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Abstract. We present a proof of the structure theorem of finitely generated
modules for a PID. The proof assumes the knowledge of exact sequences, free

modules, projective modules, injective modules and basic facts about PID’s.

Notation 1. For a left R-module M and x ∈ M , the (left) annihilator of x is
defined by Ann(x) = {r ∈ R : rx = 0}. This is a left ideal of R.

Lemma 2. Let M be a left R-module. Then for every x ∈M we have an isomor-
phism of left R-modules Rx ' R/Ann(x).

We use the following criterion for injectiveness:

Theorem 3. A left R-module M is injective if and only if for every left ideal I of
R and for every R-module homomorphism f : I →M there exists q ∈M such that
f(i) = iq for every i ∈ I.

Notation 4. In a commutative ring R, the principal ideal generated by a ∈ R is
denoted by (a).

Definition 5. Let M be an module over an integral domain A. The torsion part
Tor(M) of M is the submodule of M consisting of all elements m ∈ M such that
there exists a nonzero a ∈ A such that am = 0.

Definition 6. A subset X of a left R-module M is called linearly independent (or
just independent) if for every n and every distinct elements x1, . . . , xn ∈ X, the
relation r1x1 + · · ·+ rnxn = 0 where ri ∈ R implies that ri = 0 for each i.

Lemma 7. Let A be an integral domain. Then for every nonzero a ∈ A, the
principal ideal (a) is a free A-module of rank one.

Lemma 8. Let M = Ra be a cyclic left R-module. Every submodule of I is of the
form Ia for some left ideal I of R.

Proof. Let f : R → Ra be the homomorphism of R-modules given by f(r) = ra.
Since f is surjective, every submodule of Ra is of the form f(I) for some left ideal
I of R. �

Lemma 9. Let A be a PID and let J be a nonzero ideal of A. Then A/J is an
injective A/J-module.

Proof. We may assume that J = (a) for some nonzero a ∈ A. Let I/J be an ideal
of A/J and let f : I/J → A/J be an A/J-module homomorphism. It suffices to
check that there exists q + J ∈ A/J such that f(i + J) = (i + J)(q + J) for every
i ∈ I. There exists b ∈ A such that I = (b). Since J ⊆ I there exists c ∈ A such
that a = bc. Since J 6= 0, a is nonzero, thus c 6= 0. One can write f(b+J) = (b′+J)
for some b′ ∈ A. We multiply both sides of f(b + J) = (b′ + J) by c + J and use
the fact that f is an A/J-module homomorphism. We obtain 0 + J = b′c + J .
Hence, b′c ∈ J , thus there exists q ∈ A such that b′c = aq. Thus, b′c = bcq, which
implies that b′ = bq (note that here we here use c 6= 0, this is the only place where
J 6= 0 is used). We claim that for this c we have f(i+J) = (i+J)(q+J) for every
i ∈ I. One can write i = rb for some r ∈ A. We have f(i) = (r + J)f(b + J) =
(r + J)(b′ + J) = (r + J)(bq + J) = (rb+ J)(q + J) = (i+ J)(q + J). �
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Theorem 10. Let M be a free module of finite rank over a PID then every sub-
module N of M is free and rank(N) ≤ rank(M).

Proof. Suppose that rank(M) = r <∞. Let {e1, . . . , er} be a basis of M . If r = 1,
then M = Ae1. By Lemma 8, there exists an ideal I of A such that N = Ie1.
Since A is a PID, there exists a ∈ I such that I = (a). Hence, N = Ie1 = (a)e1.
If N = {0}, N is a free submodule of N (with empty basis). If N 6= {0} (hence
a 6= 0), we claim that {ae1} is a basis of N . The element ae1 generates N since
N = (a)e1. It suffices to check that {ae1} is an independent subset of N . If not,
there exists a nonzero r ∈ A such that rae1 = 0. Since A is an integral domain,
ra 6= 0. This is a contradiction since {e1} is an independent subset of M . Now
assume that r > 1. For i = 1, . . . , r, let πi : M → A be the canonical projections

a1e1 + · · ·+ arer 7→ ai.

If for some i, πi(N) = 0, then we have N ⊆ ⊕j 6=iAej . Since ⊕j 6=iAej is a free
A-module of rank r− 1, the conclusion follows from induction. Hence assume that
πi(N) is a nonzero ideal of A for all i. Since A is a PID, there exists a nonzero
ai ∈ A such that πi(N) = (ai). Now consider that exact sequence

0→ ker(πi|N )→ N
πi|N−−−→ πi(N)→ 0,

where πi|N denotes the restriction of πi to N . By Lemma 7, πi(N) = (ai) is a free
A-module, hence a projective A-module. It follows that N ' πi(N) ⊕ ker(πi|N ).
Since ker(πi|N ) ⊆ ker(πi) = ⊕j 6=iAej and ⊕j 6=iAej is a free A-module of rank r−1,
by induction ker(πi|N ) is a free A-module of rank ≤ r − 1. Since πi(N) = (ai) is
a free A-module of rank 1, the relation N ' πi(N)⊕ ker(πi|N ) implies that N is a
free A-module of rank at most r. �

Theorem 11. Let A be a PID. Then every finitely generated torsion-free module
M over A is free.

Proof. Let X = {e1, . . . , en} be a generating set for M . Let Y = {f1, . . . , fm} be
a maximal linearly independent subset of X. Hence, the submodule N = Af1 +
· · ·+Afm is a free A-module. By maximality of Y , for every i, the subset Y ∪ {ei}
is linearly dependent. Hence, there exists a nonzero ai ∈ A such that aiei ∈ N .
Let a =

∏n
i=1 ai ∈ A which is nonzero since A is an integral domain. The fact

that {e1, . . . , en} is a generating set for M and aiei ∈ N for each i, imply that
aM ⊆ N . Since M is torsion-free, the A-module homomorphism f : M → N given
by f(x) = ax is injective. Hence M ' image(f). This means that M is isomorphic
to a submodule of N . Since N is a free A-module, Theorem 10 implies that M is
a free A-module as well. �

Corollary 12. Let A be a PID and let M be left A-module which can be generated
by n elements. Then every submodule N of M can be generated by at most n
elements.

