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Analysis of Different EOSs in Predicting the Ideal
Curve and Deriving the Temperature Dependencies
of Their Parameters
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The regularity shown by different fluids along the contour of the ideal com-
pressibility factor Z =PV/(RT )=1 in the temperature–density plane is used
to test the accuracy of different equations of state and derive temperature
dependencies of their parameters. For a wide range of pure fluids, this con-
tour, known as the Zeno line, has been empirically observed to be nearly
linear. The precision of the van der Waals (vdW) equation in predicting
the Zeno line has been evaluated and shown that this equation predicts a
linear relation between temperature and density on the Z =1 contour, quali-
tatively. However, the line shows significant deviations from the experimental
Zeno line. Experimental PVT data for CO2 is used to obtain the temperature
dependencies of the vdW parameters. The vdW equation with such tempera-
ture dependencies does not show a straight line for the Z =1 contour. This
means that the equation is not able to predict the Zeno line, both qualita-
tively and quantitatively. Also, the accuracy of the modified vdW equations
in predicting the Zeno line has been investigated. It is shown that none of
these equations can predict the Zeno line qualitatively. However, the predicted
line on the Z = 1 contour given by some of these equations is near the
experimental Zeno line. Assuming that the Zeno line must hold, the temper-
ature dependence of the non-ideal thermal pressure, A′′, of the linear iso-
therm regularity as A′′ =a +bT + c/T has been derived. Such a temperature
dependence was confirmed by experimental data. The derived expression for
A′′ was used to obtain the temperature dependence of the thermal pressure
coefficient, which is in accordance with experimental data. Also, the temper-
ature dependencies of the parameters of the dense system equation of state
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have been derived by imposing this regularity on it. The resulting expres-
sions are in better agreement with experimental values than those previously
obtained.

KEY WORDS: cubic equation of state; dense system equation of state;
equation of state; linear isotherm regularity; Zeno line.

1. INTRODUCTION

Several empirical regularities have been reported for fluids; one which is
related to the ideal curve (Z=1) is the Zeno line, or the contour of Z=1,
where the compressibility factor is the same as that for the ideal gas. The
density of many fluids along the Zeno line has been found to be nearly a
linear function of temperature. The ideal curves (Z=1 and its first deriva-
tives) are useful as criteria for an assessment of the extrapolation behavior
of simple substances, and also they contain important information on the
behavior in the high-temperature, high-pressure region [1].

Although the linearity on the Z = 1 contour was discovered by
Batschinski [2] in 1906, it apparently had been forgotten until nearly
six decades later. Beginning in the early 1960s, researchers investigated
the Zeno line extensively [3] and it has been related to other thermody-
namic properties. During late 1960s, Holleran [4–7] proposed several use-
ful applications for the Z = 1 contour. In recent years, from molecular
dynamics simulations, Herschbach [8] obtained a Zeno line close to exper-
imentally measured values over a wide range of densities by using the
Lennard–Jones potential, the simple point charge (SPC), and the extended
SPC (SPC/E) models for pure H2O.

At low densities, the Z = 1 contour is linear in a plot of T versus ρ,
where the zero-density intercept is the Boyle temperature. The most nota-
ble feature, however, is that the Zeno contour maintains its linearity even
in the dense fluid region.

In this paper, first we have investigated the ability of different equa-
tions of state (including the vdW and eight other cubic equations, linear
isotherm regularity, and dense system equation of state) in predicting the
linearity on the Z = 1 contour. Second, the possibility that temperature
dependences of the parameters of the equations of state (EOSs) are chosen
in such a way that (a) the Zeno line is kept linear and (b) the temperature
dependencies are in accordance with experiment, has been examined. In
the case of the linear isotherm regularity, the temperature dependence of
A′′ is obtained. The expression obtained for A′′ is examined both directly,
by using experimental data, and indirectly, by examining the temperature
dependence of the thermal pressure coefficient, γ = (∂P/∂T )ρ .
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Also, we have derived new functions for the temperature dependencies
of the parameters of the dense system equation of state by imposing the
Zeno line constraint on the EOS.

