STRUCTURE THEOREM OF FINITELY GENERATED
MODULES OVER A PID

M. G. MAHMOUDI

ABSTRACT. We present a proof of the structure theorem of finitely generated
modules for a PID. The proof assumes the knowledge of exact sequences, free
modules, projective modules, injective modules and basic facts about PID’s.

Notation 1. For a left R-module M and x € M, the (left) annihilator of = is
defined by Ann(z) = {r € R : ra = 0}. This is a left ideal of R.

Lemma 2. Let M be a left R-module. Then for every x € M we have an isomor-
phism of left R-modules Rx ~ R/Ann(z).

We use the following criterion for injectiveness:

Theorem 3. A left R-module M is injective if and only if for every left ideal I of
R and for every R-module homomorphism f : I — M there exists ¢ € M such that
f@) =iq for every i € I.

Notation 4. In a commutative ring R, the principal ideal generated by a € R is
denoted by (a).

Definition 5. Let M be an module over an integral domain A. The torsion part
Tor(M) of M is the submodule of M consisting of all elements m € M such that
there exists a nonzero a € A such that am = 0.

Definition 6. A subset X of a left R-module M is called linearly independent (or
just independent) if for every n and every distinct elements z1,...,z, € X, the
relation ryx1 + - - - + r,x, = 0 where r; € R implies that r; = 0 for each 1.

Lemma 7. Let A be an integral domain. Then for every nonzero a € A, the
principal ideal (a) is a free A-module of rank one.

Lemma 8. Let M = Ra be a cyclic left R-module. FEvery submodule of I is of the
form Ia for some left ideal I of R.

Proof. Let f : R — Ra be the homomorphism of R-modules given by f(r) = ra.
Since f is surjective, every submodule of Ra is of the form f(I) for some left ideal
I of R. O

Lemma 9. Let A be a PID and let J be a nonzero ideal of A. Then A/J is an
injective A/J-module.

Proof. We may assume that J = (a) for some nonzero a € A. Let I/J be an ideal
of A/J and let f :I/J — A/J be an A/J-module homomorphism. It suffices to
check that there exists ¢+ J € A/J such that f(i + J) = (i + J)(¢ + J) for every
i € I. There exists b € A such that I = (b). Since J C I there exists ¢ € A such
that a = be. Since J # 0, a is nonzero, thus ¢ # 0. One can write f(b+J) = (b'+.J)
for some b’ € A. We multiply both sides of f(b+ J) = ()’ + J) by ¢+ J and use
the fact that f is an A/J-module homomorphism. We obtain 0 + J = b'c + J.
Hence, b'c € J, thus there exists ¢ € A such that b’'c = aq. Thus, b'c = beg, which
implies that b’ = bg (note that here we here use ¢ # 0, this is the only place where
J # 0 is used). We claim that for this ¢ we have f(i+J) = (i + J)(q+ J) for every
i € I. One can write ¢ = rb for some r € A. We have f(i) = (r+ J)f(b+J) =
(r4+ )0 +J)=+Ibg+J)=@b+J)(qg+J) =G+ J)(qg+J). O
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Theorem 10. Let M be a free module of finite rank over a PID then every sub-
module N of M is free and rank(N) < rank(M).

Proof. Suppose that rank(M) = r < co. Let {e1,...,e,} be a basis of M. If r =1,
then M = Ae;. By Lemma 8, there exists an ideal I of A such that N = le;.
Since A is a PID, there exists a € I such that I = (a). Hence, N = Ie; = (a)e;.
If N = {0}, N is a free submodule of N (with empty basis). If N # {0} (hence
a # 0), we claim that {ae;} is a basis of N. The element ae; generates N since
N = (a)ey. It suffices to check that {ae;} is an independent subset of N. If not,
there exists a nonzero r € A such that rae; = 0. Since A is an integral domain,
ra # 0. This is a contradiction since {e;} is an independent subset of M. Now
assume that r > 1. Fori=1,...,7, let m; : M — A be the canonical projections

aie; + -+ arep — a;.

If for some ¢, m;(N) = 0, then we have N C @;x;Ae;. Since ®;x;Ae; is a free
A-module of rank r — 1, the conclusion follows from induction. Hence assume that
m;(N) is a nonzero ideal of A for all i. Since A is a PID, there exists a nonzero
a; € A such that m;(N) = (a;). Now consider that exact sequence

0 — ker(mi|y) = N milx, mi(N) =0,
where ;| denotes the restriction of m; to N. By Lemma 7, m;(N) = (a;) is a free
A-module, hence a projective A-module. It follows that N ~ m;(N) @ ker(m;|n).
Since ker(m;|n) C ker(m;) = Pj2;Ae; and B, Ae; is a free A-module of rank r—1,
by induction ker(m;|n) is a free A-module of rank < r — 1. Since m;(N) = (a;) is
a free A-module of rank 1, the relation N ~ m;(IN) @ ker(m;|5) implies that N is a
free A-module of rank at most r. O

Theorem 11. Let A be a PID. Then every finitely generated torsion-free module
M over A is free.

