Mohammad Bokaei, Saeed Razavikia, and Arash Amini

Here, we prove Theorem 1 of the paper "Two-snapshot DOA Estimation via Hankel-structured Matrix Completion". For the sake of completeness. Let $\mathbf{y} \in \mathbb{C}^n$ be the ground-truth noiseless measurement on a ULA array. We also define the Hankel operator $\mathscr{H}(\cdot) : \mathbb{R}^n \mapsto \mathbb{R}^{(d) \times (n-d+1)}$ as

$$\mathscr{H}(\mathbf{x}) := \begin{bmatrix} x_1 & x_2 & \dots & x_{n-d+1} \\ x_2 & x_3 & \dots & x_{n-d+2} \\ \vdots & \vdots & \vdots & \vdots \\ x_d & x_{d+1} & \dots & x_n \end{bmatrix}.$$
 (1)

where d is called the pencil parameter of the Hankel operator. The goal here is to recover y from a subset of its elements by exploiting the low-rank structure of $\mathscr{H}(\mathbf{y})$. In particular, the estimated y denoted by $\hat{\mathbf{y}}$ is found via

$$\widehat{\mathbf{y}} = \underset{\mathbf{g} \in \mathbb{C}^n}{\operatorname{argmin}} \quad \|\mathscr{H}(\mathbf{g})\|_*$$
s.t. $\mathcal{P}_{\Omega}(\mathbf{g}) = \mathbf{y}_o,$
(2)

where $\Omega \subset \{1, \ldots, n\} = [n]$ represents the index of available samples (the location of antennas), $\mathbf{y}_o = \mathcal{P}_{\Omega}(\mathbf{y})$, and \mathcal{P}_{Ω} is the projection operator to the observed samples space.

Theorem 1. Let $\mathbf{y} \in \mathbb{C}^n$ be the vector of true samples of the ULA for an r-sources. \mathbf{y} can be recovered with probability no less than $1 - n^{-10}$ from the measurements on the SLA $\mathcal{P}_{\widetilde{\Omega}}(\mathbf{y})$ where Ω i.e. index set of the location of the antenna elements in the SLA are randomly chosen by uniformly drawing the indices from [n] by solving the optimization in (2) if

$$p_k \ge \min\left\{1, \frac{\max\left(c\mu_k r^2 \log^3\left(n\right), 1\right)}{n}\right\}, \qquad (3)$$

and $\frac{1}{8 \log(n)} \leq \min\{ \|\mathbf{U}\mathbf{U}^{\mathsf{H}}\mathbf{e}_{1}^{d}\|_{\mathrm{F}}^{2}, \|\mathbf{e}_{n}^{n-d+1}\mathbf{V}\mathbf{V}^{\mathsf{H}}\|_{\mathrm{F}}^{2} \}$, where d is the pencil parameter used in the Hankel operator and \mathbf{U}, \mathbf{V} are the unitary matrices of SVD of $\mathscr{H}(\mathbf{y})$. Also μ_{k} is the leverage score of Definition 1 of the paper and c > 0 a scalar.

I. PROOF OF THEOREM 1

W prove by constructing an appropriate dual certificate; the existence of this certificate guarantees that the solution to the problem in (2) is unique. This is a standard approach in the compressed sensing literature (see for instance [1]).

A. Projection

Using the well-studied golfing scheme first used in [2], we show the uniqueness of the solution of the problem. As the

first step, we need to define the sampling operator \mathcal{A}_k for any matrix $\mathbf{M} \in \mathbb{C}^{d \times (n-d+1)}$ as $\operatorname{tr}(\mathbf{M}^T \mathbf{A}_k) \mathbf{A}_k$.. Let Ω be a random subset of [n] such that the element $1 \le k \le n$ appears in Ω with probability p_k independent of other elements. We further define the self-adjoint projection operator onto Ω as $\mathcal{A}_{\Omega} = \sum_{k=1}^{n} \frac{\delta_k}{p_k} \mathcal{A}_k$. where δ_k is equal to 1 for $k \in \Omega$ and zero elsewhere and p_k is sampling probability of k-th element. It is easy to can check that $\mathbb{E}[\mathcal{A}_{\Omega}] = \mathcal{A}$, where \mathcal{A} stands for $\sum_{k=1}^{n} \mathcal{A}_k$. It is also simple to verify that

