STRUCTURE THEOREM OF FINITELY GENERATED MODULES OVER A PID

M. G. MAHMOUDI

ABSTRACT. We present a proof of the structure theorem of finitely generated modules for a PID. The proof assumes the knowledge of exact sequences, free modules, projective modules, injective modules and basic facts about PID's.

Notation 1. For a left *R*-module *M* and $x \in M$, the (left) annihilator of *x* is defined by $Ann(x) = \{r \in R : rx = 0\}$. This is a left ideal of *R*.

Lemma 2. Let M be a left R-module. Then for every $x \in M$ we have an isomorphism of left R-modules $Rx \simeq R/\text{Ann}(x)$.

We use the following criterion for injectiveness:

Theorem 3. A left R-module M is injective if and only if for every left ideal I of R and for every R-module homomorphism $f: I \to M$ there exists $q \in M$ such that f(i) = iq for every $i \in I$.

Notation 4. In a commutative ring R, the principal ideal generated by $a \in R$ is denoted by (a).

Definition 5. Let M be an module over an integral domain A. The torsion part Tor(M) of M is the submodule of M consisting of all elements $m \in M$ such that there exists a nonzero $a \in A$ such that am = 0.

Definition 6. A subset X of a left R-module M is called linearly independent (or just independent) if for every n and every distinct elements $x_1, \ldots, x_n \in X$, the relation $r_1x_1 + \cdots + r_nx_n = 0$ where $r_i \in R$ implies that $r_i = 0$ for each i.

Lemma 7. Let A be an integral domain. Then for every nonzero $a \in A$, the principal ideal (a) is a free A-module of rank one.

Lemma 8. Let M = Ra be a cyclic left R-module. Every submodule of I is of the form Ia for some left ideal I of R.

Proof. Let $f : R \to Ra$ be the homomorphism of *R*-modules given by f(r) = ra. Since *f* is surjective, every submodule of *Ra* is of the form f(I) for some left ideal *I* of *R*.

Lemma 9. Let A be a PID and let J be a nonzero ideal of A. Then A/J is an injective A/J-module.

Proof. We may assume that J = (a) for some nonzero $a \in A$. Let I/J be an ideal of A/J and let $f: I/J \to A/J$ be an A/J-module homomorphism. It suffices to check that there exists $q + J \in A/J$ such that f(i + J) = (i + J)(q + J) for every $i \in I$. There exists $b \in A$ such that I = (b). Since $J \subseteq I$ there exists $c \in A$ such that a = bc. Since $J \neq 0$, a is nonzero, thus $c \neq 0$. One can write f(b+J) = (b'+J) for some $b' \in A$. We multiply both sides of f(b + J) = (b' + J) by c + J and use the fact that f is an A/J-module homomorphism. We obtain 0 + J = b'c + J. Hence, $b'c \in J$, thus there exists $q \in A$ such that b'c = aq. Thus, b'c = bcq, which implies that b' = bq (note that here we here use $c \neq 0$, this is the only place where $J \neq 0$ is used). We claim that for this c we have f(i + J) = (i + J)(q + J) for every $i \in I$. One can write i = rb for some $r \in A$. We have f(i) = (r + J)f(b + J) = (r + J)(bq + J) = (rb + J)(q + J) = (i + J)(q + J).

Date: December 24, 2020.

Theorem 10. Let M be a free module of finite rank over a PID then every submodule N of M is free and $\operatorname{rank}(N) \leq \operatorname{rank}(M)$.

Proof. Suppose that rank $(M) = r < \infty$. Let $\{e_1, \ldots, e_r\}$ be a basis of M. If r = 1, then $M = Ae_1$. By Lemma 8, there exists an ideal I of A such that $N = Ie_1$. Since A is a PID, there exists $a \in I$ such that I = (a). Hence, $N = Ie_1 = (a)e_1$. If $N = \{0\}$, N is a free submodule of N (with empty basis). If $N \neq \{0\}$ (hence $a \neq 0$), we claim that $\{ae_1\}$ is a basis of N. The element ae_1 generates N since $N = (a)e_1$. It suffices to check that $\{ae_1\}$ is an independent subset of N. If not, there exists a nonzero $r \in A$ such that $rae_1 = 0$. Since A is an integral domain, $ra \neq 0$. This is a contradiction since $\{e_1\}$ is an independent subset of M. Now assume that r > 1. For $i = 1, \ldots, r$, let $\pi_i : M \to A$ be the canonical projections