Proof. Let X = {e1,...,e,} be a generating set for M. Let Y = {f1,..., fm} be
a maximal linearly independent subset of X. Hence, the submodule N = Af; +
-+ Af, is a free A-module. By maximality of Y, for every i, the subset Y U {e;}
is linearly dependent. Hence, there exists a nonzero a; € A such that a;e; € N.
Let a = []]_,a; € A which is nonzero since A is an integral domain. The fact
that {e1,...,e,} is a generating set for M and a;e; € N for each ¢, imply that
aM C N. Since M is torsion-free, the A-module homomorphism f: M — N given
by f(z) = ax is injective. Hence M ~ image(f). This means that M is isomorphic
to a submodule of N. Since N is a free A-module, Theorem 10 implies that M is
a free A-module as well. O

Corollary 12. Let A be a PID and let M be left A-module which can be generated
by n elements. Then every submodule N of M can be generated by at most n
elements.

Proof. Let {e1,...,en} be a generating set for M. Let F be a free A-module
generated by n elements {x1,...,z,} and let ¢ : F — M be the surjection induced
by ¢(z;) = e;. The submodule ¢~1(N) is a free module of rank at most n by
Theorem 10. In particular ¢~!(N) can be generated by at most n elements. It
follows that N = ¢(¢~1(N)) can be generated by at most n elements as well. [

Proposition 13. Let M be a finitely generated module over a PID. Then
(i) M/Tor(M) is a free module of finite rank.
(i) M ~ Tor(M) ® M/Tor(M), in particular both Tor(M) and M/Tor(M) are
direct summands of M.
Proof. Since M /Tor(M) is torsion-free and finitely generated, (i) follows from The-
orem 11. For (ii) consider the exact sequence

0 — Tor(M) - M — M/Tor(M) — 0

By (i), M/Tor(M) is free, hence projective, thus (ii) follows. O
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Theorem 14. Let A be a PID. Let M be a finitely generated torsion module over
A. Then M can be written as a direct sum of finitely many cyclic modules. In other
words, there exist x1,..., Ty in M such that M = @}, Ax;.

Proof. For the case where M = 0, we may take n = 1 and z; = 0. Hence, we may
assume that M # 0. Let x1,...,x, be e generating set for M. Since M is torsion,
there exists nonzero a; € A such that a;z; = 0 for every i. Let p1,...,pm be all
primes appearing in the decomposition of ajas - -a,. For every prime p € A, let
M, be the p-torsion part of M, i.e.,

M,={zxeM: In>0, p"z =0}.
We claim that M = @, M,,. Consider an element x € M. Since M is torsion,

there exist nonnegative integers oy, ..., a, such that p*p5? .- - p%mz = 0. By the
Bézout theorem there exist c¢1, ..., ¢, € A such that Y ¢;d; = 1 where
d . p?lpgz . .pgnm
P= T -
b;

It follows that x = ) ¢;d;x. But ¢;d;z € My, since pjic;d;x = 0. It follows that
M =", M,,. To show that this sum is a direct sum, let y; € M,,, with

(1) yi+tym =0

We may assume that p;“y; = 0 for some a; > 0. We have to show that y; = 0 for
every 4. In fact, multiply the relation (1) by dj as defined above. It follows that
dryr = 0. Now multiply the relation Y ¢;d; = 1 by yx, considering the fact that
d;yr, = 0 for i # k, we obtain y; = 0. Hence, it suffices to prove the result for the
case where M = M,, for some prime p. Note that each M, is a quotient module of
M, hence finitely generated.

We thus may assume that M is a p-torsion module for some prime p in A, i.e.,
we may assume that for every 2 € M, there exists k > 0 such that p*z = 0. Since
M is finitely generated, we may assume that there exists k& > 0 such that p*z =0
for all x € M. We may take this k minimum. We prove the result by induction on
the number n of generators of M. If n = 1, then M is cyclic and the conclusion
is immediate. Let {z1,...,z,} be a generating set for M. By the minimality of k,
there exists i such that p*~1z; # 0. Without loss of generality, we may assume that
i =1, that is p*~'z; # 0. We claim that Ann(x;) = (p*). Since p*z; = 0 we have
(p*) € Ann(z1). Conversely, let a € Ann(x1), i.e., az; = 0. We also have p*x; = 0.
Let p" (where 1 < r < k) be the ged of a and p*. From the relations az; = 0 and
pFx; = 0 we obtain p"x; = 0. But 7 cannot be smaller than k, because p* 1z, # 0.
It follows that the ged of @ and p* is p¥, thus p* divides a. It follows that a € (p*),
hence Ann(z;) C (p*). Now put J := (a) = Ann(z;). We have JM = 0, hence M is
an A/J-module. Now consider the exact sequence 0 — Azy — M — M/Ax; — 0 of
A/J-modules. Since Azy ~ A/J and by Lemma 9, A/.J is an injective A/J-module,
we can write M ~ Axy @ M/Axzy as A/J-modules. Thus, M ~ Ax; ® M/Ax; as
A-modules. But M/Ax; can be generated by the cosets of xo,...,x, in M/Ax;.
Hence, by induction, M/Az; is a direct sum of cyclic modules. It follows that M
is a direct sum of cyclic modules. O

Theorem 15 (Structure theorem of finitely generated modules over a PID). Let
A be a PID and let M be a finitely generated A-modules. Then there exist m,n > 0
and elements x1,...,x, € M such that M ~ (&7, A) ® Az, @ -+ © Ax,,.

Proof. By Proposition 13, M ~ Tor(M )& M /Tor(M). By Theorem 11, M /Tor(M)
is free hence isomorphic to @, A for some m > 0. By Theorem 14, Tor(M) is
isomorphic to Az ®- - -® Az, for some x1,...,x, € M and the result is proved. [J
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