$$\|\mathcal{A}_{\Omega}\| = \|\sum_{k=1}^{n} \frac{\delta_{k}}{p_{k}} \mathcal{A}_{k}\| \le \frac{\|\sum_{k=1}^{n} \mathcal{A}_{k}\|}{\min_{k} p_{k}} = \frac{\|\mathcal{A}\|}{\min_{k} p_{k}} \le \frac{1}{\min_{k} p_{k}}.$$
(4)

We also define the orthogonal operator as $\mathcal{A}^{\perp} = \mathcal{I} - \mathcal{A}$ where \mathcal{I} is the identity operator. Then the tangent space Twith respect to $\mathscr{H}(\mathbf{M}) = \mathbf{U}\Sigma\mathbf{V}$ is defined as

$$T := \{ \mathbf{U}\mathbf{Y}_1^{\mathrm{H}} + \mathbf{Y}_2\mathbf{V}^{\mathrm{H}} : \mathbf{Y}_1 \in \mathbb{C}^{(n-d+1)\times r}, \mathbf{Y}_2 \in \mathbb{C}^{d\times r} \}.$$
(5)

We can now reformulate (2) in form of the following unstructured matrix completion problem:

$$\widehat{\mathbf{M}} = \underset{\mathbf{M} \in \mathbb{C}^{d \times (n-d+1)}}{\operatorname{argmin}} \quad \|\mathbf{M}\|_{*}$$
s.t. $\mathcal{Q}_{\Omega}(\mathbf{M}) = \mathcal{Q}_{\Omega}(\mathscr{H}(\mathbf{y})),$
(6)

where \mathcal{Q}_{Ω} is $\mathcal{A}_{\Omega} + \mathcal{A}^{\perp}$. Using (4), one can see $\|\mathcal{Q}_{\Omega}\| \leq \frac{1}{\min_{k} p_{k}} + 1$ as We further have $\mathbb{E}[\mathcal{Q}_{\Omega}] = \mathbb{E}[\mathcal{A}_{\Omega}] + \mathcal{A}^{\perp} = \mathcal{A} + \mathcal{A}^{\perp} = \mathcal{I}$.

To prove the exact recovery of the convex optimization, it suffices to produce an appropriate dual certificate, as stated in the following lemma.

Lemma 1. For a given Ω , let the sampling operator Q_{Ω} fulfill

$$\|\mathcal{P}_T - \mathcal{P}_T \mathcal{Q}_\Omega \mathcal{P}_T\| \le \frac{1}{2},\tag{7}$$

where $\|\cdot\|$ stands for the operator norm and \mathcal{P}_T is the projection to the Tangent space defined in (5). If there exists a matrix **G** satisfying

$$\mathcal{Q}_{\Omega}^{\perp}(\mathbf{G}) = 0, \tag{8}$$

$$\|\mathcal{P}_T(\mathbf{G} - \mathbf{U}\mathbf{V}^{\mathrm{H}})\|_{\mathrm{F}} \le \frac{1}{5\|\mathcal{Q}_{\Omega}\|},\tag{9}$$

and

$$\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \le \frac{1}{2},\tag{10}$$

then, \mathbf{M} is the unique solution to (6).

Proof. This lemma is a standard lemma in golfing scheme, so you can find the proof in [2].

We first analyze the condition (7) to construct the proof using Lemma 1. Then, we build up the dual certificate G, and at the end, we validate the dual certificate.

