Proof of Theorem 1 of "Two-snapshot DOA Estimation via Hankel-structured Matrix Completion "

Mohammad Bokaei, Saeed Razavikia, and Arash Amini

Here, we prove Theorem 1 of the paper "Two-snapshot DOA Estimation via Hankel-structured Matrix Completion ". For the sake of completeness. Let $\mathbf{y} \in \mathbb{C}^{n}$ be the ground-truth noiseless measurement on a ULA array. We also define the Hankel operator $\mathscr{H}(\cdot): \mathbb{R}^{n} \mapsto \mathbb{R}^{(d) \times(n-d+1)}$ as

$$
\mathscr{H}(\mathbf{x}):=\left[\begin{array}{cccc}
x_{1} & x_{2} & \ldots & x_{n-d+1} \tag{1}\\
x_{2} & x_{3} & \ldots & x_{n-d+2} \\
\vdots & \vdots & \vdots & \vdots \\
x_{d} & x_{d+1} & \ldots & x_{n}
\end{array}\right]
$$

where d is called the pencil parameter of the Hankel operator. The goal here is to recover \mathbf{y} from a subset of its elements by exploiting the low-rank structure of $\mathscr{H}(\mathbf{y})$. In particular, the estimated \mathbf{y} denoted by $\widehat{\mathbf{y}}$ is found via

$$
\begin{array}{rlr}
\widehat{\mathbf{y}}=\underset{\mathbf{g} \in \mathbb{C}^{n}}{\operatorname{argmin}} & \|\mathscr{H}(\mathbf{g})\|_{*} \tag{2}\\
\text { s.t. } & \mathcal{P}_{\Omega}(\mathbf{g})=\mathbf{y}_{o},
\end{array}
$$

where $\Omega \subset\{1, \ldots, n\}=[n]$ represents the index of available samples (the location of antennas), $\mathbf{y}_{o}=\mathcal{P}_{\Omega}(\mathbf{y})$, and \mathcal{P}_{Ω} is the projection operator to the observed samples space.

Theorem 1. Let $\mathbf{y} \in \mathbb{C}^{n}$ be the vector of true samples of the ULA for an r-sources. y can be recovered with probability no less than $1-n^{-10}$ from the measurements on the $\operatorname{SLA} \mathcal{P}_{\widetilde{\Omega}}(\mathbf{y})$ where Ω i.e. index set of the location of the antenna elements in the SLA are randomly chosen by uniformly drawing the indices from $[n]$ by solving the optimization in (2) if

$$
\begin{equation*}
p_{k} \geq \min \left\{1, \frac{\max \left(c \mu_{k} r^{2} \log ^{3}(n), 1\right)}{n}\right\} \tag{3}
\end{equation*}
$$

and $\frac{1}{8 \log (n)} \leq \min \left\{\left\|\mathbf{U} \mathbf{U}^{\mathrm{H}} \mathbf{e}_{1}^{d}\right\|_{\mathrm{F}}^{2},\left\|\mathbf{e}_{n}^{n-d+1} \mathbf{V} \mathbf{V}^{\mathrm{H}}\right\|_{\mathrm{F}}^{2}\right\}$, where d is the pencil parameter used in the Hankel operator and \mathbf{U}, \mathbf{V} are the unitary matrices of SVD of $\mathscr{H}(\mathbf{y})$. Also μ_{k} is the leverage score of Definition 1 of the paper and $c>0$ a scalar.

I. Proof of Theorem 1

W prove by constructing an appropriate dual certificate; the existence of this certificate guarantees that the solution to the problem in $\sqrt{2}$ is unique. This is a standard approach in the compressed sensing literature (see for instance [1]).

