavior of the integrand. Mosig [6] derived a refined version
of the weighted-averages method [30], [31] and found it
superior to the Shanks and transformations. Ehrenmark
[41] developed an improved method for choosing the break
points in Sidi’s transformation. Espelid and Overholt [7]
applied a modified Euler transformation and some variations of
the Overholt method [42], which require the knowledge of the
asymptotic behavior of the integrand. They found Overholt’s

-order-two method to be at least as efficient as Levin’s
transform. Lucas and Stone [4] compared the Euler method,
the algorithm, and the transformation, and concluded
that the latter, with the Lyness break points, was the best
accelerator available. Kinayman and Aksun [43] compared
the Euler transformation, the iterated Aitken process, the

algorithm, the algorithm [44], the Chebyshev–Toeplitz
algorithm [45], and the method of averages [31] and found
the latter to be superior to the other methods. Hasegawa and
Sidi [40] used the quadrature rule of Hasegawa and Tori [36] in
conjunction with the transformation. Finally, we mention
that the partition-extrapolation method is also treated in the
books by Brezinski and Redivo Zaglia [9], Wimp [46], Davis
and Rabinowitz [47], and Evans [48].

Based on this review of previous work, we conclude that
the Shanks transformation (usually implemented via the
algorithm) has been the most popular extrapolation method
for accelerating Sommerfeld-type integrals, but there are indi-
cations that the less frequently used iterated Aitkenprocess
and some of the more recently developed accelerators, such as
the Levin transformations, the weighted-averages method, and
the and transformations are more efficient and as easy
to implement. However, these most promising methods have
not yet been subjected to the same suite of realistic test cases.
Furthermore, with the single exception of Mosig’s work [6], all
tests to date were done for a single value of the parameterand
for . This is inadequate, because in many applications
the integral (2) must be evaluated for a wide range of values of

and a finite fixed value of. In addition, as Lucas and Stone
[4] have shown, the performance of the extrapolation methods
can be strongly affected by the choice of break points, which
should, therefore, be carefully examined. Finally, since the
asymptotic behavior of the integrand in (1) is typically known,
it should be possible to characterize the convergence properties
of the sequence of partial sums (7) and to predict which of the
acceleration methods are most likely to be effective for the
problem in hand.

It is our purpose here to address all those issues and
to recommend the most effective acceleration methods for
the Sommerfeld integral tails (2). This paper is organized
as follows. In Section II, we derive an explicit analytical
expression of the remainder estimates, which serves as
a basis for some of the most efficient extrapolation techniques

and allows us to characterizes the convergence of the sequence
of partial sums (7). In Section III, we develop in detail the
extrapolation algorithms that we consider to be the most
promising for the problem in hand. In particular, we discuss
the weighted averages and algorithms, which may be
used to efficiently implement various sequence transformations
resulting from different choices of the remainder estimates.
In Section IV, we present numerical tests and comparison of
methods. Finally, in Section V, we draw conclusions and offer
recommendations.

II. ESTIMATING THE REMAINDERS

The remainder estimates appearing in (10) play an
important role in the development of extrapolation algorithms,
as will become clear in Section III. In this section, we derive
an explicit analytical form of , based on the asymptotic
behavior of , which is usually known in Sommerfeld-
type problems. Furthermore, we obtain (as a byproduct) the
asymptotic form of , which will allow us to characterize the
convergence of the sequence of partial sums (7). Our approach
is similar to that of Espelid and Overholt [7] (see also [6]
and [49]).

In view of (4) and (5), let us assume that for ,
may written as

(12)

where has the asymptotic expansion

(13)

and is periodic with period such that

(14)

Observe that the integrand of (2) is asymptotically of this form
with and . Next, substituting (13) into
(8) gives

(15)

which upon changing the variable of integration and using (6)
and (14) becomes

(16)

Finally, upon expanding the denominator in a Taylor series
about and formally integrating term by term, one obtains
(10) with the remainder estimates

(17)

and the leading coefficient

(18)

The higher index coefficients , which are similar in form but
progressively more complicated, will not explicitly be used
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and are omitted for brevity. Observe that may vanish if a
proper value of is chosen, resulting in faster convergence
[7]. It is readily shown that for , the optimal results in
break points (6) corresponding to the extrema of the periodic
function .