B. Bounding $\|\mathcal{P}_T - \mathcal{P}_T \mathcal{Q}_\Omega \mathcal{P}_T\|$

We first bound the term $\|\mathcal{P}_T(\mathbf{A}_k)\|_{\mathrm{F}}^2$ as

$$\|\mathcal{P}_{T}(\mathbf{A}_{k})\|_{\mathrm{F}}^{2} \leq \|\mathcal{P}_{U}(\mathbf{A}_{k})\|_{\mathrm{F}}^{2} + \|\mathcal{P}_{V}(\mathbf{A}_{k})\|_{\mathrm{F}}^{2} \leq \frac{2\mu_{k}r}{n}, \quad (11)$$

where $\mathcal{P}_U(\mathbf{A}_k) = \mathbf{U}\mathbf{U}^{\mathrm{H}}\mathbf{A}_k$ and $\mathcal{P}_V(\mathbf{A}_k) = \mathbf{A}_k\mathbf{V}\mathbf{V}^{\mathrm{H}}$.Let us define the following family of operators $\mathcal{Z}_k : \mathbb{C}^{d \times (n-d+1)} \mapsto$ $\mathbb{C}^{d \times (n-d+1)}$ as

$$\mathcal{Z}_k := \left(\frac{\delta_k}{p_k} - 1\right) \mathcal{P}_T \mathcal{A}_k \mathcal{P}_T \quad \forall \ k \in [n].$$

We can check that for any $\mathbf{M} \in \mathbb{C}^{d \times (n-d+1)}$ we have

$$\begin{aligned} \|\mathcal{Z}_{k}(\mathbf{M})\|_{\mathrm{F}} &= \|\left(\frac{\delta_{k}}{p_{k}} - 1\right) \underbrace{\langle \mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{M}) \rangle}_{=\langle \mathcal{P}_{T}(\mathbf{A}_{k}), \mathbf{M} \rangle} \mathcal{P}_{T}(\mathbf{A}_{k})\|_{\mathrm{F}} \\ &\leq \frac{1}{p_{k}} \|\mathcal{P}_{T}(\mathbf{A}_{k})\|_{\mathrm{F}}^{2} \|\mathbf{M}\|_{\mathrm{F}}. \end{aligned}$$
(12)

Therefore, the operator norm $\|Z_k\|$ is upper-bounded as

$$\|\mathcal{Z}_k\| \le \frac{1}{p_k} \|\mathcal{P}_T(\boldsymbol{A}_k)\|_{\mathrm{F}}^2 \le \frac{2}{p_k} \frac{\mu_k r}{n} \le \frac{2}{c_0 \log(n)},$$
 (13)

where we used $p_k \ge c_0 \frac{\mu_k r \log(n)}{n}$ in the last inequality. It is not difficult to see that $\sum_{k=1}^n \mathcal{Z}_k = \mathcal{P}_T \mathcal{Q}_\Omega \mathcal{P}_T - \mathcal{P}_T$. Since $\mathbb{E}[\mathcal{Q}_{\Omega}] = \mathcal{I}$, the latter result shows that $\mathbb{E}[\mathcal{Z}_k] = \mathbf{0}$. Besides, for any $\mathbf{M} \in \mathbb{C}^{d \times (n-d+1)}$, if $\mathcal{Z}_k^2(\mathbf{M})$ represents $\mathcal{Z}_k^*(\mathcal{Z}_k(\mathbf{M}))$, then, we have

$$\begin{split} \left\| \sum_{k} \mathbb{E}[\mathcal{Z}_{k}^{2}(\mathbf{M})] \right\|_{\mathrm{F}} &= \left\| \sum_{k} \mathbb{E}\left[\left(\frac{\delta_{k}}{p_{k}} - 1 \right)^{2} \right] \langle \mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{M}) \rangle \\ &\times \langle \mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{A}_{k}) \rangle \mathcal{P}_{T}(\mathbf{A}_{k}) \right\|_{\mathrm{F}} \\ &\leq \max_{k} \frac{1 - p_{k}}{p_{k}} \left\| \mathcal{P}_{T}(\mathbf{A}_{k}) \right\|_{\mathrm{F}}^{2} \left\| \sum_{k} \langle \mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{M}) \rangle \mathcal{P}_{T}(\mathbf{A}_{k}) \right\|_{\mathrm{F}} \\ &\leq \max_{k} \frac{1}{p_{k}} \left\| \mathcal{P}_{T}(\mathbf{A}_{k}) \right\|_{\mathrm{F}}^{2} \left\| \mathbf{M} \right\|_{\mathrm{F}}. \end{split}$$
(14)