2. ABILITY OF CUBIC EOSs TO PREDICT THE ZENO LINE

The accuracy of an EOS may be tested via its ability to predict the
well-known regularities, which have mostly been found experimentally. We
investigate here the ability of the van der Waals (vdW) EOS in predicting
the Zeno line. According to the Zeno line regularity, the density and tem-
perature are linearly related to each other on the Z =1 contour as

T

TZ

+ ρ

ρZ

=1, (1)

where TZ and ρz are called the Zeno temperature and Zeno density,
respectively, and ρ =1/v is the molar density. The vdW equation,(

P + a

v2

)
(v −b)=RT, (2)

when Z =1 the above equation may be written as

ρ =−RT

a
+ 1

b
, (3)

where a and b are the van der Waals parameters and R is the gas con-
stant. If a and b in Eq. (3) are substituted in terms of the critical vari-
ables (b=vc/3 and a =9RvcTc/8), the reduced form of this equation may
be written as

ρ

ρc
=3− 8T

3Tc
, (4)

where ρc and Tc are the critical density and temperature, respectively.
However, we may substitute the parameters in term of the Boyle den-
sity, ρB, and Boyle temperature, TB, (a =RTB/ρB and b=1/ρB) to reduce
Eq. (3) to

ρ

ρB
=1− T

TB
. (5)

Therefore, the vdW EOS predicts a linear relation between temperature
and density on the Z=1 contour, at least qualitatively, if a and b are con-
stant. The experimental Zeno line for CO2 [8] is shown in Fig. 1, along
with the lines predicted by Eqs. (4) and (5). As shown in this figure, the
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Fig. 1. Significant deviations of the lines given by Eqs. (4) (- - - -)
and (5) (–·–·–) from the experimental Zeno line (—) for carbon dioxide
(ρc = 10.6249 mol·L−1, Tc = 304.1282 K, ρB = 20.9740 mol·L−1, and TB =
716.554 K).

predicted lines given by the vdW are significantly different from the exper-
imental Zeno line of carbon dioxide, if the van der Waals parameters are
temperature independent.

We may obtain the temperature dependencies of the a and b param-
eters in such a way that the EOS fits well onto experimental PVT data.
This is possible because the deviations of the calculated Zeno lines (Fig.
1) from the experimental line may be due to the temperature dependence
of the parameters. To investigate such an expectation, we have used exper-
imental PV data of CO2 for different isotherms in a wide pressure range,
along with the Solver in Excell, to find the values for the a and b param-
eters. The obtained results for the b are well fitted with

1
b

= 1
b′

0
+b′

1T + b′
2

T
(6)

with a correlation coefficient of R2 = 0.999, b′
0 = 3.152 × 10−2 L·mol−1,

b′
1 = −1.159 × 10−6 mol·L−1·K−1, and b′

2 = −1.240 mol·K·L−1. The
obtained values for the a parameter are well fitted with

RT

a
=a′

0 +a′
1T +a′

2T
2 (7)

with a correlation coefficient of R2 = 0.999, a′
0 = 2.0497 mol·L−1, a′

1 =
−1.424×10−3 mol·L−1·K−1, and a′

2 =−3.652×10−8 mol·L−1·K−2. These
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Fig. 2. Density versus temperature for the Z =1 contour, when the vdW
parameters are temperature dependent (–·–·–) and temperature indepen-
dent (- - - -) compared to the experimental Zeno line (—) for CO2.

temperature dependencies of the parameters are inserted into the vdW
EOS. The predicted Zeno line of the resulting equation was then derived,
which is shown in Fig. 2. As shown in this figure, the calculated Zeno line
is closer to the experimental line at low temperatures, when temperature
dependencies of the parameters are included. However, deviations from
linearity can be observed when the parameters are temperature dependent
as given by Eqs. (6) and (7). Therefore, we may conclude that the vdW
EOS may not be able to predict the Zeno line both qualitatively and quan-
titatively. In a similar approach, one may derive a relation between T and
ρ by using another EOS. The predicted relation is given for some modified
vdW equations in Table I, although none of these equations give a linear
relation between ρ and T on the Zeno contour.