The above procedure may also be used to demonstrate that
has the same asymptotic form as (16), except that the

integrals defining the coefficients are now over the finite
range . It then follows from (11) that

(19)

where . Hence, we conclude that the series of partial
integrals (2) is asymptotically alternating. Furthermore, the
convergence is linear for and logarithmic for .

We have tacitly assumed in the above that . However,
the special case where with and is
also of practical interest. Clearly, in this case and
(14) no longer holds. The latter contributes the factors
in (16) and (17) and causes the minus sign in (19), which
must now be removed. Hence, in this case, the convergence
is linear monotone.

Clearly, the analytical expression for the remainder esti-
mates given in (17) provides much insight into the conver-
gence properties of the sequence of partial sums (7). As will
become evident later, these analytical remainder estimates also
serve as a basis for some of the most powerful extrapolation
methods currently known. In cases where the information
on the asymptotic behavior of the integrand is not available
or difficult to extract, numerically derived remainder esti-
mates—based on the actual numerical values of one or a few
consecutive terms of the series (2)—have been suggested in
the literature. For later reference, we list below the alternative
choices of , which have been found to be particularly
effective [23], [39], [50]:

(20)

(21)

(22)

(23)

Heuristic arguments supported by numerical evidence indicate
that (20) and (21) are most suitable for alternating conver-
gence, while (22) and (23) are best choices for logarithmic
monotone and linear convergence.

III. A CCELERATING CONVERGENCE BY EXTRAPOLATION

Series acceleration methods are based on the idea that
the information contained in the sequence of partial sums

should be extracted and utilized in a way that
is more efficient than the conventional process of adding up
one term after the other [11]. Below, we discuss the most
important series extrapolation techniques currently known,
with emphasis on those methods that appear to be most suitable
for the acceleration of the Sommerfeld integral tails.

A. Euler Transformation

As a simple introduction to the extrapolation methods for
sequence acceleration, we first consider the Euler transforma-
tion [8], [12, p. 62]. One step of this method is the simple
averaging procedure

(24)

which clearly is a linear transformation. If we define
, the formula (24) may be applied repeatedly, resulting in

the triangular scheme

(25)

If are known, is the best approximation of
. We recognize (25) as a recursive implementation of the

method of averages [30], [31]. It will be shown later that this
method is effective for logarithmic alternating convergence.

B. Iterated Aitken Transformation

To derive the Aitken process [47, p. 43], we postulate
that

(26)

and determine the coefficientby applying the operator to
both sides of the equation. Upon substituting this value back
into (26), we obtain

(27)

where defines the transformed sequence. This procedure,
which clearly is a nonlinear transformation, may be repeated,
thus leading to the iterated Aitken algorithm

(28)

where we have used the first form given in (27). If
are known, is the best approximation of , whereas if

are known, one should use . Observe that
the Aitken process improves upon the Euler transformation
by allowing the coefficient to be adaptively computed at
each iteration, rather than being set to a fixed value of 1/2.
Numerical tests indicate that the iterated Aitken method is
effective for alternating and linear monotone convergence [51].

C. Weighted-Averages Method

The weighted-averages method is a more sophisticated
version of the Euler transformation, which usesweighted
means of consecutive partial sums, with weights selected based
on the remainder estimates . To derive this algorithm, we
denote the weight associated with by and generalize
(24) as [52]

(29)
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which, upon using (8), may be written as

(30)

It is now clear that the remainders of the transformed
sequence will be annihilated if the weights are in the ratio

(31)

The problem, of course, is that the remaindersare unknown.
However, if possess the asymptotic expansion (10), we
readily show that

(32)

which suggests that we choose

(33)

Then, if

(34)

the condition (9) is satisfied with . Furthermore,
with this choice, the remainders have the same form as
(10) except that the remainder estimates are now scaled by

. Consequently, the transformation (29) may be applied
repeatedly, leading to the recursive scheme

(35)

with

(36)

(37)

where the second form is valid for large. Given the partial
sums , this algorithm, which will be referred to as
the generalized weighted-averages method, producesas
the best approximation of .