Therefore, similar to (14) the operator norm can be bounded as $\left\|\sum_k \mathbb{E}[\mathcal{Z}_k^2]\right\| \leq \frac{2}{c_0 \log(n)}.$ Then, by the matrix Bernstein inequality, for $c_0 \ge \frac{56}{3}$, we know the existence of some constant $0 < \epsilon \le \frac{1}{2}$ such that

$$\left\|\sum_{k} \mathcal{Z}_{k}\right\| = \left\|\mathcal{P}_{T} - \mathcal{P}_{T}\mathcal{Q}_{\Omega}\mathcal{P}_{T}\right\| \le \epsilon,$$
(15)

with a probability exceeding $1 - n^{-8}$.

C. Dual Certificates construction

We build the dual certificate by using the golfing scheme introduced in [2]. For a small constant $\epsilon < \frac{1}{\epsilon}$, let us form $L := \log_{\frac{1}{2}}(n^2 \| \mathcal{Q}_{\Omega} \|)$ independent subsets $\{\Omega_\ell\}_{\ell=1}^{e_{L-1}}$ of [n] by choosing the elements $1 \le k \le n$ with probability $q_k :=$ $1 - (1 - p_k)^{\frac{1}{L}}$ independent of each other. Furthermore, let $\overline{\Omega} = \Omega_1 \cup \cdots \cup \Omega_L$. Next, we construct the dual certificate matrix G as

$$\mathbf{G} := \sum_{\ell=1}^{L} \mathcal{Q}_{\Omega_{\ell}}(\mathbf{F}_{\ell}), \tag{16}$$

where $\mathbf{F}_{\ell} = \mathcal{P}_T(\mathcal{I} - \mathcal{Q}_{\Omega_{\ell}})\mathcal{P}_T(\mathbf{F}_{\ell-1})$ and $\mathbf{F}_0 = \mathbf{U}\mathbf{V}^{\mathrm{H}}$. Since $\mathbf{F}_{\ell} \in \overline{\Omega}$, we can see that $\mathcal{Q}_{\overline{\Omega}}^{\perp}(\mathbf{G}) = 0$; i.e., **G** satisfies the first condition of Lemma 1 for $\overline{\Omega}$. Besides, we have that

$$\mathcal{P}_{T}(\mathbf{F}_{\ell}) = \mathbf{F}_{\ell} = \left(\mathcal{P}_{T} - \mathcal{P}_{T}\mathcal{Q}_{\Omega_{\ell}}\mathcal{P}_{T}\right)(\mathbf{F}_{\ell-1}).$$
(17)

In addition, from (15), we already know that

$$\left| \mathcal{P}_T - \mathcal{P}_T \mathcal{Q}_{\Omega_\ell} \mathcal{P}_T \right\| \le \epsilon < \frac{1}{2},$$
 (18)

with a probability no less than $1 - n^{-8}$.