A. Projection

Using the well-studied golfing scheme first used in [2], we show the uniqueness of the solution of the problem. As the
first step, we need to define the sampling operator \mathcal{A}_{k} for any matrix $\mathbf{M} \in \mathbb{C}^{d \times(n-d+1)}$ as $\operatorname{tr}\left(\mathbf{M}^{\mathrm{T}} \mathbf{A}_{k}\right) \mathbf{A}_{k}$.. Let Ω be a random subset of $[n]$ such that the element $1 \leq k \leq n$ appears in Ω with probability p_{k} independent of other elements. We further define the self-adjoint projection operator onto Ω as $\mathcal{A}_{\Omega}=\sum_{k=1}^{n} \frac{\delta_{k}}{p_{k}} \mathcal{A}_{k}$. where δ_{k} is equal to 1 for $k \in \Omega$ and zero elsewhere and p_{k} is sampling probability of k-th element. It is easy to can check that $\mathbb{E}\left[\mathcal{A}_{\Omega}\right]=\mathcal{A}$, where \mathcal{A} stands for $\sum_{k=1}^{n} \mathcal{A}_{k}$. It is also simple to verify that

$$
\begin{equation*}
\left\|\mathcal{A}_{\Omega}\right\|=\left\|\sum_{k=1}^{n} \frac{\delta_{k}}{p_{k}} \mathcal{A}_{k}\right\| \leq \frac{\left\|\sum_{k=1}^{n} \mathcal{A}_{k}\right\|}{\min _{k} p_{k}}=\frac{\|\mathcal{A}\|}{\min _{k} p_{k}} \leq \frac{1}{\min _{k} p_{k}} \tag{4}
\end{equation*}
$$

We also define the orthogonal operator as $\mathcal{A}^{\perp}=\mathcal{I}-\mathcal{A}$ where \mathcal{I} is the identity operator. Then the tangent space T with respect to $\mathscr{H}(\mathbf{M})=\mathbf{U} \boldsymbol{\Sigma} \mathbf{V}$ is defined as

$$
\begin{equation*}
T:=\left\{\mathbf{U} \mathbf{Y}_{1}^{\mathrm{H}}+\mathbf{Y}_{2} \mathbf{V}^{\mathrm{H}}: \mathbf{Y}_{1} \in \mathbb{C}^{(n-d+1) \times r}, \mathbf{Y}_{2} \in \mathbb{C}^{d \times r}\right\} \tag{5}
\end{equation*}
$$

We can now reformulate (2) in form of the following unstructured matrix completion problem:

$$
\begin{align*}
\widehat{\mathbf{M}}=\underset{\mathbf{M} \in \mathbb{C}^{d \times(n-d+1)}}{\operatorname{argmin}} & \|\mathbf{M}\|_{*} \tag{6}\\
\text { s.t. } & \mathcal{Q}_{\Omega}(\mathbf{M})=\mathcal{Q}_{\Omega}(\mathscr{H}(\mathbf{y}))
\end{align*}
$$

where \mathcal{Q}_{Ω} is $\mathcal{A}_{\Omega}+\mathcal{A}^{\perp}$. Using (4), one can see $\left\|\mathcal{Q}_{\Omega}\right\| \leq$ $\frac{1}{\min _{k} p_{k}}+1$ as We further have $\mathbb{E}\left[\mathcal{Q}_{\Omega}\right]=\mathbb{E}\left[\mathcal{A}_{\Omega}\right]+\mathcal{A}^{\perp}=$ $\mathcal{A}+\mathcal{A}^{\perp}=\mathcal{I}$.

To prove the exact recovery of the convex optimization, it suffices to produce an appropriate dual certificate, as stated in the following lemma.
Lemma 1. For a given Ω, let the sampling operator \mathcal{Q}_{Ω} fulfill

$$
\begin{equation*}
\left\|\mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{Q}_{\Omega} \mathcal{P}_{T}\right\| \leq \frac{1}{2} \tag{7}
\end{equation*}
$$

where $\|\cdot\|$ stands for the operator norm and \mathcal{P}_{T} is the projection to the Tangent space defined in (5]. If there exists a matrix G satisfying

$$
\begin{equation*}
\mathcal{Q} \frac{\perp}{\Omega}(\mathbf{G})=0 \tag{8}
\end{equation*}
$$

$$
\begin{equation*}
\left\|\mathcal{P}_{T}\left(\mathbf{G}-\mathbf{U V}^{\mathrm{H}}\right)\right\|_{\mathrm{F}} \leq \frac{1}{5\left\|\mathcal{Q}_{\Omega}\right\|} \tag{9}
\end{equation*}
$$

and

$$
\begin{equation*}
\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \frac{1}{2} \tag{10}
\end{equation*}
$$

then, M is the unique solution to (6).
Proof. This lemma is a standard lemma in golfing scheme, so you can find the proof in [2].