$$a_1e_1 + \dots + a_re_r \mapsto a_i.$$

If for some i, $\pi_i(N) = 0$, then we have $N \subseteq \bigoplus_{j \neq i} Ae_j$. Since $\bigoplus_{j \neq i} Ae_j$ is a free *A*-module of rank r-1, the conclusion follows from induction. Hence assume that $\pi_i(N)$ is a nonzero ideal of *A* for all *i*. Since *A* is a PID, there exists a nonzero $a_i \in A$ such that $\pi_i(N) = (a_i)$. Now consider that exact sequence

$$0 \to \ker(\pi_i|_N) \to N \xrightarrow{\pi_i|_N} \pi_i(N) \to 0,$$

where $\pi_i|_N$ denotes the restriction of π_i to N. By Lemma 7, $\pi_i(N) = (a_i)$ is a free A-module, hence a projective A-module. It follows that $N \simeq \pi_i(N) \oplus \ker(\pi_i|_N)$. Since $\ker(\pi_i|_N) \subseteq \ker(\pi_i) = \bigoplus_{j \neq i} Ae_j$ and $\bigoplus_{j \neq i} Ae_j$ is a free A-module of rank r-1, by induction $\ker(\pi_i|_N)$ is a free A-module of rank $\leq r-1$. Since $\pi_i(N) = (a_i)$ is a free A-module of rank 1, the relation $N \simeq \pi_i(N) \oplus \ker(\pi_i|_N)$ implies that N is a free A-module of rank at most r.

Theorem 11. Let A be a PID. Then every finitely generated torsion-free module M over A is free.

Proof. Let $X = \{e_1, \ldots, e_n\}$ be a generating set for M. Let $Y = \{f_1, \ldots, f_m\}$ be a maximal linearly independent subset of X. Hence, the submodule $N = Af_1 + \cdots + Af_m$ is a free A-module. By maximality of Y, for every i, the subset $Y \cup \{e_i\}$ is linearly dependent. Hence, there exists a nonzero $a_i \in A$ such that $a_i e_i \in N$. Let $a = \prod_{i=1}^n a_i \in A$ which is nonzero since A is an integral domain. The fact that $\{e_1, \ldots, e_n\}$ is a generating set for M and $a_i e_i \in N$ for each i, imply that $aM \subseteq N$. Since M is torsion-free, the A-module homomorphism $f: M \to N$ given by f(x) = ax is injective. Hence $M \simeq \text{image}(f)$. This means that M is isomorphic to a submodule of N. Since N is a free A-module, Theorem 10 implies that M is a free A-module as well. \Box

Corollary 12. Let A be a PID and let M be left A-module which can be generated by n elements. Then every submodule N of M can be generated by at most n elements.

Proof. Let $\{e_1, \ldots, e_n\}$ be a generating set for M. Let F be a free A-module generated by n elements $\{x_1, \ldots, x_n\}$ and let $\phi : F \to M$ be the surjection induced by $\phi(x_i) = e_i$. The submodule $\phi^{-1}(N)$ is a free module of rank at most n by Theorem 10. In particular $\phi^{-1}(N)$ can be generated by at most n elements. It follows that $N = \phi(\phi^{-1}(N))$ can be generated by at most n elements as well. \Box

Proposition 13. Let M be a finitely generated module over a PID. Then (i) M/Tor(M) is a free module of finite rank.

(ii) $M \simeq \operatorname{Tor}(M) \oplus M/\operatorname{Tor}(M)$, in particular both $\operatorname{Tor}(M)$ and $M/\operatorname{Tor}(M)$ are direct summands of M.

Proof. Since M/Tor(M) is torsion-free and finitely generated, (i) follows from Theorem 11. For (ii) consider the exact sequence

$$0 \to \operatorname{Tor}(M) \to M \to M/\operatorname{Tor}(M) \to 0$$

By (i), M/Tor(M) is free, hence projective, thus (ii) follows.

Theorem 14. Let A be a PID. Let M be a finitely generated torsion module over A. Then M can be written as a direct sum of finitely many cyclic modules. In other words, there exist x_1, \ldots, x_n in M such that $M = \bigoplus_{i=1}^n Ax_i$.