Using the analytical remainder estimates (17) in (34), we
find that (i.e., ) for both (alternating
convergence) and (linear monotone convergence).
Furthermore, replacing by (17) in (36) and (37), we obtain

(38)

(39)

where the plus and minus signs apply to the alternating and
linear monotone cases, respectively. Note that the equidistant
break points (6) are used in (39). The recursion (35) with
the coefficients given by (38) and (39) is a linear
transformation known as the weighted-averages method.

When the asymptotic coefficients (39) are employed for the
alternating convergence case, the weighted-averages method

can be shown to be equivalent to the-order-two transforma-
tion of Espelid and Overholt [7], if the latter is extended to
accommodate the dependence of the integrand.

Note that (24) is a special case of (29) when . Hence,
from (31) and (32) it follows that the Euler transformation
is only effective if . Using the
analytical remainder estimates (17), we find that this condition
is only satisfied if and (i.e., for logarithmic
alternating convergence), in which case . Therefore,
as expected, the weighted-averages method is superior to the
Euler transformation.

The weighted-averages method presented above was first
developed by Mosig [6], using an approach that can be traced
back to Hart et al. [53, p. 39]. However, Mosig used a
different asymptotic expansion of the remainders than (10)
and, consequently, the coefficients he obtained differ
from, but are for equivalent to, those given by (38)
(with the plus sign since he limited attention to the alternating
case). In view of the fact that the derivation was based on the
asymptotic behavior of the integrand, Mosig remarked that
using could be too optimistic and recommended using

instead. This conservative choice was also employed
in the earlier version of the weighted-averages algorithm [30],
[31], [54], which does not take into account the dependence
of the integrand on .

Finally, we note that the generalized weighted-averages
algorithm (35)–(37) can also be used in conjunction with the
numerical remainder estimates (20) and (21). In particular, we
find that if (20) is used in (36), the first iteration of (35) yields
the Aitken process. This combination of the weighted-
averages algorithm and the remainder estimates (20) gives rise
to a new, nonlinear transformation, which will be referred to
as the transformation.

D. Transformation

A common feature of the extrapolation algorithms discussed
thus far is that each was obtained by an iterative application
of some very simple sequence transformation. However, many
of the existing sequence acceleration methods are based on
a different approach, in which one constructs an algorithm
that is exact for a certainmodel sequence. The most general
extrapolation method was introduced by Schneider [55], Håvie
[56], and Brezinski [57], who independently postulated the
model sequence

(40)

where are known but otherwise arbitrary functions.
Writing (40) for the indexes leads to a linear
equation system, which may be solved for. However, unless
the sequence exactly satisfies (40), the value of so
obtained will depend on the indexesand . Hence, if we
denote this solution by and use Cramer’s rule, we
obtain

(41)
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where

...
...

...
(42)

and where is the same determinant with the
elements of the first row replaced by one. The ratio of
determinants (41) may be computed by the recursive procedure
known as the Brezinski–H̊avie protocol [46, p. 186] or the
algorithm [57], [58] or by its more efficient implementation
due to Ford and Sidi [59]. The transformation (41) contains
some of the most effective sequence transformations currently
known as special cases corresponding to different choices of
the functions [9, p. 57]. In those special cases, however,
the particular structure of the determinants can usually be
exploited to devise more efficient procedures than the general

algorithm. The transformation (41) is linear if the functions
do not depend on and it is nonlinear if involve

. Below we discuss two choices of , which lead to the
Shanks and generalized Levin transformations.

E. Shanks Transformation

The Shanks transformation [21], which is nonlinear, arises
from the choice in the model
sequence (40). Hence, in this transformation, the limitis
approximated by the th partial sum plus a weighted sum of
the next terms of the series. From (41), we find that the
determinantal representation of the Shanks transformation is

(43)

The matrices that arise in (43) are of the Hankel type for which
efficient algorithms exist [46, p. 198], [9, p. 33]. However, the
most convenient way to compute the Shanks transformation is
the algorithm, which Wynn [20] developed from (43) using
determinantal identities (see also [46, p. 244]). Rather than
repeating Wynn’s rigorous arguments, here we give a simple,
heuristic derivation of this algorithm [60].