We first analyze the condition (7) to construct the proof using Lemma 1 Then, we build up the dual certificate \mathbf{G}, and at the end, we validate the dual certificate.

B. Bounding $\left\|\mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{Q}_{\Omega} \mathcal{P}_{T}\right\|$

We first bound the term $\left\|\mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2}$ as

$$
\begin{equation*}
\left\|\mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2} \leq\left\|\mathcal{P}_{U}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2}+\left\|\mathcal{P}_{V}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2} \leq \frac{2 \mu_{k} r}{n} \tag{11}
\end{equation*}
$$

where $\mathcal{P}_{U}\left(\mathbf{A}_{k}\right)=\mathbf{U} \mathbf{U}^{\mathrm{H}} \mathbf{A}_{k}$ and $\mathcal{P}_{V}\left(\mathbf{A}_{k}\right)=\mathbf{A}_{k} \mathbf{V} \mathbf{V}^{\mathrm{H}}$. Let us define the following family of operators $\mathcal{Z}_{k}: \mathbb{C}^{d \times(n-d+1)} \mapsto$ $\mathbb{C}^{d \times(n-d+1)}$ as

$$
\mathcal{Z}_{k}:=\left(\frac{\delta_{k}}{p_{k}}-1\right) \mathcal{P}_{T} \mathcal{A}_{k} \mathcal{P}_{T} \quad \forall k \in[n]
$$

We can check that for any $\mathbf{M} \in \mathbb{C}^{d \times(n-d+1)}$ we have

$$
\begin{align*}
\left\|\mathcal{Z}_{k}(\mathbf{M})\right\|_{\mathrm{F}}= & \|\left(\frac{\delta_{k}}{p_{k}}-1\right) \underbrace{\left\langle\mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{M})\right\rangle}_{=\left\langle\mathcal{P}_{T}\left(\mathbf{A}_{k}\right), \mathbf{M}\right\rangle} \mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\|_{\mathrm{F}} \tag{12}\\
& \leq \frac{1}{p_{k}}\left\|\mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2}\|\mathbf{M}\|_{\mathrm{F}}
\end{align*}
$$

Therefore, the operator norm $\left\|\mathcal{Z}_{k}\right\|$ is upper-bounded as

$$
\begin{equation*}
\left\|\mathcal{Z}_{k}\right\| \leq \frac{1}{p_{k}}\left\|\mathcal{P}_{T}\left(\boldsymbol{A}_{k}\right)\right\|_{\mathrm{F}}^{2} \leq \frac{2}{p_{k}} \frac{\mu_{k} r}{n} \leq \frac{2}{c_{0} \log (n)} \tag{13}
\end{equation*}
$$

where we used $p_{k} \geq c_{0} \frac{\mu_{k} r \log (n)}{n}$ in the last inequality.
It is not difficult to see that $\sum_{k=1}^{n} \mathcal{Z}_{k}=\mathcal{P}_{T} \mathcal{Q}_{\Omega} \mathcal{P}_{T}-\mathcal{P}_{T}$. Since $\mathbb{E}\left[\mathcal{Q}_{\Omega}\right]=\mathcal{I}$, the latter result shows that $\mathbb{E}\left[\mathcal{Z}_{k}\right]=\mathbf{0}$. Besides, for any $\mathbf{M} \in \mathbb{C}^{d \times(n-d+1)}$, if $\mathcal{Z}_{k}^{2}(\mathbf{M})$ represents $\mathcal{Z}_{k}^{*}\left(\mathcal{Z}_{k}(\mathbf{M})\right)$, then, we have

$$
\begin{align*}
& \left\|\sum_{k} \mathbb{E}\left[\mathcal{Z}_{k}^{2}(\mathbf{M})\right]\right\|_{\mathrm{F}}=\| \sum_{k} \mathbb{E}\left[\left(\frac{\delta_{k}}{p_{k}}-1\right)^{2}\right]\left\langle\mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{M})\right\rangle \\
& \times\left\langle\mathbf{A}_{k}, \mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\rangle \mathcal{P}_{T}\left(\mathbf{A}_{k}\right) \|_{\mathrm{F}} \\
& \leq \max _{k} \frac{1-p_{k}}{p_{k}}\left\|\mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2}\left\|\sum_{k}\left\langle\mathbf{A}_{k}, \mathcal{P}_{T}(\mathbf{M})\right\rangle \mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}} \\
& \leq \max _{k} \frac{1}{p_{k}}\left\|\mathcal{P}_{T}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2}\|\mathbf{M}\|_{\mathrm{F}} . \tag{14}
\end{align*}
$$