To bound $\|\mathcal{P}_T(\mathbf{G} - \mathbf{F}_0)\|_{\mathrm{F}}$, we follow a similar technique as in [3] to obtain $\mathcal{P}_T(\mathbf{G} - \mathbf{F}_0) = -\mathcal{P}_T(\mathbf{F}_L)$. The latter holds due to $q_\ell \geq \frac{p_\ell}{L} \geq c_0 \frac{\mu_\ell r^2 \log^2(n)}{n}$. Then, we can bound the term as follows

$$\begin{aligned} \|\mathcal{P}_{T} \big(\mathbf{G} - \mathbf{F}_{0} \big) \|_{\mathbf{F}} &= \|\mathcal{P}_{T} \big(\mathbf{F}_{L} \big) \|_{\mathbf{F}} \leq \epsilon^{L} \|\mathcal{P}_{T} (\mathbf{F}_{0}) \|_{\mathbf{F}} \\ &\leq \epsilon^{L} \| \mathbf{U} \mathbf{V}^{\mathrm{H}} \|_{\mathbf{F}} \leq \epsilon^{L} \sqrt{r} < \frac{1}{5 \| \mathcal{Q}_{\Omega} \|}, \end{aligned}$$
(19)

with a probability no less than $1 - Ln^{-8}$. This shows that G satisfies condition (9) of Lemma 1 with high probability. The only condition of Lemma 1 that requires to be satisfied is $\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \leq \frac{1}{2}$ which we show it in the next subsection.

D. An Upper Bound on $\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\|$

We first define the following two useful norms for arbitrary $\mathbf{M} \in \mathbb{C}^{d \times (n-d+1)}$:

$$\|\mathbf{M}\|_{\mathcal{A},\infty} := \max_{k \in [n]} \left| \frac{n \langle \mathbf{A}_k, \mathbf{M} \rangle}{r \mu_k \sqrt{\omega_k}} \right|, \tag{20}$$

$$\|\mathbf{M}\|_{\mathcal{A},2} := \sqrt{\sum_{k \in [n]} \frac{|n\langle \mathbf{A}_k, \mathbf{M} \rangle|^2}{r\mu_k \omega_k}}.$$
 (21)

Now, we state 3 inequalities regarding the defined norms in form of Lemmas 2-4. In what follows, we provides a set of probabilistic upper bounds in form of three lemmas. All the lemmas can be obtained only by applying matrix Bernstein inequality for the corresponding terms.

Lemma 2. Suppose M is a complex-valued $d \times (n - d + 1)$ matrix. If $p_k \ge c_0 \frac{\mu_k r^2 \log^2(n)}{n}$ for all $k \in [n]$, then

$$\left\| \left(\mathcal{Q}_{\Omega} - \mathcal{I} \right)(\mathbf{M}) \right\| \leq \sqrt{\frac{22}{c_0 r \log(n)}} \| \mathbf{M} \|_{\mathcal{A}, 2} + \frac{22}{3c_0 r \log(n)} \| \mathbf{M} \|_{\mathcal{A}, \infty}$$
(22)

holds with a probability at least $1 - n^{-10}$, where $c_0 \ge 22$.

Lemma 3. For $c_0 \ge 54$ and arbitrary $\mathbf{M} \in \mathbb{C}^{d \times (n-d+1)}$, we have

$$\left\| \left(\mathcal{P}_{T} \mathcal{Q}_{\Omega} - \mathcal{P}_{T} \right) (\mathbf{M}) \right\|_{\mathcal{A}, 2} \leq \sqrt{8} \left(\sqrt{\frac{20}{c_{0}}} \|\mathbf{M}\|_{\mathcal{A}, 2} + \frac{20}{3c_{0}} \|\mathbf{M}\|_{\mathcal{A}, \infty} \right)$$
(23)

with a probability no less than $1 - n^{-9}$, given that $p_k \geq c_0 \frac{\mu_k r^2}{n} \log^2(n)$ for $k \in [n]$.