First, we note that the Shanks transformation may be
considered a higher order generalization of the Aitken
process since for (43) reduces to (27). Hence, with
this in mind, we define

(44)

and

(45)

which allows us to write the second form given in (27) as

(46)

Generalizing the above, we obtain

(47)

which, together with (44), is a recursive version of the Shanks
transformation. Namely, it can be shown that ,

whereas the elements with odd subscripts are auxiliary
quantities [20]. Thus, if are known, is
the best approximation of , while if are
known, one should use . Numerical tests indicate that the

algorithm is effective for alternating and linear monotone
convergence [51].

When the Shanks transformation or thealgorithm are
applied to a power series with coefficients, then it can be
shown that yield the diagonal Pad́e approxi-
mants [21], [22], [61]. Furthermore, the successive convergents
of the correspondingcontinued fractions lie on a staircase
line of the array [62]. Consequently, series acceleration
using continued fractions and thealgorithm are equivalent,
but it transpires that the implementation of the latter is
more economical.

F. Generalized Levin Transformation

The generalized Levin transformation [23] arises by choos-
ing in the model sequence (40). Hence, in
this transformation the limit is approximated by the th
partial sum plus the th remainder estimate multiplied by
a correction function (a polynomial of order in ),
which approaches a constant as . From (41), we find
that the determinantal representation of the generalized Levin
transformation is

(48)

When the determinants in (48) are expanded by the first row,
the minors that arise are of the Vandermonde type, for which
explicit expansions are available [63, p. 9]. As a result, one
readily obtains an explicit representation of [46, p.
189]. For the equidistant break points (6), this expression
reduces to a simpler form given by Weniger [11], which,
for , further specializes to the formula originally
derived by Levin [23]. A more efficient, recursive form of
this transformation was developed by Fessleret al. [50] and
was later extended for arbitrary by Weniger [11]. In
the general case, however, the transformation (48) is most
efficiently computed by the algorithm of Sidi [29], [37],
[49], which may be derived as follows.

With in the model sequence (40), we rewrite
the latter as

(49)

and observe that the right-hand member in the above is a
polynomial of degree in the variable . Hence, if
we consider and as functions of the continuous variable

evaluated at , and apply thedivided difference[63]
of order to both sides of (49), we obtain

(50)

because annihilates polynomials of degree smaller than.
Here, the divided difference operator is defined recursively
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as [11, p. 245], [9, p. 116]

(51)

with . Since is a linear operator, we readily
find from (50) that may be estimated as

(52)

which is an equivalent form of (48). If now we denote the
numerator and the denominator of (52) by and ,
respectively, it follows from (51) that both obey the same
three-term recurrence formula

(53)

with the starting values and .
If are known, is the best
approximation of .

Different choices of in the generalized Levin transfor-
mation (52) result in extrapolation methods with different
acceleration properties. The numerical remainder estimates
(21)–(23) yield, respectively, the, , and transformations
of Levin [23], while (20) gives rise to the modifiedtrans-
formation of Smith and Ford [64], which will be referred to
as the transformation. All four transformations, which are
nonlinear, may efficiently be computed by the algorithm
using the appropriate remainder estimates.

It is readily shown that the first-order transformation
is identical with the Aitken process (27). This is not
surprising if one notes that the latter is based on (26), which
is a simple one-term model sequence with . Hence,
the iterated Aitken method may also be viewed as a technique
utilizing numerical remainder estimates.

The Levin transformation is considered to be among the
most versatile and powerful convergence accelerators currently
known [64]. It appears that this transformation was already
known to Bickley and Miller [65], who also appear to have
originated the modern approach of constructing sequence
transformations via annihilating difference operators [11].

With the explicit, analytical remainder estimates (17), the
generalized Levin transformation reduces to thetransfor-
mation of Sidi [29], [37], which was developed especially for
infinite oscillatory integrals such as (1). It follows from (52)
that the transformation is linear.