Therefore, similar to 14 the operator norm can be bounded as $\left\|\sum_{k} \mathbb{E}\left[\mathcal{Z}_{k}^{2}\right]\right\| \leq \frac{2}{c_{0} \log (n)}$. Then, by the matrix Bernstein inequality, for $c_{0} \geq \frac{56}{3}$, we know the existence of some constant $0<\epsilon \leq \frac{1}{2}$ such that

$$
\begin{equation*}
\left\|\sum_{k} \mathcal{Z}_{k}\right\|=\left\|\mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{Q}_{\Omega} \mathcal{P}_{T}\right\| \leq \epsilon \tag{15}
\end{equation*}
$$

with a probability exceeding $1-n^{-8}$.

C. Dual Certificates construction

We build the dual certificate by using the golfing scheme introduced in [2]. For a small constant $\epsilon<\frac{1}{e}$, let us form $L:=\log _{\frac{1}{\epsilon}}\left(n^{2}\left\|\mathcal{Q}_{\Omega}\right\|\right)$ independent subsets $\left\{\Omega_{\ell}\right\}_{\ell=1}^{\mathcal{e}}$ of $[n]$ by choosing the elements $1 \leq k \leq n$ with probability $q_{k}:=$ $\frac{1}{\Omega}-\left(1-p_{k}\right)^{\frac{1}{L}}$ independent of each other. Furthermore, let $\bar{\Omega}=\Omega_{1} \cup \cdots \cup \Omega_{L}$. Next, we construct the dual certificate matrix \mathbf{G} as

$$
\begin{equation*}
\mathbf{G}:=\sum_{\ell=1}^{L} \mathcal{Q}_{\Omega_{\ell}}\left(\mathbf{F}_{\ell}\right) \tag{16}
\end{equation*}
$$

where $\mathbf{F}_{\ell}=\mathcal{P}_{T}\left(\mathcal{I}-\mathcal{Q}_{\Omega_{\ell}}\right) \mathcal{P}_{T}\left(\mathbf{F}_{\ell-1}\right)$ and $\mathbf{F}_{0}=\mathbf{U} \mathbf{V}^{\mathrm{H}}$. Since $\mathbf{F}_{\ell} \in \bar{\Omega}$, we can see that $\mathcal{Q} \frac{\perp}{\Omega}(\mathbf{G})=0$; i.e., \mathbf{G} satisfies the first condition of Lemma 1 for $\bar{\Omega}$. Besides, we have that

$$
\begin{equation*}
\mathcal{P}_{T}\left(\mathbf{F}_{\ell}\right)=\mathbf{F}_{\ell}=\left(\mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{Q}_{\Omega_{\ell}} \mathcal{P}_{T}\right)\left(\mathbf{F}_{\ell-1}\right) \tag{17}
\end{equation*}
$$

In addition, from (15), we already know that

$$
\begin{equation*}
\left\|\mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{Q}_{\Omega_{\ell}} \mathcal{P}_{T}\right\| \leq \epsilon<\frac{1}{2} \tag{18}
\end{equation*}
$$

with a probability no less than $1-n^{-8}$.
To bound $\left\|\mathcal{P}_{T}\left(\mathbf{G}-\mathbf{F}_{0}\right)\right\|_{\mathrm{F}}$, we follow a similar technique as in [3] to obtain $\mathcal{P}_{T}\left(\mathbf{G}-\mathbf{F}_{0}\right)=-\mathcal{P}_{T}\left(\mathbf{F}_{L}\right)$. The latter holds due to $q_{\ell} \geq \frac{p_{\ell}}{L} \geq c_{0} \frac{\mu_{\ell} r^{2} \log ^{2}(n)}{n}$. Then, we can bound the term as follows

