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The aim of this note is to provide a proof of Krull-Schmidt theorem for
modules. Here R denotes a ring with unity.

Definition 1. An R-module M is said to be indecomposable if it satisfies the
following equivalent conditions:

(1) M can not be decomposed as a direct sum of two nonzero modules.

(2) The only idempotents of the endomorphism ring of M are 0 and 1.

For the proof of the equivalence of (1) and (2), it suffices to observe that for
every idempotent e € End(M), the sum M = e(M) + (id —e)(M) is direct.

We recall that for an R-module M which is both artinian and noetherian,
the length of M, denoted by £(M), is the maximal number n such that there
exists a proper chain {0} = My C My C --- C M,, = M of submodules of M.
This number is well-defines. The length satisfies the following basic property:
if N is a submodule of M then ¢(M) = ((N) + ¢(M/N); in particular if N
is a proper submodule of M then ¢(N) < ¢(M). Another consequence is that
(M & N)=4L(M)+{(N) for any modules M and N of finite length. A module
M is of finite length if and only if M is both artinian and noetherian.

Theorem 2. (Fitting’s lemma) Let M be an R-module and let ¢ : M — M be
an R-module homomorphism.

(a) If M is noetherian then there exists a positive integer n such that ker ™ N
im "™ = 0.

(b) If M is artinian then there exists a positive integer n such that M = ker o™+
im ™.

(c) If M is a module of finite length (i.e., both artinan and noetherian), then
there exists a positive integer n such that M = ker ™ @& im ™.

Proof. (a) We have ker p C ker¢? C ---. As M is noetherian, there exists a
positive integer n such that ker o™ = ker o"*! = .... We claim that ker o™ N
im "™ = 0. If ¢ € ker " Nim ™ then there exists y € M such that z = ¢"(y). It
follows that ©*"(y) = ¢"(z) = 0. So y € ker p*" = ker ¢". Thus z = ¢"(y) = 0.
(b) We have im¢ D im@? D ---. As M is noetherian, there exists a positive
integer n such that im ¢" = im "t = .... We claim that M = ker ¢" 4 im ¢".
To see this, let # € M be an arbitrary element. As im " = im ¢?", there exists
an element y € M such that ¢"(z) = p?"(y). Write z = (z — ¢"(y)) + " (y).
It suffices to show that the term x — ¢™(y) is in ker ¢™. In fact we have ™ (z —
¢"(y) = " (@) — 9> (y) = 0.

The assertion (¢) follows from (a) and (b). O
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Corollary 3. Let M be an indecomposable R-module of finite length then every
endomorphism of M is either nilpotent or isomorphism. In particular the set of
non-invertible elements of End(M) is closed under addition.

Proof. Let f € End(M). By Fitting’s lemma, there exists a positive integer
n such that M ~ ker o™ @ im ™. As M is indecomposable, we either have
ker ™ = 0 and im o™ = M or ker " = M and im¢"™ = 0. In the former case,
 is an isomorphism and in the later case ™ = 0 and ¢ is nilpotent.

For the second assertion, let f and g be two non-invertible elements of End(M).
We must show that h := f 4 g is also a non-invertible element of End(M).
Otherwise h is invertible, so we obtain id = h=! f +h~1g. As f is non-invertible,
so is h~! f and by previous Corollary, h~! f is nilpotent and soid —h~'f = h~!g
is invertible, so is g, contradiction. O

Lemma 4. Let M be a nonzero R-module and let N be an indecomposable
R-module. Suppose that f : M — N and g : N — M be two R-module homo-
morphisms such that go f : M — M is an isomorphism. Then f and g are
isomorphism as well.

Proof. As go f is isomorphism we obtain that g is surjective and f is injective.
Consider the exact sequence 0 - M — N — coker f — 0and 0 — kerg - N —
M — 0. As go f is isomorphism, this sequence splits. So N ~ M @ coker f ~
kerg ® M. As N is indecomposable, it follows that coker f = 0 and kerg = 0.
Thus f is surjective and g is injective. O

Theorem 5. (Krull-Schmidt) Let M be an R-module of finite length and let
M~U1&-- Uy, =2V ®--- BV, be two decomposition of M where U;’s and
V;’s are indecomposable R-modules. Then m = n and after a rearrangement of
indices we have U; >~ V; for every i.

Proof. Let o : U1 ®---®U,, > V1 ®---BV,, be an R-module isomorphism. We
prove the result by induction on m +n. If m +n = 2 then m =n =1 and the
conclusion is immediate. Let w; : U1 & - - @ U,, — U; and 7T;» Vie---eV, =V
be the canonical projections and let ¢; : U; — Uy & --- ® U, and L; V=
Vi@ --- @V, be the canonical injections.

Consider the endomorphism p;; of U; which is the composition of 7T;- opou;:
U; — V;and w07 ! OL; V= Ui, e,

piy = (m0 9™ 0 5) o () 0 po ).

If there exist two indices i and j such that p;; is an isomorphism (say ¢ =
j = 1) then we have an isomorphism 7} o p 011 : U; =~ V; as well. Now consider
the R-module homomorphism ¢ : (&7,U,) — (®7_,V;) defined by

(,0/(1'2, e axm) = (71—/2(90(0’*%27 e 7$m))7 e 771—;(90(0a T, 7xm)))'

We claim that ¢’ is an isomorphism. For the injectivity: suppose that the
element (ug,- - ,uy) is in the kernel of ¢’. So 7. (©(0,us, - ,um)) = 0 for
r = 2,---,n. So we have ¢(0,ug, -+ ,uy) = (v1,0,---,0). It follows that
©(0,ug, -+ ,Uy) = ty(v1). By applying the map 71 o ¢! on both sides we
get 0 = mp o tod(v1). As m o gz)—l o ¢} is isomorphism we obtain v; =
0 so ¢(0,ug, -+ ,um) = (0,0,---,0) and so (ug, - ,um) = (0,---,0). For



the surjectivity: as ¢’ is injective so £(®,U,) = £(¢'(®F,U,)). On the
other hand as ¢ is an isomorphism between @] ,U, and ®7_;V,; we have
U@ Uy) = U(@5_,V5), thus L(Uy) + (D7, Uy) = L(Vh) +4(DT_, V), it follows
that £(@" ,U,) = £(®%_5V5). So we have shown that the modules ¢’ (& ,U,.) C
@7_,V; are of the same length. Hence ¢’ (®I,U,) = ®7_, Vs so ¢’ is surjective.

We may now use the induction hypothesis to concludes the result.

If for every j, p;; is not isomorphism then by previous Corollary p;; is nilpo-
tent and so X7_, p;; is nilpotent as well. But X7, p;; = idy, contradiction. [
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