It was also suggested by Sidi [38], [39] that the numerical
remainder estimates (20) be used in his transformation if
the information on the asymptotic behavior of the integrand is
not available. The so-obtained transformation [4], [40] is
thus equivalent to the transformation.

G. Other Methods

There exist other well-known extrapolation techniques,
which are either equivalent to the methods discussed thus far
in this paper, or have been shown to be less effective (or not
applicable at all) for the class of problems considered here.

Below, we give a brief review of some of the most important
methods in this category.

The transformation of Homeier [66], [67] is an iter-
ative method, which makes explicit use of the remainder
estimates and also depends on a family of auxiliary sequences.
Many of the existing extrapolation methods—including the
weighted-averages method and the generalized Levin transfor-
mation—can be obtained as variants of this transformation by
properly choosing the auxiliary sequences. In this sense, the
transformation is very general and it provides a powerful the-
oretical framework for the development of new convergence
accelerators.

The Chebyshev–Toeplitz and Legendre–Toeplitz algorithms
of Wimp [45] are linear rhombus rules with weights related
to the coefficients of the respective orthogonal polynomials.
Numerical experiments indicate that the former is effective
for alternating and the latter for logarithmic monotone con-
vergence [64].

The transformation of Grayet al. [17], which was
especially developed for infinite integrals, can be obtained as
a special case of the transformation (41) when

. Clearly, in this transformation, the limit is approx-
imated by the th partial sum plus a weighted sum of the
integrand values at the nextbreak points. Therefore, the
transformation is closely related to the Shanks transformation
and may be expected to perform similarly as the latter. A
recursive computational scheme for thetransformation was
derived by Pye and Atchison [68].

The algorithm of Wynn [69] (whose rules are quite similar
to those of the algorithm) can also be obtained from (41)
by properly choosing the auxiliary functions [9, p.
101]. This algorithm, which is very powerful for logarithmic
monotone sequences, but fails to accelerate alternating conver-
gence, is based on Thiele’s continued-fraction interpolation
[70, ch. 3].

The algorithm of Brezinski [44], which was derived
by modifying the algorithm, accelerates both linear and
logarithmic convergence. The second-orderalgorithm is
identical with the Lubkin transform [71] (not to be confused
with Sidi’s transformation discussed above), which may
also be considered as a generalization of the Aitken
process. An iterative algorithm based on was developed
by Weniger [11], [72].

IV. NUMERICAL TESTS AND COMPARISON OFMETHODS

We now present numerical test results for the extrap-
olation methods discussed in Section III. Since the Euler
transformation was shown to be a less effective variant of
the weighted-averages method, we have dropped it from
consideration in favor of the latter. All computations were
done in double precision (15–16 decimal digits).

As the first test case, we consider the series

(54)

which was used by Levin [23], among others. This series ex-
hibits logarithmic alternating convergence and has asymptotic
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Fig. 2. Performance of various extrapolation algorithms for the series (54).

behavior similar to that of common Sommerfeld integrands. In
Fig. 2, we plot the number of significant digits—computed as

relative error—versus the number of terms, obtained
by the major extrapolation methods. Since the performance
of the , , , and transformations was very similar, we
have only included the results for thetransformation. For the
weighted-averages method and the transformation, which
require explicit analytical remainder estimates, we setto
the st term of the series. We have found that for reasons
unknown, the asymptotic form of the coefficients given by
(37) results in a faster convergence than the exact form (36).
Consequently, the former was used (with ) to generate
the results presented in Fig. 2.

As the next case, we consider the integral

(55)
which is based on the Sommerfeld identity [73, p. 242]. Here,

, , and , where
is the free-space wavenumber andis the (possibly complex)
dielectric constant of the medium. The square roots defining
and are to be taken with negative imaginary parts. Observe
that the left-side integral in (55) is of the form (2), with
and . To avoid the branch point singularity of the
integrand at , the value of (see Fig. 1) was chosen
as and the integral on the right side of
(55) was evaluated on a semi-elliptical path in the complex

plane, as suggested by Gay-Balmaz and Mosig [74]. This
integral and the partial integrals (3) were computed to machine
accuracy by an adaptive quadrature based on the Patterson’s
formulas [75], [76]. The numerical results presented here are
for . With one exception, we use , which is

Fig. 3. Performance of the� algorithm for the integral (55) with three choices
of break points: the equidistant points (6) withq = �=�, the extremum points,
and zeros of the Bessel function. The number of significant digits obtained
after ten integration subintervals is plotted versusk0� for z = 0.

the most challenging case, resulting in logarithmic alternating
convergence.