Lemma 4. Suppose we have that

$$\frac{1}{8\log^2(n)} \le \min\{\|\mathcal{P}_U(\mathbf{e}_1^d)\|_{\mathrm{F}}^2, \|\mathcal{P}_V(\mathbf{e}_n^{n-d+1})\|_{\mathrm{F}}^2\}.$$
 (24)

Then, for $c_0 \ge 144$ and arbitrary $\mathbf{M} \in T$, we have

$$\left\| \left(\mathcal{P}_{T} \mathcal{Q}_{\Omega} - \mathcal{P}_{T} \right) (\mathbf{M}) \right\|_{\mathcal{A},\infty} \leq \sqrt{72} \left(\sqrt{\frac{32}{c_{0}}} \|\mathbf{M}\|_{\mathcal{A},2} + \frac{32}{3c_{0}} \|\mathbf{M}\|_{\mathcal{A},\infty} \right)$$
(25)

with probability at least $1 - n^{-14}$, given that $p_k \geq c_0 \frac{\mu_k r^2}{n} \log^2(n)$ for $k \in [n]$.

Now, recalling (16), we can write that

$$\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \leq \sum_{\ell=1}^{L} \|\mathcal{P}_{T^{\perp}}\mathcal{Q}_{\Omega_{\ell}}\mathcal{P}_{T}(\mathbf{F}_{\ell-1})\|.$$
(26)

Next, we bound each term in the right hand summation of (26):

$$\begin{aligned} \|\mathcal{P}_{T^{\perp}}\mathcal{Q}_{\Omega_{\ell}}\mathcal{P}_{T}(\mathbf{F}_{\ell-1})\| &= \|\left(\mathcal{P}_{T^{\perp}}(\mathcal{Q}_{\Omega_{\ell}}-\mathcal{I})\mathcal{P}_{T}\right)(\mathbf{F}_{\ell-1})\| \\ &\leq \|\left(\left(\mathcal{Q}_{\Omega_{\ell}}-\mathcal{I}\right)\mathcal{P}_{T}\right)(\mathbf{F}_{\ell-1})\| = \|\left(\mathcal{Q}_{\Omega_{\ell}}-\mathcal{I}\right)(\mathbf{F}_{\ell-1})\| \\ &\stackrel{\text{Lemma }^{2}}{\leq} \sqrt{\frac{18}{c_{0}r\log(n)}} \|\mathbf{F}_{\ell-1}\|_{\mathcal{A},2} + \frac{18}{3c_{0}r\log(n)}}\|\mathbf{F}_{\ell-1}\|_{\mathcal{A},\infty} \\ &\leq \frac{\|\mathbf{F}_{\ell-1}\|_{\mathcal{A},2} + \|\mathbf{F}_{\ell-1}\|_{\mathcal{A},\infty}}{c_{1}\sqrt{r\log(n)}}, \end{aligned}$$
(27)

Thus, for a proper c_1 , we have

$$\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \leq \frac{1}{c_1 \sqrt{r \log(n)}} \sum_{\ell=1}^{L} \left(\|\mathbf{F}_{\ell-1}\|_{\mathcal{A},2} + \|\mathbf{F}_{\ell-1}\|_{\mathcal{A},\infty} \right)$$
(28)

holds with high probability.

Because of $\mathbf{F}_{\ell} = \left(\mathcal{P}_T - \mathcal{P}_T \mathcal{Q}_{\Omega_{\ell}}\right)(\mathbf{F}_{\ell-1})$, and b using Lemmas 3 and 4 we can recursively bound $\|\mathcal{P}_{T^{\perp}}\mathcal{Q}_{\Omega_{\ell}}\mathcal{P}_T(\mathbf{F}_{\ell-1})\|$:

$$\|\mathbf{F}_{\ell}\|_{\mathcal{A},2} + \|\mathbf{F}_{\ell}\|_{\mathcal{A},\infty} \leq \left(\sqrt{\frac{32}{c_{0}}} + \sqrt{\frac{144}{c_{0}}}\right) \|\mathbf{F}_{\ell-1}\|_{\mathcal{A},2} \\ + \left(\frac{\sqrt{832}}{3c_{0}} + \frac{\sqrt{7216}}{3c_{0}}\right) \|\mathbf{F}_{\ell-1}\|_{\mathcal{A},\infty} \\ \leq \frac{\|\mathbf{F}_{\ell-1}\|_{\mathcal{A},2} + \|\mathbf{F}_{\ell-1}\|_{\mathcal{A},\infty}}{c_{2}}$$
(29)