$$
\begin{gather*}
\left\|\mathcal{P}_{T}\left(\mathbf{G}-\mathbf{F}_{0}\right)\right\|_{\mathrm{F}}=\left\|\mathcal{P}_{T}\left(\mathbf{F}_{L}\right)\right\|_{\mathrm{F}} \leq \epsilon^{L}\left\|\mathcal{P}_{T}\left(\mathbf{F}_{0}\right)\right\|_{\mathrm{F}} \\
\leq \epsilon^{L}\left\|\mathbf{U V}^{\mathrm{H}}\right\|_{\mathrm{F}} \leq \epsilon^{L} \sqrt{r}<\frac{1}{5\left\|\mathcal{Q}_{\Omega}\right\|} \tag{19}
\end{gather*}
$$

with a probability no less than $1-L n^{-8}$. This shows that G satisfies condition (9) of Lemma 1 with high probability. The only condition of Lemma 1 that requires to be satisfied is $\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \frac{1}{2}$ which we show it in the next subsection.

D. An Upper Bound on $\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\|$

We first define the following two useful norms for arbitrary $\mathbf{M} \in \mathbb{C}^{d \times(n-d+1)}$:

$$
\begin{array}{r}
\|\mathbf{M}\|_{\mathcal{A}, \infty}:=\max _{k \in[n]}\left|\frac{n\left\langle\mathbf{A}_{k}, \mathbf{M}\right\rangle}{r \mu_{k} \sqrt{\omega_{k}}}\right| \\
\|\mathbf{M}\|_{\mathcal{A}, 2}:=\sqrt{\sum_{k \in[n]} \frac{\left|n\left\langle\mathbf{A}_{k}, \mathbf{M}\right\rangle\right|^{2}}{r \mu_{k} \omega_{k}}} . \tag{21}
\end{array}
$$

Now, we state 3 inequalities regarding the defined norms in form of Lemmas 24. In what follows, we provides a set of probabilistic upper bounds in form of three lemmas. All the lemmas can be obtained only by applying matrix Bernstein inequality for the corresponding terms.
Lemma 2. Suppose \mathbf{M} is a complex-valued $d \times(n-d+1)$ matrix. If $p_{k} \geq c_{0} \frac{\mu_{k} r^{2} \log ^{2}(n)}{n}$ for all $k \in[n]$, then

$$
\begin{align*}
\left\|\left(\mathcal{Q}_{\Omega}-\mathcal{I}\right)(\mathbf{M})\right\| & \leq \sqrt{\frac{22}{c_{0} r \log (n)}}\|\mathbf{M}\|_{\mathcal{A}, 2} \tag{22}\\
& +\frac{22}{3 c_{0} r \log (n)}\|\mathbf{M}\|_{\mathcal{A}, \infty}
\end{align*}
$$

holds with a probability at least $1-n^{-10}$, where $c_{0} \geq 22$.

Lemma 3. For $c_{0} \geq 54$ and arbitrary $\mathbf{M} \in \mathbb{C}^{d \times(n-d+1)}$, we have

$$
\begin{align*}
\left\|\left(\mathcal{P}_{T} \mathcal{Q}_{\Omega}-\mathcal{P}_{T}\right)(\mathbf{M})\right\|_{\mathcal{A}, 2} & \leq \sqrt{8}\left(\sqrt{\frac{20}{c_{0}}}\|\mathbf{M}\|_{\mathcal{A}, 2}\right. \tag{23}\\
& \left.+\frac{20}{3 c_{0}}\|\mathbf{M}\|_{\mathcal{A}, \infty}\right)
\end{align*}
$$

with a probability no less than $1-n^{-9}$, given that $p_{k} \geq$ $c_{0} \frac{\mu_{k} r^{2}}{n} \log ^{2}(n)$ for $k \in[n]$.