We have tested the partition-extrapolation method for three
choices of break points: the equidistant points (6) with

, the zero crossings, and extremum points of the Bessel
function. For the first five zeros the tabulated values were
used and the higher order zeros were computed from the
McMahon’s asymptotic expansions [5, p. 371]. The New-
ton–Raphson iteration [4] was also tried, but for the low
orders of Bessel functions considered here it resulted in only
insignificant improvement of the extrapolation results. The
extremum points were approximated by taking an average
value of two consecutive Bessel function zeros, as suggested
by Lyness [8].

Unless otherwise stated, the acceleration is applied from
the first integration subinterval possible, which in most cases
means extrapolation beginning with. As will be seen below,
some methods do not work well unless the extrapolation is
delayed by one subinterval. Such delay is automatically built-
in for some transformations—as, for example, thetransfor-
mation, which uses the numerical remainder estimates (20) and
can thus be first applied only after becomes available.

We first apply to (55) the algorithm, which is known
for its robustness and is thus an appropriate benchmark for
other techniques. In Fig. 3, we plot the number of significant
digits obtained after ten integration subintervals versus the
normalized horizontal distance between the source and ob-
servation points, . The number of integration subintervals
required to achieve a certain accuracy is a good estimate of the
computational cost involved and thus a good indicator of the
efficiency of the method. The three curves in Fig. 3 correspond
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Fig. 4. Performance of theu transformation for the integral (55) with three
choices of break points: the equidistant points (6) withq = �=�, the extremum
points, and zeros of the Bessel function. The number of significant digits
obtained after ten integration subintervals is plotted versusk0� for z = 0.

to the three different choices of break points discussed above.
It is noted that for the equidistant break points the curve
exhibits an erratic behavior—almost certainly caused by the
break points not being related to the actual location of the zeros
(or extrema) of the Bessel function (except that the spacing of
those points is equal to the asymptotic half-period of the latter).
As the parameter varies while the lower integration limit
remains fixed, the break points and the Bessel function zeros
continuously change their relative positions, thus affecting the
convergence properties of the sequence of the partial sums (7).
Apparently, this causes near breakdowns of thealgorithm
for a number of values of .

The curves in Fig. 3 corresponding to Bessel function zeros
and extremum points as break points exhibit a staircase behav-
ior (previously observed by Mosig [6]) with some “glitches”
superposed on it. The staircase steps can be correlated with the
values of for which the consecutive break points pass through
the fixed value , thus causing the length of the first integration
interval to vanish. The glitches are apparently also related
to this phenomenon, since (as is shown later in Fig. 5) they
disappear when the extrapolation is delayed by one interval.
We note that, as expected, the convergence is faster when the
break points are based on the Bessel function extrema rather
than zero crossings.

In Fig. 4, we show similar results for thetransformation.
In this case, the breakdowns are much more pronounced than
those observed in Fig. 3. Theand transformations exhibit a
similar behavior (not shown, for brevity). The performance of
these transformations with break points corresponding to the
extrema of the Bessel function can be significantly improved
by delaying the extrapolation by one subinterval. This is

Fig. 5. Performance of thet, u, v transformations, and the� algorithm for
the integral (55) when Bessel function extremum points are used as break
points and the extrapolation is delayed by one subinterval. The number of
significant digits obtained after ten integration subintervals is plotted versus
k0� for z = 0.

illustrated in Fig. 5, where the corresponding results for the
algorithm are also included for comparison. Clearly, all three
Levin transformations are superior to thealgorithm, but the
performance margin narrows considerably for higher values
of .