We have made similar investigations on some cubic equations of
state, including the Peng–Robinson (PR) [9], Soave–Redlich–Kwong (SRK)
[10], Yu–Lu (YL) [11], Deiters (D) [12, 13], Patel–Teja (PT) [14], modi-
fied-Soave–Redlich–Kwong (MSRK) [15], Redlich–Kwong (RK) [16], and
Soave–Peng–Robinson–Stryjek–Vera (SPRSV) [17]. The predicted T versus
ρ on a Z =1 contour given by these EOSs are compared with the experi-
mental Zeno line in Fig. 3a and b for CO2. As shown in these sub-figures,
none of these EOSs gives a linear relation between ρ and T on the Z =1
contour. However, Deiters’ EOS gives the best agreement.
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Table I. Obvious Nonlinear Expression Between Tr and ρr on the Z = 1 Contour Given by
Some Modified vdW EOSs (ρr =ρ/ρB and Tr =T/TB)

EOS predicted relation TB ρB

on Z =1 contour

Soave–Peng– Tr +2Trρr −Trρ
2
r +ρr =1 a/(Rb) 1/b

Robinson–Stryjek–Vera

Redlich–Kwong T 1.5
r + 2

3 T 1.5
r ρr + 2

3 ρr =1 (a/(Rb))2/3 2/(3b)

Carnahan Starling
8(8−ρr)

(4−ρr)3
= 1

Tr
a/(Rb) 1/b

3. DERIVING THE TEMPERATURE DEPENDENCE OF THE A′′
PARAMETER OF THE LINEAR ISOTHERM REGULARITY

The linear isotherm regularity (LIR) may be written as [18, 19]

(Z −1)v2 =A+Bρ2, (8)

where A and B are temperature-dependent parameters that for pure fluids
are given as

A=A′′ − A′

RT
(9)

and

B = B ′

RT
. (10)

where A′ and B ′ are constants, which are related to the attraction and
repulsion terms of the average effective pair potential [20, 21] and A′′ is
related to the non-ideal thermal pressure.

Combination of Eq. (8) with Z =1 gives

ρ2
r =mTr +n, (11)

where ρr =ρ/ρc, Tr =T/Tc, and m and n are constant and are given as

m=−RTcA
′′

B ′ρ2
c

(12)

and

n= A′

B ′ρ2
c
. (13)
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Fig. 3. Predicted T versus ρ given by (a) SRK, SPRSV, Yu–Lu, and RK; (b) PT,
PR, Deiters, and MSRK equations of state compared with the experimental Zeno
line for carbon dioxide.

Therefore, the LIR in its present formulation does not predict a linear
relation between temperature and density on the Z = 1 contour, if A′′ is
considered to be a constant.

The Zeno line may be written as

ρr =α +βTr, (14)
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where α and β are as follows:

α = ρz

ρc
, (15)

β =−ρzTc

ρcTz
, (16)

where Tz and ρz are the intercepts of temperature and density in the T –ρ

plane. Consequently, inserting Eq. (14) into Eq. (11) yields

A′′ + 2αβB ′

R
+
(

α2B ′

R
− A′

R

)
1
Tr

+ β2B ′

R
Tr =0. (17)

Since A′′ is related to the thermal pressure coefficient (∂P/∂T )ρ [20] which
is obviously temperature dependent, one may expect that it is temperature
dependent as well. We may derive the temperature dependence of the A′′
parameter by solving Eq. (17) for A′′. The derived expression for A′′ leads
to a linear relation between ρ and T on the Z = 1 contour according to
the LIR. From Eq. (17), we find the temperature dependence of A′′ as

A′′ =a +bTr + c

Tr
, (18)

where a = −2αβB ′/R, b = −β2B ′/R, and c = A′/R − α2B ′/R, and all are
constant parameters that depend on the selected fluid.

We may investigate the accuracy of Eq. (18) by using experimental
data. The value of A′′ was calculated at different temperatures by using
experimental PVT data for argon and carbon dioxide [22] as follows: we
may plot (Z − 1) v2

r versus ρ2
r for an isotherm for temperatures and den-

sities for which the LIR is valid (ρ > ρB and T �2TB). The values of A
and B may be obtained from the intercept and slope of the line at the
temperature for which the isotherm is plotted. The temperature range was
divided into 20 K intervals, for which A′′ has been shown to be constant
[20]. Then, A is plotted versus 1/T for each interval to obtain A′′ for its
intermediate temperature. The calculated results are plotted in Fig. 4 for
CO2 and Ar which are fitted well with Eq. (18).