Proof. For the case where M = 0, we may take n = 1 and $x_1 = 0$. Hence, we may assume that $M \neq 0$. Let x_1, \ldots, x_n be e generating set for M. Since M is torsion, there exists nonzero $a_i \in A$ such that $a_i x_i = 0$ for every i. Let p_1, \ldots, p_m be all primes appearing in the decomposition of $a_1 a_2 \cdots a_n$. For every prime $p \in A$, let M_p be the p-torsion part of M, i.e.,

$$M_p = \{ x \in M : \exists n \ge 0, p^n x = 0 \}.$$

We claim that $M = \bigoplus_{i=1}^{m} M_{p_i}$. Consider an element $x \in M$. Since M is torsion, there exist nonnegative integers $\alpha_1, \ldots, \alpha_m$ such that $p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m} x = 0$. By the Bézout theorem there exist $c_1, \ldots, c_m \in A$ such that $\sum c_i d_i = 1$ where

$$d_i = \frac{p_1^{\alpha_1} p_2^{\alpha_2} \cdots p_m^{\alpha_m}}{p_i^{\alpha_i}}.$$

It follows that $x = \sum c_i d_i x$. But $c_i d_i x \in M_{p_i}$ since $p_i^{\alpha_i} c_i d_i x = 0$. It follows that $M = \sum_{i=1}^m M_{p_i}$. To show that this sum is a direct sum, let $y_i \in M_{p_i}$ with

$$(1) y_1 + \dots + y_m = 0$$

We may assume that $p_i^{\alpha_i} y_i = 0$ for some $\alpha_i \ge 0$. We have to show that $y_i = 0$ for every *i*. In fact, multiply the relation (1) by d_k as defined above. It follows that $d_k y_k = 0$. Now multiply the relation $\sum c_i d_i = 1$ by y_k , considering the fact that $d_i y_k = 0$ for $i \ne k$, we obtain $y_k = 0$. Hence, it suffices to prove the result for the case where $M = M_p$ for some prime *p*. Note that each M_{p_i} is a quotient module of *M*, hence finitely generated.

We thus may assume that M is a p-torsion module for some prime p in A, i.e., we may assume that for every $x \in M$, there exists $k \ge 0$ such that $p^k x = 0$. Since M is finitely generated, we may assume that there exists $k \ge 0$ such that $p^k x = 0$ for all $x \in M$. We may take this k minimum. We prove the result by induction on the number n of generators of M. If n = 1, then M is cyclic and the conclusion is immediate. Let $\{x_1, \ldots, x_n\}$ be a generating set for M. By the minimality of k, there exists i such that $p^{k-1}x_i \neq 0$. Without loss of generality, we may assume that i = 1, that is $p^{k-1}x_1 \neq 0$. We claim that $Ann(x_1) = (p^k)$. Since $p^k x_1 = 0$ we have $(p^k) \subseteq \operatorname{Ann}(x_1)$. Conversely, let $a \in \operatorname{Ann}(x_1)$, i.e., $ax_1 = 0$. We also have $p^k x_1 = 0$. Let p^r (where $1 \le r \le k$) be the gcd of a and p^k . From the relations $ax_1 = 0$ and $p^k x_1 = 0$ we obtain $p^r x_1 = 0$. But r cannot be smaller than k, because $p^{k-1} x_1 \neq 0$. It follows that the gcd of a and p^k is p^k , thus p^k divides a. It follows that $a \in (p^k)$, hence $\operatorname{Ann}(x_1) \subseteq (p^k)$. Now put $J := (a) = \operatorname{Ann}(x_1)$. We have JM = 0, hence M is an A/J-module. Now consider the exact sequence $0 \to Ax_1 \to M \to M/Ax_1 \to 0$ of A/J-modules. Since $Ax_1 \simeq A/J$ and by Lemma 9, A/J is an injective A/J-module, we can write $M \simeq Ax_1 \oplus M/Ax_1$ as A/J-modules. Thus, $M \simeq Ax_1 \oplus M/Ax_1$ as A-modules. But M/Ax_1 can be generated by the cosets of x_2, \ldots, x_n in M/Ax_1 . Hence, by induction, M/Ax_1 is a direct sum of cyclic modules. It follows that M is a direct sum of cyclic modules.

Theorem 15 (Structure theorem of finitely generated modules over a PID). Let A be a PID and let M be a finitely generated A-modules. Then there exist $m, n \ge 0$ and elements $x_1, \ldots, x_n \in M$ such that $M \simeq (\bigoplus_{i=1}^m A) \oplus Ax_1 \oplus \cdots \oplus Ax_n$.

Proof. By Proposition 13, $M \simeq \operatorname{Tor}(M) \oplus M/\operatorname{Tor}(M)$. By Theorem 11, $M/\operatorname{Tor}(M)$ is free hence isomorphic to $\bigoplus_{i=1}^{m} A$ for some $m \ge 0$. By Theorem 14, $\operatorname{Tor}(M)$ is isomorphic to $Ax_1 \oplus \cdots \oplus Ax_n$ for some $x_1, \ldots, x_n \in M$ and the result is proved. \Box

M. G. Mahmoudi, mmahmoudi@sharif.ir, Department of Mathematical Sciences, Sharif University of Technology, P. O. Box 11155-9415, Tehran, Iran. Fax: (+98) (21) 6616-5117