In Figs. 6–8, plots similar to those in Figs. 3 and 4 are
shown for the , iterated Aitken, and transformations,
respectively, the latter using the asymptotic coefficients (37)
with . We note the absence of glitches on the staircase
curves corresponding to break points based on the Bessel
function extrema and zeros, which may be attributed to the
fact that all three transformations have a built-in delay in
the extrapolation. However, with the equidistant break points,
these transformations fail for a number of discrete values
of , similarly to the , , and transformations. This
is further evident in Fig. 9, where the number of significant
digits achieved by the transformation is plotted versus the
number of integration subintervals for , which
corresponds to the first dip of the dotted lines in Figs. 4
and 6–8. As explained in connection with Fig. 3, these dips
may be attributed to the continuously changing convergence
properties of the sequence of partial sums (7) as the break
points and the zero crossings of the Bessel function change
their relative positions with varying . This conjecture is
supported by Fig. 10, where the sequences of ten initial partial
sums computed with the equidistant break points (6) and
with the break points based on the Bessel function extrema
are plotted for the critical value of . (Only the
real parts of are shown, because the imaginary parts are
negligible in this case.) Observe that for this value of, the
sequence of partial sums computed with the equidistant break
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Fig. 6. Performance of thet0 transformation for the integral (55) with three
choices of break points: the equidistant points (6) withq = �=�, the extremum
points, and zeros of the Bessel function. The number of significant digits
obtained after ten integration subintervals is plotted versusk0� for z = 0.

points ceases to be strictly alternating, since there is at least one
instance where two consecutive partial sums are greater than
the limit of the sequence—a phenomenon previously observed
by Lucas and Stone [4].

The results in Fig. 11 illustrate the performance of the
transformation and the weighted-averages method, which both
utilize the analytical remainder estimates (17) and the equidis-
tant break points (6). (The break points based on the Bessel
function extrema were also tried, but this choice resulted in
a slight deterioration of the performance.) In the case of the
weighted-averages method, results are presented for the exact
and asymptotic forms of the coefficients , given by (38)
and (39), respectively (with the plus sign). Observe that the
asymptotic form appears to have an advantage for the smaller
values of . (Following Mosig’s [6] recommendation, we
have also tried using in (38), but this change did not
improve the performance of the method.) The fact that neither
the transformation nor the weighted-averages method suffer
any breakdowns with the equidistant break points may be
attributed to the fact that the analytical remainder estimates
(17) depend on the fixed asymptotic length of the integration
subinterval . As a result, these methods are less affected by
changes in the character of the sequence of partial sums caused
by the varying position of the break points relative to the
Bessel function zeros.

As mentioned in Section III, the commonly used earlier
version of the weighted-averages method [30], [31], [54] does
not take into account the dependence of the integrand on,
i.e., the exponential factor in (38) is not included, even if

. However, this approach may result in a significant
performance penalty, as the results in Fig. 12 illustrate.

Fig. 7. Performance of the iterated Aitken transformation for the integral
(55) with three choices of break points: the equidistant points (6) with
q = �=�, the extremum points, and zeros of the Bessel function. The number
of significant digits obtained after ten integration subintervals is plotted versus
k0� for z = 0.

Fig. 8. Performance of theM -transformation for the integral (55) with three
choices of break points: the equidistant points (6) withq = �=�, the extremum
points, and zeros of the Bessel function. The number of significant digits
obtained after ten integration subintervals is plotted versusk0� for z = 0.

As mentioned in Section I, for we use equidistant
break points with , where we assume that . In
this case, because of the exponential decay of the integrands,
the integrals are rapidly convergent and acceleration is not
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Fig. 9. Performance of theu-transformation for the integral (55) using three
choices of break points: the equidistant points (6) withq = �=�, the extremum
points, and zeros of the Bessel function, atz = 0 and k0� = 0:164
(which corresponds to the first dip of the dotted lines in Figs. 4 and 6–8).
The number of significant digits obtained is plotted versus the number of
integration subintervals. Plotted is also the nonaccelerated direct sum using
the extremum points as break points.

