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Abstract. The proof presented here is a variation of the one given in Gallian’s
book [1].

Lemma 1. Let p be a prime number and let G be a finite p-group. Let a ∈ G be
an element whose order is maximum among all elements of G.
(i) If G 6= 〈a〉 then there exists an element b ∈ G\〈a〉 such that 〈a〉 ∩ 〈b〉 = {e}.
(ii) There exists a subgroup K of G such that G = 〈a〉K with 〈a〉 ∩K = {e}.

Proof. (i) Let b ∈ G\〈a〉 be an element with minimum order. Since G is a p-group,
o(b) < o(bp), hence by the choice of b we have bp ∈ 〈a〉. Thus there exists an integer
i such that bp = ai. If (i, p) = 1 then o(bp) = o(ai) = o(a) ≥ o(b) which is a
contradiction. Hence p|i and so there exists an integer j such that i = pj. Now
bp = ai implies that (ba−j)p = e. Since ba−j 6∈ 〈a〉, we have ba−j 6= e and hence
o(ba−j) = p. The minimality of the order of b implies that o(b) = p. This implies
that the order of 〈a〉 ∩ 〈b〉 divides p. If this order is 1, the claim is proved, if this
order is p, then 〈b〉 ⊆ 〈a〉 which contradicts the fact that b 6∈ 〈a〉.

(ii) We prove the assertion by induction on |G|. For |G| = 1 the assertion is clear.
If 〈a〉 = G we can take K = {e} and the result is proved. Hence we may assume
that G 6= 〈a〉. By (i) there exists an element b ∈ G\〈a〉 such that 〈a〉 ∩ 〈b〉 = {e}.
We have |G/〈b〉| < |G|. Since 〈a〉 ∩ 〈b〉 = e, the order of the coset a〈b〉 ∈ G/〈b〉
is equal to o(a). Hence a〈b〉 is also an element of maximum order in G/〈b〉. Also
note that 〈a〈b〉〉 = 〈a〉〈b〉/〈b〉. By induction there exists a subgroup K/〈b〉 of G/〈b〉

such that 〈a〉〈b〉
〈b〉

K
〈b〉 = G

〈b〉 and 〈a〉〈b〉
〈b〉 ∩ K

〈b〉 = 〈b〉
〈b〉 . It follows that 〈a〉〈b〉K = G

and 〈a〉〈b〉 ∩ K = 〈b〉. We claim that G = 〈a〉K and 〈a〉 ∩ K = {e}. In fact
〈a〉K = 〈a〉(〈b〉K) = 〈a〉〈b〉K = G. Also on the one hand 〈a〉 ∩ K ⊆ 〈a〉, on the
other hand, 〈a〉 ∩K ⊆ 〈a〉〈b〉 ∩K = 〈b〉, thus 〈a〉 ∩K ⊆ 〈a〉 ∩ 〈b〉 = {e}. �

Theorem 2 (Converse of Lagrange theorem). Let G be a finite abelian group of
order n and let d be a divisor of n. Then G has a subgroup H of order d.

Theorem 3. Let G be a finite abelian group. Then there exists cyclic groups
C1, . . . , Ck such that G ≃ C1 × · · · × Ck.

Proof. We prove the claim by induction on the order of G. If |G| = 1, the assertion
is clear. Let |G| = pα1

1
· · · pαr

r be the decomposition of |G| into primes where pi 6= pj
for i 6= j. By the converse of Lagrange’s theorem, G has a subgroup H of order pα1

1

and a subgroup L of order pα2

2
· · · pαr

r , and G = HL ≃ H × L. If |G| has at least
two distinct prime divisors, by induction both groups H and L are isomorphic to
a product of cyclic groups, hence so is G. Hence it suffices to prove the result for
the case where G is a p-group for some prime number p. Let a ∈ G be an element
whose order is maximum. If 〈a〉 = G, then G is cyclic and the result is proved. If
〈a〉 6= G, by Lemma 1, there exists a subgroup K of G such that 〈a〉 ∩ K = {e}
and G = 〈a〉K, hence G ≃ 〈a〉 ×K. By induction K is isomorphic to a product of
cyclic groups hence so is G. �
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