Lemma 4. Suppose we have that

$$
\begin{equation*}
\frac{1}{8 \log ^{2}(n)} \leq \min \left\{\left\|\mathcal{P}_{U}\left(\mathbf{e}_{1}^{d}\right)\right\|_{\mathrm{F}}^{2},\left\|\mathcal{P}_{V}\left(\mathbf{e}_{n}^{n-d+1}\right)\right\|_{\mathrm{F}}^{2}\right\} \tag{24}
\end{equation*}
$$

Then, for $c_{0} \geq 144$ and arbitrary $\mathbf{M} \in T$, we have

$$
\begin{align*}
\left\|\left(\mathcal{P}_{T} \mathcal{Q}_{\Omega}-\mathcal{P}_{T}\right)(\mathbf{M})\right\|_{\mathcal{A}, \infty} & \leq \sqrt{72}\left(\sqrt{\frac{32}{c_{0}}}\|\mathbf{M}\|_{\mathcal{A}, 2}\right. \tag{25}\\
& \left.+\frac{32}{3 c_{0}}\|\mathbf{M}\|_{\mathcal{A}, \infty}\right)
\end{align*}
$$

with probability at least $1-n^{-14}$, given that $p_{k} \geq$ $c_{0} \frac{\mu_{k} r^{2}}{n} \log ^{2}(n)$ for $k \in[n]$.

Now, recalling (16), we can write that

$$
\begin{equation*}
\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \sum_{\ell=1}^{L}\left\|\mathcal{P}_{T^{\perp}} \mathcal{Q}_{\Omega_{\ell}} \mathcal{P}_{T}\left(\mathbf{F}_{\ell-1}\right)\right\| \tag{26}
\end{equation*}
$$

Next, we bound each term in the right hand summation of (26):

$$
\begin{align*}
& \left\|\mathcal{P}_{T^{\perp}} \mathcal{Q}_{\Omega_{\ell}} \mathcal{P}_{T}\left(\mathbf{F}_{\ell-1}\right)\right\|=\left\|\left(\mathcal{P}_{T^{\perp}}\left(\mathcal{Q}_{\Omega_{\ell}}-\mathcal{I}\right) \mathcal{P}_{T}\right)\left(\mathbf{F}_{\ell-1}\right)\right\| \\
& \quad \leq\left\|\left(\left(\mathcal{Q}_{\Omega_{\ell}}-\mathcal{I}\right) \mathcal{P}_{T}\right)\left(\mathbf{F}_{\ell-1}\right)\right\|=\left\|\left(\mathcal{Q}_{\Omega_{\ell}}-\mathcal{I}\right)\left(\mathbf{F}_{\ell-1}\right)\right\| \\
& \quad \leq \frac{\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, 2}+\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, \infty}}{c_{1} \sqrt{r \log (n)}} \\
& \quad \leq \frac{18}{3 c_{0} r \log (n)}\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, \infty} \tag{27}\\
& \quad \leq \frac{18}{c_{0} r \log (n)}\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, 2}
\end{align*}
$$

Thus, for a proper c_{1}, we have

$$
\begin{equation*}
\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \frac{1}{c_{1} \sqrt{r \log (n)}} \sum_{\ell=1}^{L}\left(\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, 2}+\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, \infty}\right) \tag{28}
\end{equation*}
$$

holds with high probability.
Because of $\mathbf{F}_{\ell}=\left(\mathcal{P}_{T}-\mathcal{P}_{T} \mathcal{Q}_{\Omega_{\ell}}\right)\left(\mathbf{F}_{\ell-1}\right)$, and b using Lemmas 3 and 4 we can recursively bound $\left\|\mathcal{P}_{T^{\perp}} \mathcal{Q}_{\Omega_{\ell}} \mathcal{P}_{T}\left(\mathbf{F}_{\ell-1}\right)\right\|$:

$$
\begin{align*}
\left\|\mathbf{F}_{\ell}\right\|_{\mathcal{A}, 2}+\left\|\mathbf{F}_{\ell}\right\|_{\mathcal{A}, \infty} & \leq\left(\sqrt{\frac{32}{c_{0}}}+\sqrt{\frac{144}{c_{0}}}\right)\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, 2} \\
& +\left(\frac{\sqrt{8} 32}{3 c_{0}}+\frac{\sqrt{7216}}{3 c_{0}}\right)\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, \infty} \\
& \leq \frac{\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, 2}+\left\|\mathbf{F}_{\ell-1}\right\|_{\mathcal{A}, \infty}}{c_{2}} \tag{29}
\end{align*}
$$