The A′′ parameter of the LIR is related to the non-ideal thermal pres-
sure as [18]

A′′ = 1
ρ2

(
γ

Rρ
−1

)
, (19)
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Fig. 4. Experimental values of A′′ which are well fitted with Eq. (18) for carbon
dioxide (�) and argon(�).

where γ = (∂P/∂T )v is the thermal pressure coefficient and R is the
gas constant. If A′′ is substituted from Eq. (18), then the temperature
dependence of γ can be obtained for each isochore as

γ = c′
0 + c′

1Tr + c′
2

Tr
, (20)

where c′
0, c′

1, and c′
2 are density-dependent parameters. We may obtain the

temperature dependence of the thermal pressure coefficient by using the
empirical EOS reported for different fluids (Ar [23, 24 ], CO2 [25], N2 [26,
27], and O2 [28]). The values obtained for γ from the empirical EOSs are
fitted with Eq. (20) as shown in Fig. 5. This figure shows that the values
of γ are fitted well with Eq. (20) for four different fluids.

4. USING THE ZENO LINE TO DERIVE THE TEMPERATURE
DEPENDENCIES OF THE DENSE SYSTEM EQUATION OF
STATE PARAMETERS

The dense system equation of state (DSEOS) is derived as [29]

Prv
2
r =A0 +A1ρr +A2ρ

2
r , (21)



1828 Parsafar and Saydi

1.9

2.4

2.9

3.4

3.9

4.4

4.9

5.4

5.9

180 680 1180 1680 2180 2680

[23]

[24]

rT

5

7

9

11

13

15

17

19

21

1               2 3               4              5 6 7

2

3

4

5

6

200 700 1200 1700 2200

2.5

3.5

4.5

5.5

rT

rT

rT

  [2 6]

  [2 7]

5.6

5.65

5.7

5.75

5.8

5.85

1.5 2.5 3.5 4.5 5.5 6.5

10
–5

×
γ,

 P
a·

K
-1

10
–5

×
γ,

 P
a·

K
-1

10
–5

×
γ,

 P
a·

K
-1

10
–5

×
γ,

 P
a·

K
-1

(a)

(b)

(c)

(d)

Fig. 5. Empirical values of γ = (∂P/∂T )ρ which are
well fitted in Eq. (20) for (a) argon; (b) carbon diox-
ide; (c) nitrogen; (d) oxygen.



Analysis of Different EOSs in Predicting the Ideal Curve 1829

where ρr =ρ/ρc, vr =v/vc, and Pr =P/Pc are dimensionless variables. On
the basis of the linear dependence of the isochoric heat capacity with tem-
perature, the A0, A1, and A2 parameters were derived as [29]

Ai(T )=ai +biT + ciT
2 −diT ln T (22)

for which ai , bi , ci , and di are constant and depend on the fluid (i =0,1,

and 2).
The mathematical form of the DSEOS on the Z = 1 contour is obtained
as

RT

PcVc
=A0ρr +A1ρ

2
r +A2ρ

3
r . (23)

When ρr =α +βT is inserted into Eq. (23), we find that

(αA0 +α2A1 +α3A2)+
(

βA0 +2αβA1 +3α2βA2 − R

PcVc

)
T

+(A1β
2 +3αβ2A2)T

2 +β3A2T
3 =0. (24)

If the temperature dependencies of the Ais are taken into account, accord-
ing to Eq. (22), and ln T is expanded about an arbitrary non-zero value,
then Eq. (24) reduces to a power series in terms of temperature.
The DSEOS can predict the Zeno line when each coefficient of the series
is zero. Such conditions are satisfied only when the parameters d0, d1, d2,
and c2 are all made zero. Hence, we may conclude that

A0 =a0 +b0T + c0T
2, (25)

A1 =a1 +b1T + c1T
2, (26)

A2 =a2 +b2T . (27)

However, the temperature dependencies of the experimental values of the
Ais are quite different from those given by Eqs. (25)–(27); for example,
see Fig. 5 in Ref. 29. Therefore, we may conclude that the temperature
dependencies of the Ais given by Eq. (22) are not consistent with the Zeno
line. For this reason we have proposed new expressions for the temperature
dependencies of the Ais, in such a way that the Zeno line holds, at least
qualitatively. The DSEOS can predict the Zeno line when the Ais are given
as

Ai = a−in

T n
+ a−in+1

T n−1
+· · ·+ai0 +ai1T +· · ·+ainT

n

+· · ·+a(in−i+2)T
n−i+2. (28)
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If Ai ’s are substituted from Eq. (28) into Eq. (24), then the resulting
equation is equal to zero if