For a suitable choice of $c_2 > 0$. By applying (29) multiple times, we conclude that

$$\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \le \frac{\|\mathbf{F}_0\|_{\mathcal{A},2} + \|\mathbf{F}_0\|_{\mathcal{A},\infty}}{c_1 \sqrt{r \log(n)}} \sum_{\ell=1}^L c_2^{1-\ell} \qquad (30)$$

with high probability. We further bound $\|\mathbf{F}_0\|_{\mathcal{A},\infty}$ and $\|\mathbf{F}_0\|_{\mathcal{A},2}$ to simplify (30). Also, it is easy to see $\|\mathbf{F}_0\|_{\mathcal{A},\infty} \leq 1$. Then, we only need to bound $\|\mathbf{F}_0\|_{\mathcal{A},2}$. Hence, we use

$$\|\mathbf{F}_{0}\|_{\mathcal{A},2}^{2} = \sum_{k \in [n]} \frac{n |\langle \mathbf{A}_{k}, \mathbf{F}_{0} \rangle|^{2}}{\omega_{k} \mu_{k} r} = \sum_{k \in [n]} \frac{\mu_{k} r}{n} \left(\frac{n |\langle \mathbf{A}_{k}, \mathbf{F}_{0} \rangle|}{\sqrt{\omega_{k}} \mu_{k} r} \right)^{2}$$
$$\leq \sum_{k \in n} \frac{\mu_{k} r}{n} \leq \sum_{k \in n} \|\mathcal{P}_{U}(\mathbf{A}_{k})\|_{\mathrm{F}}^{2} + \|\mathcal{P}_{V}(\mathbf{A}_{k})\|_{\mathrm{F}}^{2}$$
(31)

With simple calculation, one can see $\sum_{k \in n} \|\mathcal{P}_U(\mathbf{A}_k)\|_{\mathrm{F}}^2 \leq r \log(n)$ and similarly $\sum_{k \in n} \|\mathcal{P}_V(\mathbf{A}_k)\|_{\mathrm{F}}^2 \leq r \log(n)$. Hence, the direct consequence would lead to

$$\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \leq \frac{\sqrt{2r\log(n)} + 1}{c_1\sqrt{r\log(n)}} \sum_{\ell=1}^{L} c_2^{1-\ell} \leq \frac{2\sqrt{2}}{c_1} \sum_{\ell=1}^{L} c_2^{1-\ell}$$
(32)

for $q_k \geq c_0 \frac{\mu_k}{n} r^2 \log^2(n)$, or equivalently $p_k \geq c_0 \frac{\mu_k}{n} r^2 \log^3(n)$. For $c_2 \geq 2$ and $c_1 \geq 12$, we can conclude that

$$\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\| \le \frac{2\sqrt{2}}{c_1} \left(1 + \sum_{\ell=1}^{\infty} (\frac{1}{2})^\ell\right) \le \frac{4\sqrt{2}}{c_1} \le \frac{1}{2},$$
 (33)

with high probability. Therefore, if $p_k \ge c_0 \frac{\mu_k}{n} r^2 \log^3(n)$ for $k \in [n]$, with probability no less than $1 - n^{-10}$, matrix **G** is a valid dual certificate. Accordingly, from Lemma 1, the solution of (2) is exact and unique (with high probability).

REFERENCES

- E. J. Candes, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," *Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences*, vol. 59, no. 8, pp. 1207–1223, 2006.
- [2] D. Gross, "Recovering low-rank matrices from few coefficients in any basis," *IEEE Transactions on Information Theory*, vol. 57, no. 3, pp. 1548–1566, 2011.
- [3] Y. Chen and Y. Chi, "Robust spectral compressed sensing via structured matrix completion," *IEEE Transactions on Information Theory*, vol. 60, no. 10, pp. 6576–6601, 2014.