For a suitable choice of $c_{2}>0$. By applying (29) multiple times, we conclude that

$$
\begin{equation*}
\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \frac{\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, 2}+\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, \infty}}{c_{1} \sqrt{r \log (n)}} \sum_{\ell=1}^{L} c_{2}^{1-\ell} \tag{30}
\end{equation*}
$$

with high probability. We further bound $\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, \infty}$ and $\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, 2}$ to simplify 30 . Also, it is easy to see $\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, \infty} \leq 1$. Then, we only need to bound $\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, 2}$. Hence, we use

$$
\begin{align*}
\left\|\mathbf{F}_{0}\right\|_{\mathcal{A}, 2}^{2} & =\sum_{k \in[n]} \frac{n\left|\left\langle\mathbf{A}_{k}, \mathbf{F}_{0}\right\rangle\right|^{2}}{\omega_{k} \mu_{k} r}=\sum_{k \in[n]} \frac{\mu_{k} r}{n}\left(\frac{n\left|\left\langle\mathbf{A}_{k}, \mathbf{F}_{0}\right\rangle\right|}{\sqrt{\omega_{k}} \mu_{k} r}\right)^{2} \\
& \leq \sum_{k \in n} \frac{\mu_{k} r}{n} \leq \sum_{k \in n}\left\|\mathcal{P}_{U}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2}+\left\|\mathcal{P}_{V}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2} \tag{31}
\end{align*}
$$

With simple calculation, one can see $\sum_{k \in n}\left\|\mathcal{P}_{U}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2} \leq$ $r \log (n)$ and similarly $\sum_{k \in n}\left\|\mathcal{P}_{V}\left(\mathbf{A}_{k}\right)\right\|_{\mathrm{F}}^{2} \leq r \log (n)$. Hence, the direct consequence would lead to

$$
\begin{equation*}
\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \frac{\sqrt{2 r \log (n)}+1}{c_{1} \sqrt{r \log (n)}} \sum_{\ell=1}^{L} c_{2}^{1-\ell} \leq \frac{2 \sqrt{2}}{c_{1}} \sum_{\ell=1}^{L} c_{2}^{1-\ell} \tag{32}
\end{equation*}
$$

for $q_{k} \geq c_{0} \frac{\mu_{k}}{n} r^{2} \log ^{2}(n)$, or equivalently $p_{k} \geq$ $c_{0} \frac{\mu_{k}}{n} r^{2} \log ^{3}(n)$. For $c_{2} \geq 2$ and $c_{1} \geq 12$, we can conclude that

$$
\begin{equation*}
\left\|\mathcal{P}_{T^{\perp}}(\mathbf{G})\right\| \leq \frac{2 \sqrt{2}}{c_{1}}\left(1+\sum_{\ell=1}^{\infty}\left(\frac{1}{2}\right)^{\ell}\right) \leq \frac{4 \sqrt{2}}{c_{1}} \leq \frac{1}{2} \tag{33}
\end{equation*}
$$

with high probability. Therefore, if $p_{k} \geq c_{0} \frac{\mu_{k}}{n} r^{2} \log ^{3}(n)$ for $k \in[n]$, with probability no less than $1-n^{-10}$, matrix \mathbf{G} is a valid dual certificate. Accordingly, from Lemma 1, the solution of 22 is exact and unique (with high probability).

REFERENCES

[1] E. J. Candes, J. K. Romberg, and T. Tao, "Stable signal recovery from incomplete and inaccurate measurements," Communications on Pure and Applied Mathematics: A Journal Issued by the Courant Institute of Mathematical Sciences, vol. 59, no. 8, pp. 1207-1223, 2006.
[2] D. Gross, "Recovering low-rank matrices from few coefficients in any basis," IEEE Transactions on Information Theory, vol. 57, no. 3, pp. 1548-1566, 2011.
[3] Y. Chen and Y. Chi, "Robust spectral compressed sensing via structured matrix completion," IEEE Transactions on Information Theory, vol. 60, no. 10, pp. 6576-6601, 2014.