A2 = a−2n

T n
+ a−2(n−1)

T n−1
+· · ·+a20 +a21T +· · ·+a2nT

n, (29)

A1 = a−1n

T n
+ a−1(n−1)

T n−1
+· · ·+a10 +a11T +· · ·+a1(n+1)T

n+1, (30)

A0 = a−0n

T n
+ a−0(n−1)

T n−1
+· · ·+a00 +a01T +· · ·+a0(n+2)T

n+2. (31)

We have to choose a value for n in such a way that the temperature depen-
dencies of the Ai ’s are in accordance with experiment. For n=0 and n =1,
we found that the expressions for the Ai ’s are not in agreement with exper-
iment. Therefore, when we assume that n = 2, then we will compare the
results with experiment.· For such a value for n, Eqs. (29)–(31) are reduced
to

A2 = a2

T 2
+ b2

T
+ c2 +d2T + e2T

2, (32)

A1 = a1

T 2
+ b1

T
+ c1 +d1T + e1T

2 +f1T
3, (33)

A0 = a0

T 2
+ b0

T
+ c0 +d0T + e0T

2 +f0T
3 +g0T

4. (34)

The experimental values of the Ai ’s for Ar were fitted into Eqs. (32)–(34),
which are shown in Fig. 6. Values of the parameters of Eqs. (32)–(34)
are given in Table II. The experimental values of the Ai ’s (for Ar) were
also fitted with the originally proposed expression, Eq. (22). As shown in
this figure, our expressions are in better agreement with the experimental
values than the original ones.

5. CONCLUSION

We have evaluated the accuracy of the vdW EOS equation for pre-
dicting the Zeno line and have shown that this equation predicts a lin-
ear relationship between temperature and density on the Z = 1 contour.
However, the predicted line has significant deviation from the experimental
Zeno line (see Fig. 1).

To find a reason for such a deviation, we have used PVT data of CO2
to find temperature dependencies of the vdW parameters. The predicted
line was found to be in better agreement with the experimental Zeno line
at low temperatures, when temperature dependencies of the parameters
were taken into account. However, the predicted line shows a noticeable
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Table II. Values of the Parameters of Eqs. (32)–(34) for Argon

Parameter Value

a0(K2) 67595
b0(K) −11134
c0 72.249
d0(K−1) −0.13960
e0(K−2) 2.1197×10−4

f0(K−3) −1.1682×10−7

g0(K−4) 2.4837×10−11

a1(K2) −48993
b1(K) 7776.3348
c1 −55.822
d1(K−1) 0.099900
e1(K−2) −1.0006×10−4

f1(K−3) 3.1032×10−4

a2(K2) 8.1436
b2(K) −6.5040×10−3

c2 4.2582×10−6

d2(K−1) 1044.9
e2(K−2) 73303

curvature in the latter case (see Fig. 2). Therefore, we have concluded
that the vdW EOS is unable to predict the Zeno line both quantitatively
and qualitatively, even when the temperature dependencies of its parame-
ters are included. Additionally, the accuracy of some well known modified
vdW EOSs in predicting the Zeno line has been investigated (see Table I).
It was shown that none of these EOSs predicts the Zeno line, even quali-
tatively.

The accuracy of eight different cubic EOSs in predicting the Zeno line
was investigated numerically in this work. Among these EOSs, the Deit-
ers’ equation shows the best agreement with the experimental Zeno line
(see Fig. 3). We have forced the LIR regularity in such a way that it sat-
isfies the Zeno line regularity, quantitatively, from which the temperature
dependence of the A′′ parameter was obtained for the first time. Such a
dependency was confirmed by experimental data (see Fig. 4). The derived
expression for the A′′ was used to obtain the temperature dependence of
the thermal pressure coefficient, which was found to be in accordance with
experimental data (see Fig. 5).

The same application was also applied to the DSEOS to find temper-
ature dependencies of its parameters. The derived expressions were found
to be in better agreement with experiment than those previously proposed
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(see Fig. 6). The reason for such better agreement may be due to the limited
assumption used in the original work, in which the isochoric heat capacity
(Cv) was assumed to be linear with temperature. The empirical values of Cv

for Ar [22] versus temperature are shown in Fig. 7 for ρ =28 mol·L−1. The
linearity is reasonable for a short temperature range only.
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