Fig. 10. Real part of the sequence of ten initial partial sums for the integral
(55) evaluated atz = 0 and k0� = 0:164 (which corresponds to the first
dip of the dotted lines in Figs. 4 and 6–8), using the equidistant break points
(6) with q = �=� and the break points corresponding to the Bessel function
extrema. The value of the integral to which the sequences are converging is
shown as the horizontal line.

essential. Nevertheless, as the results in Fig. 13 indicate, even
in this case the convergence can be improved by extrapolation.

Fig. 11. Performance of the weighted-averages method and theW transfor-
mation for the integral (55). The number of significant digits obtained after
ten integration subintervals is plotted versusk0� for z = 0.

Fig. 12. Performance of the weighted-averages method for the integral (55).
The number of significant digits obtained after ten integration subintervals is
plotted versusk0� for k0z = 0:05. The solid and dotted lines are obtained
using (38) with� = z and � = 0, respectively.

As the last test case, we consider the integral

(56)



1416 IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, VOL. 46, NO. 10, OCTOBER 1998

Fig. 13. Performance of various extrapolation algorithms for the integral (55)
with � = 0 andk0z = 0:1. The equidistant break points (6) withq = �=�
were employed.

obtained by differentiating (55). Observe that the left-side
integral in (56) has the form of (2), with and

. When , this integral has a diverging
integrand and is defined in the sense of Abel summability
[37]. For the last case, in Fig. 14, we compare the performance
of the weighted-averages method, the transformation and
the algorithm (the latter using break points based on the
Bessel function extrema, with extrapolation delayed by one
interval). Similar plots for the iterated Aitken method and the
Levin-type transformations, which utilize numerical remainder
estimates, indicate that these methods perform poorly for
divergent integrands, barely achieving three significant digits
of accuracy in ten integration subintervals (not shown, for
brevity). We should stress, however, that integrals of this
type do not arise when the mixed-potential integral equation
(MPIE) formulation is employed [1].

V. CONCLUSION

We have presented a review of the most promising ex-
trapolation methods currently known for the acceleration of
Sommerfeld-type integral tails, with particular emphasis on
those algorithms, which explicitly utilize remainder estimates
since they tend to be particularly effective. The remainder
estimates can be numerically derived or analytical. In the
latter case, the knowledge of the asymptotic behavior of the
integrand is required. We have found that the performance
of the extrapolation methods depends strongly onand also
on the choice of subinterval break points. The equidistant
break points based on the asymptotic half-period of the Bessel
function can only be used with those techniques that utilize
analytical remainder estimates, i.e., thetransformation and
the weighted-averages method. Methods based on numerical

Fig. 14. Performance of the weighted-averages method, theW transforma-
tion and the� algorithm for the integral (56). The number of significant digits
obtained after ten integration subintervals is plotted versusk0� for z = 0.

remainder estimates, i.e., the generalized Levin transforma-
tions , , and , the and transformations, the iterated
Aitken method, as well as (to a lesser degree) thealgorithm
(i.e., the Shanks transformation), fail for a number of values
of , when the equidistant break points are employed. These
failures can be remedied by choosing the break points based on
the Bessel function extrema. Even with this choice, however,
the generalized Levin transformations and (to a lesser degree)
the algorithm perform poorly unless the extrapolation is
delayed by at least one integration subinterval. Theand
transformations and the iterated Aitken method have a built-in
delay, hence, no special action is required in their case.

We have conducted tests for convergent integrals and for
divergent integrals defined in the sense of Abel summability. In
the former case, the and transformations are, by a narrow
margin, the most efficient convergence accelerators when
considered over a wide range of. They are closely followed
by the generalized Levin transformations—particularly the

transformation and by the transformation, the iterated
Aitken method, and the weighted-averages method with the
algorithm trailing farther behind.

For the divergent integrals, only the transformation,
the weighted-averages method—which both utilize analytical
remainder estimates—and thealgorithm are effective, with
the transformation being the most efficient of the three
techniques. The other methods, which are based on numerical
remainder estimates, perform poorly in this case.

Hence, if the information on the asymptotic behavior of
the integrand is available, which is usually the case for
Sommerfeld-type integrals in multilayered media, thetrans-
formation and the weighted-averages method emerge as the
most versatile and efficient currently known convergence
accelerators for Sommerfeld integral tails.
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