Proof. Let {e1, . . . , en} be a generating set for M . Let F be a free A-module
generated by n elements {x1, . . . , xn} and let φ : F →M be the surjection induced
by φ(xi) = ei. The submodule φ−1(N) is a free module of rank at most n by
Theorem 10. In particular φ−1(N) can be generated by at most n elements. It
follows that N = φ(φ−1(N)) can be generated by at most n elements as well. �

Proposition 13. Let M be a finitely generated module over a PID. Then
(i) M/Tor(M) is a free module of finite rank.
(ii) M ' Tor(M) ⊕ M/Tor(M), in particular both Tor(M) and M/Tor(M) are
direct summands of M .

Proof. Since M/Tor(M) is torsion-free and finitely generated, (i) follows from The-
orem 11. For (ii) consider the exact sequence

0→ Tor(M)→M →M/Tor(M)→ 0

By (i), M/Tor(M) is free, hence projective, thus (ii) follows. �
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Theorem 14. Let A be a PID. Let M be a finitely generated torsion module over
A. Then M can be written as a direct sum of finitely many cyclic modules. In other
words, there exist x1, . . . , xn in M such that M = ⊕ni=1Axi.

Proof. For the case where M = 0, we may take n = 1 and x1 = 0. Hence, we may
assume that M 6= 0. Let x1, . . . , xn be e generating set for M . Since M is torsion,
there exists nonzero ai ∈ A such that aixi = 0 for every i. Let p1, . . . , pm be all
primes appearing in the decomposition of a1a2 · · · an. For every prime p ∈ A, let
Mp be the p-torsion part of M , i.e.,

Mp = {x ∈M : ∃n ≥ 0, pnx = 0}.
We claim that M = ⊕mi=1Mpi . Consider an element x ∈ M . Since M is torsion,
there exist nonnegative integers α1, . . . , αm such that pα1

1 pα2
2 · · · pαm

m x = 0. By the
Bézout theorem there exist c1, . . . , cm ∈ A such that

∑
cidi = 1 where

di =
pα1
1 pα2

2 · · · pαm
m

pαi
i

.

It follows that x =
∑
cidix. But cidix ∈ Mpi since pαi

i cidix = 0. It follows that
M =

∑m
i=1Mpi . To show that this sum is a direct sum, let yi ∈Mpi with

(1) y1 + · · ·+ ym = 0

We may assume that pαi
i yi = 0 for some αi ≥ 0. We have to show that yi = 0 for

every i. In fact, multiply the relation (1) by dk as defined above. It follows that
dkyk = 0. Now multiply the relation

∑
cidi = 1 by yk, considering the fact that

diyk = 0 for i 6= k, we obtain yk = 0. Hence, it suffices to prove the result for the
case where M = Mp for some prime p. Note that each Mpi is a quotient module of
M , hence finitely generated.

We thus may assume that M is a p-torsion module for some prime p in A, i.e.,
we may assume that for every x ∈ M , there exists k ≥ 0 such that pkx = 0. Since
M is finitely generated, we may assume that there exists k ≥ 0 such that pkx = 0
for all x ∈M . We may take this k minimum. We prove the result by induction on
the number n of generators of M . If n = 1, then M is cyclic and the conclusion
is immediate. Let {x1, . . . , xn} be a generating set for M . By the minimality of k,
there exists i such that pk−1xi 6= 0. Without loss of generality, we may assume that
i = 1, that is pk−1x1 6= 0. We claim that Ann(x1) = (pk). Since pkx1 = 0 we have
(pk) ⊆ Ann(x1). Conversely, let a ∈ Ann(x1), i.e., ax1 = 0. We also have pkx1 = 0.
Let pr (where 1 ≤ r ≤ k) be the gcd of a and pk. From the relations ax1 = 0 and
pkx1 = 0 we obtain prx1 = 0. But r cannot be smaller than k, because pk−1x1 6= 0.
It follows that the gcd of a and pk is pk, thus pk divides a. It follows that a ∈ (pk),
hence Ann(x1) ⊆ (pk). Now put J := (a) = Ann(x1). We have JM = 0, hence M is
an A/J-module. Now consider the exact sequence 0→ Ax1 →M →M/Ax1 → 0 of
A/J-modules. Since Ax1 ' A/J and by Lemma 9, A/J is an injective A/J-module,
we can write M ' Ax1 ⊕M/Ax1 as A/J-modules. Thus, M ' Ax1 ⊕M/Ax1 as
A-modules. But M/Ax1 can be generated by the cosets of x2, . . . , xn in M/Ax1.
Hence, by induction, M/Ax1 is a direct sum of cyclic modules. It follows that M
is a direct sum of cyclic modules. �

Theorem 15 (Structure theorem of finitely generated modules over a PID). Let
A be a PID and let M be a finitely generated A-modules. Then there exist m,n ≥ 0
and elements x1, . . . , xn ∈M such that M ' (⊕mi=1A)⊕Ax1 ⊕ · · · ⊕Axn.

Proof. By Proposition 13, M ' Tor(M)⊕M/Tor(M). By Theorem 11, M/Tor(M)
is free hence isomorphic to ⊕mi=1A for some m ≥ 0. By Theorem 14, Tor(M) is
isomorphic to Ax1⊕· · ·⊕Axn for some x1, . . . , xn ∈M and the result is proved. �
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